new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

PG-RCNN: Semantic Surface Point Generation for 3D Object Detection

One of the main challenges in LiDAR-based 3D object detection is that the sensors often fail to capture the complete spatial information about the objects due to long distance and occlusion. Two-stage detectors with point cloud completion approaches tackle this problem by adding more points to the regions of interest (RoIs) with a pre-trained network. However, these methods generate dense point clouds of objects for all region proposals, assuming that objects always exist in the RoIs. This leads to the indiscriminate point generation for incorrect proposals as well. Motivated by this, we propose Point Generation R-CNN (PG-RCNN), a novel end-to-end detector that generates semantic surface points of foreground objects for accurate detection. Our method uses a jointly trained RoI point generation module to process the contextual information of RoIs and estimate the complete shape and displacement of foreground objects. For every generated point, PG-RCNN assigns a semantic feature that indicates the estimated foreground probability. Extensive experiments show that the point clouds generated by our method provide geometrically and semantically rich information for refining false positive and misaligned proposals. PG-RCNN achieves competitive performance on the KITTI benchmark, with significantly fewer parameters than state-of-the-art models. The code is available at https://github.com/quotation2520/PG-RCNN.

  • 6 authors
·
Jul 24, 2023

KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection

Achieving a reliable LiDAR-based object detector in autonomous driving is paramount, but its success hinges on obtaining large amounts of precise 3D annotations. Active learning (AL) seeks to mitigate the annotation burden through algorithms that use fewer labels and can attain performance comparable to fully supervised learning. Although AL has shown promise, current approaches prioritize the selection of unlabeled point clouds with high uncertainty and/or diversity, leading to the selection of more instances for labeling and reduced computational efficiency. In this paper, we resort to a novel kernel coding rate maximization (KECOR) strategy which aims to identify the most informative point clouds to acquire labels through the lens of information theory. Greedy search is applied to seek desired point clouds that can maximize the minimal number of bits required to encode the latent features. To determine the uniqueness and informativeness of the selected samples from the model perspective, we construct a proxy network of the 3D detector head and compute the outer product of Jacobians from all proxy layers to form the empirical neural tangent kernel (NTK) matrix. To accommodate both one-stage (i.e., SECOND) and two-stage detectors (i.e., PVRCNN), we further incorporate the classification entropy maximization and well trade-off between detection performance and the total number of bounding boxes selected for annotation. Extensive experiments conducted on two 3D benchmarks and a 2D detection dataset evidence the superiority and versatility of the proposed approach. Our results show that approximately 44% box-level annotation costs and 26% computational time are reduced compared to the state-of-the-art AL method, without compromising detection performance.

  • 6 authors
·
Jul 16, 2023

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection

Feature pyramid networks (FPN) are widely exploited for multi-scale feature fusion in existing advanced object detection frameworks. Numerous previous works have developed various structures for bidirectional feature fusion, all of which are shown to improve the detection performance effectively. We observe that these complicated network structures require feature pyramids to be stacked in a fixed order, which introduces longer pipelines and reduces the inference speed. Moreover, semantics from non-adjacent levels are diluted in the feature pyramid since only features at adjacent pyramid levels are merged by the local fusion operation in a sequence manner. To address these issues, we propose a novel architecture named RCNet, which consists of Reverse Feature Pyramid (RevFP) and Cross-scale Shift Network (CSN). RevFP utilizes local bidirectional feature fusion to simplify the bidirectional pyramid inference pipeline. CSN directly propagates representations to both adjacent and non-adjacent levels to enable multi-scale features more correlative. Extensive experiments on the MS COCO dataset demonstrate RCNet can consistently bring significant improvements over both one-stage and two-stage detectors with subtle extra computational overhead. In particular, RetinaNet is boosted to 40.2 AP, which is 3.7 points higher than baseline, by replacing FPN with our proposed model. On COCO test-dev, RCNet can achieve very competitive performance with a single-model single-scale 50.5 AP. Codes will be made available.

  • 3 authors
·
Oct 23, 2021

Retina U-Net: Embarrassingly Simple Exploitation of Segmentation Supervision for Medical Object Detection

The task of localizing and categorizing objects in medical images often remains formulated as a semantic segmentation problem. This approach, however, only indirectly solves the coarse localization task by predicting pixel-level scores, requiring ad-hoc heuristics when mapping back to object-level scores. State-of-the-art object detectors on the other hand, allow for individual object scoring in an end-to-end fashion, while ironically trading in the ability to exploit the full pixel-wise supervision signal. This can be particularly disadvantageous in the setting of medical image analysis, where data sets are notoriously small. In this paper, we propose Retina U-Net, a simple architecture, which naturally fuses the Retina Net one-stage detector with the U-Net architecture widely used for semantic segmentation in medical images. The proposed architecture recaptures discarded supervision signals by complementing object detection with an auxiliary task in the form of semantic segmentation without introducing the additional complexity of previously proposed two-stage detectors. We evaluate the importance of full segmentation supervision on two medical data sets, provide an in-depth analysis on a series of toy experiments and show how the corresponding performance gain grows in the limit of small data sets. Retina U-Net yields strong detection performance only reached by its more complex two-staged counterparts. Our framework including all methods implemented for operation on 2D and 3D images is available at github.com/pfjaeger/medicaldetectiontoolkit.

  • 7 authors
·
Nov 21, 2018

Scale-Equalizing Pyramid Convolution for Object Detection

Feature pyramid has been an efficient method to extract features at different scales. Development over this method mainly focuses on aggregating contextual information at different levels while seldom touching the inter-level correlation in the feature pyramid. Early computer vision methods extracted scale-invariant features by locating the feature extrema in both spatial and scale dimension. Inspired by this, a convolution across the pyramid level is proposed in this study, which is termed pyramid convolution and is a modified 3-D convolution. Stacked pyramid convolutions directly extract 3-D (scale and spatial) features and outperforms other meticulously designed feature fusion modules. Based on the viewpoint of 3-D convolution, an integrated batch normalization that collects statistics from the whole feature pyramid is naturally inserted after the pyramid convolution. Furthermore, we also show that the naive pyramid convolution, together with the design of RetinaNet head, actually best applies for extracting features from a Gaussian pyramid, whose properties can hardly be satisfied by a feature pyramid. In order to alleviate this discrepancy, we build a scale-equalizing pyramid convolution (SEPC) that aligns the shared pyramid convolution kernel only at high-level feature maps. Being computationally efficient and compatible with the head design of most single-stage object detectors, the SEPC module brings significant performance improvement (>4AP increase on MS-COCO2017 dataset) in state-of-the-art one-stage object detectors, and a light version of SEPC also has sim3.5AP gain with only around 7% inference time increase. The pyramid convolution also functions well as a stand-alone module in two-stage object detectors and is able to improve the performance by sim2AP. The source code can be found at https://github.com/jshilong/SEPC.

  • 5 authors
·
May 6, 2020

An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection

As DenseNet conserves intermediate features with diverse receptive fields by aggregating them with dense connection, it shows good performance on the object detection task. Although feature reuse enables DenseNet to produce strong features with a small number of model parameters and FLOPs, the detector with DenseNet backbone shows rather slow speed and low energy efficiency. We find the linearly increasing input channel by dense connection leads to heavy memory access cost, which causes computation overhead and more energy consumption. To solve the inefficiency of DenseNet, we propose an energy and computation efficient architecture called VoVNet comprised of One-Shot Aggregation (OSA). The OSA not only adopts the strength of DenseNet that represents diversified features with multi receptive fields but also overcomes the inefficiency of dense connection by aggregating all features only once in the last feature maps. To validate the effectiveness of VoVNet as a backbone network, we design both lightweight and large-scale VoVNet and apply them to one-stage and two-stage object detectors. Our VoVNet based detectors outperform DenseNet based ones with 2x faster speed and the energy consumptions are reduced by 1.6x - 4.1x. In addition to DenseNet, VoVNet also outperforms widely used ResNet backbone with faster speed and better energy efficiency. In particular, the small object detection performance has been significantly improved over DenseNet and ResNet.

  • 5 authors
·
Apr 22, 2019

Scene-R1: Video-Grounded Large Language Models for 3D Scene Reasoning without 3D Annotations

Currently, utilizing large language models to understand the 3D world is becoming popular. Yet existing 3D-aware LLMs act as black boxes: they output bounding boxes or textual answers without revealing how those decisions are made, and they still rely on pre-trained 3D detectors to supply object proposals. We introduce Scene-R1, a video-grounded framework that learns to reason about 3D scenes without any point-wise 3D instance supervision by pairing reinforcement-learning-driven reasoning with a two-stage grounding pipeline. In the temporal grounding stage, we explicitly reason about the video and select the video snippets most relevant to an open-ended query. In the subsequent image grounding stage, we analyze the image and predict the 2D bounding box. After that, we track the object using SAM2 to produce pixel-accurate masks in RGB frames, and project them back into 3D, thereby eliminating the need for 3D detector-based proposals while capturing fine geometry and material cues. Scene-R1 can also adapt to the 3D visual question answering task to answer free-form questions directly from video. Our training pipeline only needs task-level 2D boxes or textual labels without dense 3D point-wise labels. Scene-R1 surpasses existing open-vocabulary baselines on multiple datasets, while delivering transparent, step-by-step rationales. These results show that reinforcement-learning-based reasoning combined with RGB-D video alone offers a practical, annotation-efficient route to trustworthy 3D scene understanding.

  • 7 authors
·
Jun 20, 2025

DetZero: Rethinking Offboard 3D Object Detection with Long-term Sequential Point Clouds

Existing offboard 3D detectors always follow a modular pipeline design to take advantage of unlimited sequential point clouds. We have found that the full potential of offboard 3D detectors is not explored mainly due to two reasons: (1) the onboard multi-object tracker cannot generate sufficient complete object trajectories, and (2) the motion state of objects poses an inevitable challenge for the object-centric refining stage in leveraging the long-term temporal context representation. To tackle these problems, we propose a novel paradigm of offboard 3D object detection, named DetZero. Concretely, an offline tracker coupled with a multi-frame detector is proposed to focus on the completeness of generated object tracks. An attention-mechanism refining module is proposed to strengthen contextual information interaction across long-term sequential point clouds for object refining with decomposed regression methods. Extensive experiments on Waymo Open Dataset show our DetZero outperforms all state-of-the-art onboard and offboard 3D detection methods. Notably, DetZero ranks 1st place on Waymo 3D object detection leaderboard with 85.15 mAPH (L2) detection performance. Further experiments validate the application of taking the place of human labels with such high-quality results. Our empirical study leads to rethinking conventions and interesting findings that can guide future research on offboard 3D object detection.

  • 12 authors
·
Jun 9, 2023

Unified Adversarial Patch for Cross-modal Attacks in the Physical World

Recently, physical adversarial attacks have been presented to evade DNNs-based object detectors. To ensure the security, many scenarios are simultaneously deployed with visible sensors and infrared sensors, leading to the failures of these single-modal physical attacks. To show the potential risks under such scenes, we propose a unified adversarial patch to perform cross-modal physical attacks, i.e., fooling visible and infrared object detectors at the same time via a single patch. Considering different imaging mechanisms of visible and infrared sensors, our work focuses on modeling the shapes of adversarial patches, which can be captured in different modalities when they change. To this end, we design a novel boundary-limited shape optimization to achieve the compact and smooth shapes, and thus they can be easily implemented in the physical world. In addition, to balance the fooling degree between visible detector and infrared detector during the optimization process, we propose a score-aware iterative evaluation, which can guide the adversarial patch to iteratively reduce the predicted scores of the multi-modal sensors. We finally test our method against the one-stage detector: YOLOv3 and the two-stage detector: Faster RCNN. Results show that our unified patch achieves an Attack Success Rate (ASR) of 73.33% and 69.17%, respectively. More importantly, we verify the effective attacks in the physical world when visible and infrared sensors shoot the objects under various settings like different angles, distances, postures, and scenes.

  • 4 authors
·
Jul 15, 2023

Open-vocabulary Object Detection via Vision and Language Knowledge Distillation

We aim at advancing open-vocabulary object detection, which detects objects described by arbitrary text inputs. The fundamental challenge is the availability of training data. It is costly to further scale up the number of classes contained in existing object detection datasets. To overcome this challenge, we propose ViLD, a training method via Vision and Language knowledge Distillation. Our method distills the knowledge from a pretrained open-vocabulary image classification model (teacher) into a two-stage detector (student). Specifically, we use the teacher model to encode category texts and image regions of object proposals. Then we train a student detector, whose region embeddings of detected boxes are aligned with the text and image embeddings inferred by the teacher. We benchmark on LVIS by holding out all rare categories as novel categories that are not seen during training. ViLD obtains 16.1 mask AP_r with a ResNet-50 backbone, even outperforming the supervised counterpart by 3.8. When trained with a stronger teacher model ALIGN, ViLD achieves 26.3 AP_r. The model can directly transfer to other datasets without finetuning, achieving 72.2 AP_{50} on PASCAL VOC, 36.6 AP on COCO and 11.8 AP on Objects365. On COCO, ViLD outperforms the previous state-of-the-art by 4.8 on novel AP and 11.4 on overall AP. Code and demo are open-sourced at https://github.com/tensorflow/tpu/tree/master/models/official/detection/projects/vild.

  • 4 authors
·
Apr 28, 2021

What Makes Good Open-Vocabulary Detector: A Disassembling Perspective

Open-vocabulary detection (OVD) is a new object detection paradigm, aiming to localize and recognize unseen objects defined by an unbounded vocabulary. This is challenging since traditional detectors can only learn from pre-defined categories and thus fail to detect and localize objects out of pre-defined vocabulary. To handle the challenge, OVD leverages pre-trained cross-modal VLM, such as CLIP, ALIGN, etc. Previous works mainly focus on the open vocabulary classification part, with less attention on the localization part. We argue that for a good OVD detector, both classification and localization should be parallelly studied for the novel object categories. We show in this work that improving localization as well as cross-modal classification complement each other, and compose a good OVD detector jointly. We analyze three families of OVD methods with different design emphases. We first propose a vanilla method,i.e., cropping a bounding box obtained by a localizer and resizing it into the CLIP. We next introduce another approach, which combines a standard two-stage object detector with CLIP. A two-stage object detector includes a visual backbone, a region proposal network (RPN), and a region of interest (RoI) head. We decouple RPN and ROI head (DRR) and use RoIAlign to extract meaningful features. In this case, it avoids resizing objects. To further accelerate the training time and reduce the model parameters, we couple RPN and ROI head (CRR) as the third approach. We conduct extensive experiments on these three types of approaches in different settings. On the OVD-COCO benchmark, DRR obtains the best performance and achieves 35.8 Novel AP_{50}, an absolute 2.8 gain over the previous state-of-the-art (SOTA). For OVD-LVIS, DRR surpasses the previous SOTA by 1.9 AP_{50} in rare categories. We also provide an object detection dataset called PID and provide a baseline on PID.

  • 5 authors
·
Aug 31, 2023

An Unsupervised Domain Adaptation Scheme for Single-Stage Artwork Recognition in Cultural Sites

Recognizing artworks in a cultural site using images acquired from the user's point of view (First Person Vision) allows to build interesting applications for both the visitors and the site managers. However, current object detection algorithms working in fully supervised settings need to be trained with large quantities of labeled data, whose collection requires a lot of times and high costs in order to achieve good performance. Using synthetic data generated from the 3D model of the cultural site to train the algorithms can reduce these costs. On the other hand, when these models are tested with real images, a significant drop in performance is observed due to the differences between real and synthetic images. In this study we consider the problem of Unsupervised Domain Adaptation for object detection in cultural sites. To address this problem, we created a new dataset containing both synthetic and real images of 16 different artworks. We hence investigated different domain adaptation techniques based on one-stage and two-stage object detector, image-to-image translation and feature alignment. Based on the observation that single-stage detectors are more robust to the domain shift in the considered settings, we proposed a new method which builds on RetinaNet and feature alignment that we called DA-RetinaNet. The proposed approach achieves better results than compared methods on the proposed dataset and on Cityscapes. To support research in this field we release the dataset at the following link https://iplab.dmi.unict.it/EGO-CH-OBJ-UDA/ and the code of the proposed architecture at https://github.com/fpv-iplab/DA-RetinaNet.

  • 4 authors
·
Aug 4, 2020

Re-mine, Learn and Reason: Exploring the Cross-modal Semantic Correlations for Language-guided HOI detection

Human-Object Interaction (HOI) detection is a challenging computer vision task that requires visual models to address the complex interactive relationship between humans and objects and predict HOI triplets. Despite the challenges posed by the numerous interaction combinations, they also offer opportunities for multimodal learning of visual texts. In this paper, we present a systematic and unified framework (RmLR) that enhances HOI detection by incorporating structured text knowledge. Firstly, we qualitatively and quantitatively analyze the loss of interaction information in the two-stage HOI detector and propose a re-mining strategy to generate more comprehensive visual representation.Secondly, we design more fine-grained sentence- and word-level alignment and knowledge transfer strategies to effectively address the many-to-many matching problem between multiple interactions and multiple texts.These strategies alleviate the matching confusion problem that arises when multiple interactions occur simultaneously, thereby improving the effectiveness of the alignment process. Finally, HOI reasoning by visual features augmented with textual knowledge substantially improves the understanding of interactions. Experimental results illustrate the effectiveness of our approach, where state-of-the-art performance is achieved on public benchmarks. We further analyze the effects of different components of our approach to provide insights into its efficacy.

  • 7 authors
·
Jul 25, 2023

Demystifying Catastrophic Forgetting in Two-Stage Incremental Object Detector

Catastrophic forgetting is a critical chanllenge for incremental object detection (IOD). Most existing methods treat the detector monolithically, relying on instance replay or knowledge distillation without analyzing component-specific forgetting. Through dissection of Faster R-CNN, we reveal a key insight: Catastrophic forgetting is predominantly localized to the RoI Head classifier, while regressors retain robustness across incremental stages. This finding challenges conventional assumptions, motivating us to develop a framework termed NSGP-RePRE. Regional Prototype Replay (RePRE) mitigates classifier forgetting via replay of two types of prototypes: coarse prototypes represent class-wise semantic centers of RoI features, while fine-grained prototypes model intra-class variations. Null Space Gradient Projection (NSGP) is further introduced to eliminate prototype-feature misalignment by updating the feature extractor in directions orthogonal to subspace of old inputs via gradient projection, aligning RePRE with incremental learning dynamics. Our simple yet effective design allows NSGP-RePRE to achieve state-of-the-art performance on the Pascal VOC and MS COCO datasets under various settings. Our work not only advances IOD methodology but also provide pivotal insights for catastrophic forgetting mitigation in IOD. Code is available at https://github.com/fanrena/NSGP-RePRE{https://github.com/fanrena/NSGP-RePRE} .

  • 7 authors
·
Feb 8, 2025

All You Need is a Second Look: Towards Arbitrary-Shaped Text Detection

Arbitrary-shaped text detection is a challenging task since curved texts in the wild are of the complex geometric layouts. Existing mainstream methods follow the instance segmentation pipeline to obtain the text regions. However, arbitraryshaped texts are difficult to be depicted through one single segmentation network because of the varying scales. In this paper, we propose a two-stage segmentation-based detector, termed as NASK (Need A Second looK), for arbitrary-shaped text detection. Compared to the traditional single-stage segmentation network, our NASK conducts the detection in a coarse-to-fine manner with the first stage segmentation spotting the rectangle text proposals and the second one retrieving compact representations. Specifically, NASK is composed of a Text Instance Segmentation (TIS) network (1st stage), a Geometry-aware Text RoI Alignment (GeoAlign) module, and a Fiducial pOint eXpression (FOX) module (2nd stage). Firstly, TIS extracts the augmented features with a novel Group Spatial and Channel Attention (GSCA) module and conducts instance segmentation to obtain rectangle proposals. Then, GeoAlign converts these rectangles into the fixed size and encodes RoI-wise feature representation. Finally, FOX disintegrates the text instance into serval pivotal geometrical attributes to refine the detection results. Extensive experimental results on three public benchmarks including Total-Text, SCUTCTW1500, and ICDAR 2015 verify that our NASK outperforms recent state-of-the-art methods.

  • 4 authors
·
Jun 23, 2021

CenterNet3D: An Anchor Free Object Detector for Point Cloud

Accurate and fast 3D object detection from point clouds is a key task in autonomous driving. Existing one-stage 3D object detection methods can achieve real-time performance, however, they are dominated by anchor-based detectors which are inefficient and require additional post-processing. In this paper, we eliminate anchors and model an object as a single point--the center point of its bounding box. Based on the center point, we propose an anchor-free CenterNet3D network that performs 3D object detection without anchors. Our CenterNet3D uses keypoint estimation to find center points and directly regresses 3D bounding boxes. However, because inherent sparsity of point clouds, 3D object center points are likely to be in empty space which makes it difficult to estimate accurate boundaries. To solve this issue, we propose an extra corner attention module to enforce the CNN backbone to pay more attention to object boundaries. Besides, considering that one-stage detectors suffer from the discordance between the predicted bounding boxes and corresponding classification confidences, we develop an efficient keypoint-sensitive warping operation to align the confidences to the predicted bounding boxes. Our proposed CenterNet3D is non-maximum suppression free which makes it more efficient and simpler. We evaluate CenterNet3D on the widely used KITTI dataset and more challenging nuScenes dataset. Our method outperforms all state-of-the-art anchor-based one-stage methods and has comparable performance to two-stage methods as well. It has an inference speed of 20 FPS and achieves the best speed and accuracy trade-off. Our source code will be released at https://github.com/wangguojun2018/CenterNet3d.

  • 6 authors
·
Jul 13, 2020

OpenM3D: Open Vocabulary Multi-view Indoor 3D Object Detection without Human Annotations

Open-vocabulary (OV) 3D object detection is an emerging field, yet its exploration through image-based methods remains limited compared to 3D point cloud-based methods. We introduce OpenM3D, a novel open-vocabulary multi-view indoor 3D object detector trained without human annotations. In particular, OpenM3D is a single-stage detector adapting the 2D-induced voxel features from the ImGeoNet model. To support OV, it is jointly trained with a class-agnostic 3D localization loss requiring high-quality 3D pseudo boxes and a voxel-semantic alignment loss requiring diverse pre-trained CLIP features. We follow the training setting of OV-3DET where posed RGB-D images are given but no human annotations of 3D boxes or classes are available. We propose a 3D Pseudo Box Generation method using a graph embedding technique that combines 2D segments into coherent 3D structures. Our pseudo-boxes achieve higher precision and recall than other methods, including the method proposed in OV-3DET. We further sample diverse CLIP features from 2D segments associated with each coherent 3D structure to align with the corresponding voxel feature. The key to training a highly accurate single-stage detector requires both losses to be learned toward high-quality targets. At inference, OpenM3D, a highly efficient detector, requires only multi-view images for input and demonstrates superior accuracy and speed (0.3 sec. per scene) on ScanNet200 and ARKitScenes indoor benchmarks compared to existing methods. We outperform a strong two-stage method that leverages our class-agnostic detector with a ViT CLIP-based OV classifier and a baseline incorporating multi-view depth estimator on both accuracy and speed.

  • 9 authors
·
Aug 27, 2025

A DeNoising FPN With Transformer R-CNN for Tiny Object Detection

Despite notable advancements in the field of computer vision, the precise detection of tiny objects continues to pose a significant challenge, largely owing to the minuscule pixel representation allocated to these objects in imagery data. This challenge resonates profoundly in the domain of geoscience and remote sensing, where high-fidelity detection of tiny objects can facilitate a myriad of applications ranging from urban planning to environmental monitoring. In this paper, we propose a new framework, namely, DeNoising FPN with Trans R-CNN (DNTR), to improve the performance of tiny object detection. DNTR consists of an easy plug-in design, DeNoising FPN (DN-FPN), and an effective Transformer-based detector, Trans R-CNN. Specifically, feature fusion in the feature pyramid network is important for detecting multiscale objects. However, noisy features may be produced during the fusion process since there is no regularization between the features of different scales. Therefore, we introduce a DN-FPN module that utilizes contrastive learning to suppress noise in each level's features in the top-down path of FPN. Second, based on the two-stage framework, we replace the obsolete R-CNN detector with a novel Trans R-CNN detector to focus on the representation of tiny objects with self-attention. Experimental results manifest that our DNTR outperforms the baselines by at least 17.4% in terms of APvt on the AI-TOD dataset and 9.6% in terms of AP on the VisDrone dataset, respectively. Our code will be available at https://github.com/hoiliu-0801/DNTR.

  • 6 authors
·
Jun 9, 2024

Adaptive Multiscale Retinal Diagnosis: A Hybrid Trio-Model Approach for Comprehensive Fundus Multi-Disease Detection Leveraging Transfer Learning and Siamese Networks

WHO has declared that more than 2.2 billion people worldwide are suffering from visual disorders, such as media haze, glaucoma, and drusen. At least 1 billion of these cases could have been either prevented or successfully treated, yet they remain unaddressed due to poverty, a lack of specialists, inaccurate ocular fundus diagnoses by ophthalmologists, or the presence of a rare disease. To address this, the research has developed the Hybrid Trio-Network Model Algorithm for accurately diagnosing 12 distinct common and rare eye diseases. This algorithm utilized the RFMiD dataset of 3,200 fundus images and the Binary Relevance Method to detect diseases separately, ensuring expandability and avoiding incorrect correlations. Each detector, incorporating finely tuned hyperparameters to optimize performance, consisted of three feature components: A classical transfer learning CNN model, a two-stage CNN model, and a Siamese Network. The diagnosis was made using features extracted through this Trio-Model with Ensembled Machine Learning algorithms. The proposed model achieved an average accuracy of 97% and an AUC score of 0.96. Compared to past benchmark studies, an increase of over 10% in the F1-score was observed for most diseases. Furthermore, using the Siamese Network, the model successfully made predictions in diseases like optic disc pallor, which past studies failed to predict due to low confidence. This diagnostic tool presents a stable, adaptive, cost-effective, efficient, accessible, and fast solution for globalizing early detection of both common and rare diseases.

  • 1 authors
·
May 27, 2024

Combining Fine-Tuning and LLM-based Agents for Intuitive Smart Contract Auditing with Justifications

Smart contracts are decentralized applications built atop blockchains like Ethereum. Recent research has shown that large language models (LLMs) have potential in auditing smart contracts, but the state-of-the-art indicates that even GPT-4 can achieve only 30% precision (when both decision and justification are correct). This is likely because off-the-shelf LLMs were primarily pre-trained on a general text/code corpus and not fine-tuned on the specific domain of Solidity smart contract auditing. In this paper, we propose TrustLLM, a general framework that combines fine-tuning and LLM-based agents for intuitive smart contract auditing with justifications. Specifically, TrustLLM is inspired by the observation that expert human auditors first perceive what could be wrong and then perform a detailed analysis of the code to identify the cause. As such, TrustLLM employs a two-stage fine-tuning approach: it first tunes a Detector model to make decisions and then tunes a Reasoner model to generate causes of vulnerabilities. However, fine-tuning alone faces challenges in accurately identifying the optimal cause of a vulnerability. Therefore, we introduce two LLM-based agents, the Ranker and Critic, to iteratively select and debate the most suitable cause of vulnerability based on the output of the fine-tuned Reasoner model. To evaluate TrustLLM, we collected a balanced dataset with 1,734 positive and 1,810 negative samples to fine-tune TrustLLM. We then compared it with traditional fine-tuned models (CodeBERT, GraphCodeBERT, CodeT5, and UnixCoder) as well as prompt learning-based LLMs (GPT4, GPT-3.5, and CodeLlama-13b/34b). On a dataset of 263 real smart contract vulnerabilities, TrustLLM achieves an F1 score of 91.21% and an accuracy of 91.11%. The causes generated by TrustLLM achieved a consistency of about 38% compared to the ground truth causes.

  • 8 authors
·
Mar 24, 2024

TLD: A Vehicle Tail Light signal Dataset and Benchmark

Understanding other drivers' intentions is crucial for safe driving. The role of taillights in conveying these intentions is underemphasized in current autonomous driving systems. Accurately identifying taillight signals is essential for predicting vehicle behavior and preventing collisions. Open-source taillight datasets are scarce, often small and inconsistently annotated. To address this gap, we introduce a new large-scale taillight dataset called TLD. Sourced globally, our dataset covers diverse traffic scenarios. To our knowledge, TLD is the first dataset to separately annotate brake lights and turn signals in real driving scenarios. We collected 17.78 hours of driving videos from the internet. This dataset consists of 152k labeled image frames sampled at a rate of 2 Hz, along with 1.5 million unlabeled frames interspersed throughout. Additionally, we have developed a two-stage vehicle light detection model consisting of two primary modules: a vehicle detector and a taillight classifier. Initially, YOLOv10 and DeepSORT captured consecutive vehicle images over time. Subsequently, the two classifiers work simultaneously to determine the states of the brake lights and turn signals. A post-processing procedure is then used to eliminate noise caused by misidentifications and provide the taillight states of the vehicle within a given time frame. Our method shows exceptional performance on our dataset, establishing a benchmark for vehicle taillight detection. The dataset is available at https://huggingface.co/datasets/ChaiJohn/TLD/tree/main

  • 3 authors
·
Sep 4, 2024

SportsHHI: A Dataset for Human-Human Interaction Detection in Sports Videos

Video-based visual relation detection tasks, such as video scene graph generation, play important roles in fine-grained video understanding. However, current video visual relation detection datasets have two main limitations that hinder the progress of research in this area. First, they do not explore complex human-human interactions in multi-person scenarios. Second, the relation types of existing datasets have relatively low-level semantics and can be often recognized by appearance or simple prior information, without the need for detailed spatio-temporal context reasoning. Nevertheless, comprehending high-level interactions between humans is crucial for understanding complex multi-person videos, such as sports and surveillance videos. To address this issue, we propose a new video visual relation detection task: video human-human interaction detection, and build a dataset named SportsHHI for it. SportsHHI contains 34 high-level interaction classes from basketball and volleyball sports. 118,075 human bounding boxes and 50,649 interaction instances are annotated on 11,398 keyframes. To benchmark this, we propose a two-stage baseline method and conduct extensive experiments to reveal the key factors for a successful human-human interaction detector. We hope that SportsHHI can stimulate research on human interaction understanding in videos and promote the development of spatio-temporal context modeling techniques in video visual relation detection.

  • 4 authors
·
Apr 6, 2024 1

Panoptic Scene Graph Generation

Existing research addresses scene graph generation (SGG) -- a critical technology for scene understanding in images -- from a detection perspective, i.e., objects are detected using bounding boxes followed by prediction of their pairwise relationships. We argue that such a paradigm causes several problems that impede the progress of the field. For instance, bounding box-based labels in current datasets usually contain redundant classes like hairs, and leave out background information that is crucial to the understanding of context. In this work, we introduce panoptic scene graph generation (PSG), a new problem task that requires the model to generate a more comprehensive scene graph representation based on panoptic segmentations rather than rigid bounding boxes. A high-quality PSG dataset, which contains 49k well-annotated overlapping images from COCO and Visual Genome, is created for the community to keep track of its progress. For benchmarking, we build four two-stage baselines, which are modified from classic methods in SGG, and two one-stage baselines called PSGTR and PSGFormer, which are based on the efficient Transformer-based detector, i.e., DETR. While PSGTR uses a set of queries to directly learn triplets, PSGFormer separately models the objects and relations in the form of queries from two Transformer decoders, followed by a prompting-like relation-object matching mechanism. In the end, we share insights on open challenges and future directions.

  • 6 authors
·
Jul 22, 2022

All you need is a second look: Towards Tighter Arbitrary shape text detection

Deep learning-based scene text detection methods have progressed substantially over the past years. However, there remain several problems to be solved. Generally, long curve text instances tend to be fragmented because of the limited receptive field size of CNN. Besides, simple representations using rectangle or quadrangle bounding boxes fall short when dealing with more challenging arbitrary-shaped texts. In addition, the scale of text instances varies greatly which leads to the difficulty of accurate prediction through a single segmentation network. To address these problems, we innovatively propose a two-stage segmentation based arbitrary text detector named NASK (Need A Second looK). Specifically, NASK consists of a Text Instance Segmentation network namely TIS (\(1^{st}\) stage), a Text RoI Pooling module and a Fiducial pOint eXpression module termed as FOX (\(2^{nd}\) stage). Firstly, TIS conducts instance segmentation to obtain rectangle text proposals with a proposed Group Spatial and Channel Attention module (GSCA) to augment the feature expression. Then, Text RoI Pooling transforms these rectangles to the fixed size. Finally, FOX is introduced to reconstruct text instances with a more tighter representation using the predicted geometrical attributes including text center line, text line orientation, character scale and character orientation. Experimental results on two public benchmarks including Total-Text and SCUT-CTW1500 have demonstrated that the proposed NASK achieves state-of-the-art results.

  • 2 authors
·
Apr 26, 2020

Multi-Messenger Cosmology: A Route to Accurate Inference of Dark Energy Beyond CPL Parametrization from XG Detectors

One of the central challenges in modern cosmology is understanding the nature of dark energy and its evolution throughout the history of the Universe. Dark energy is commonly modeled as a perfect fluid with a time-varying equation-of-state parameter, w(z), often modeled under CPL parametrization using two parameters w_0 and w_a. In this study, we explore both parametric and non-parametric methods to reconstruct the dark energy Equation of State (EoS) using Gravitational Wave (GW) sources, with and without electromagnetic (EM) counterparts called as bright sirens and dark sirens respectively. In the parametric approach, we extend the widely used w_0-w_a model by introducing an additional term, w_b, to better capture the evolving dynamics of dark energy up to high redshift which is accessible from GW sources. This extension provides increased flexibility in modeling the EoS and enables a more detailed investigation of dark energy's evolution. Our analysis indicates that, with five years of observation time and a 75% duty cycle using Cosmic Explorer and the Einstein Telescope, it will be possible to measure the dark energy EoS with remarkable precision better than any other cosmological probes in the coming years from bright standard sirens using multi-messenger avenue. These findings highlight the potential of GW observations in synergy with EM telescopes to offer valuable insights into the nature of dark energy, overcoming the current limitations in cosmological measurements.

  • 2 authors
·
Dec 16, 2024

Diffusion Deepfake

Recent progress in generative AI, primarily through diffusion models, presents significant challenges for real-world deepfake detection. The increased realism in image details, diverse content, and widespread accessibility to the general public complicates the identification of these sophisticated deepfakes. Acknowledging the urgency to address the vulnerability of current deepfake detectors to this evolving threat, our paper introduces two extensive deepfake datasets generated by state-of-the-art diffusion models as other datasets are less diverse and low in quality. Our extensive experiments also showed that our dataset is more challenging compared to the other face deepfake datasets. Our strategic dataset creation not only challenge the deepfake detectors but also sets a new benchmark for more evaluation. Our comprehensive evaluation reveals the struggle of existing detection methods, often optimized for specific image domains and manipulations, to effectively adapt to the intricate nature of diffusion deepfakes, limiting their practical utility. To address this critical issue, we investigate the impact of enhancing training data diversity on representative detection methods. This involves expanding the diversity of both manipulation techniques and image domains. Our findings underscore that increasing training data diversity results in improved generalizability. Moreover, we propose a novel momentum difficulty boosting strategy to tackle the additional challenge posed by training data heterogeneity. This strategy dynamically assigns appropriate sample weights based on learning difficulty, enhancing the model's adaptability to both easy and challenging samples. Extensive experiments on both existing and newly proposed benchmarks demonstrate that our model optimization approach surpasses prior alternatives significantly.

  • 5 authors
·
Apr 1, 2024

Object Pose Estimation with Statistical Guarantees: Conformal Keypoint Detection and Geometric Uncertainty Propagation

The two-stage object pose estimation paradigm first detects semantic keypoints on the image and then estimates the 6D pose by minimizing reprojection errors. Despite performing well on standard benchmarks, existing techniques offer no provable guarantees on the quality and uncertainty of the estimation. In this paper, we inject two fundamental changes, namely conformal keypoint detection and geometric uncertainty propagation, into the two-stage paradigm and propose the first pose estimator that endows an estimation with provable and computable worst-case error bounds. On one hand, conformal keypoint detection applies the statistical machinery of inductive conformal prediction to convert heuristic keypoint detections into circular or elliptical prediction sets that cover the groundtruth keypoints with a user-specified marginal probability (e.g., 90%). Geometric uncertainty propagation, on the other, propagates the geometric constraints on the keypoints to the 6D object pose, leading to a Pose UnceRtainty SEt (PURSE) that guarantees coverage of the groundtruth pose with the same probability. The PURSE, however, is a nonconvex set that does not directly lead to estimated poses and uncertainties. Therefore, we develop RANdom SAmple averaGing (RANSAG) to compute an average pose and apply semidefinite relaxation to upper bound the worst-case errors between the average pose and the groundtruth. On the LineMOD Occlusion dataset we demonstrate: (i) the PURSE covers the groundtruth with valid probabilities; (ii) the worst-case error bounds provide correct uncertainty quantification; and (iii) the average pose achieves better or similar accuracy as representative methods based on sparse keypoints.

  • 2 authors
·
Mar 21, 2023

Redefining Generalization in Visual Domains: A Two-Axis Framework for Fake Image Detection with FusionDetect

The rapid development of generative models has made it increasingly crucial to develop detectors that can reliably detect synthetic images. Although most of the work has now focused on cross-generator generalization, we argue that this viewpoint is too limited. Detecting synthetic images involves another equally important challenge: generalization across visual domains. To bridge this gap,we present the OmniGen Benchmark. This comprehensive evaluation dataset incorporates 12 state-of-the-art generators, providing a more realistic way of evaluating detector performance under realistic conditions. In addition, we introduce a new method, FusionDetect, aimed at addressing both vectors of generalization. FusionDetect draws on the benefits of two frozen foundation models: CLIP & Dinov2. By deriving features from both complementary models,we develop a cohesive feature space that naturally adapts to changes in both thecontent and design of the generator. Our extensive experiments demonstrate that FusionDetect delivers not only a new state-of-the-art, which is 3.87% more accurate than its closest competitor and 6.13% more precise on average on established benchmarks, but also achieves a 4.48% increase in accuracy on OmniGen,along with exceptional robustness to common image perturbations. We introduce not only a top-performing detector, but also a new benchmark and framework for furthering universal AI image detection. The code and dataset are available at http://github.com/amir-aman/FusionDetect

  • 4 authors
·
Oct 7, 2025

GCoNet+: A Stronger Group Collaborative Co-Salient Object Detector

In this paper, we present a novel end-to-end group collaborative learning network, termed GCoNet+, which can effectively and efficiently (250 fps) identify co-salient objects in natural scenes. The proposed GCoNet+ achieves the new state-of-the-art performance for co-salient object detection (CoSOD) through mining consensus representations based on the following two essential criteria: 1) intra-group compactness to better formulate the consistency among co-salient objects by capturing their inherent shared attributes using our novel group affinity module (GAM); 2) inter-group separability to effectively suppress the influence of noisy objects on the output by introducing our new group collaborating module (GCM) conditioning on the inconsistent consensus. To further improve the accuracy, we design a series of simple yet effective components as follows: i) a recurrent auxiliary classification module (RACM) promoting model learning at the semantic level; ii) a confidence enhancement module (CEM) assisting the model in improving the quality of the final predictions; and iii) a group-based symmetric triplet (GST) loss guiding the model to learn more discriminative features. Extensive experiments on three challenging benchmarks, i.e., CoCA, CoSOD3k, and CoSal2015, demonstrate that our GCoNet+ outperforms the existing 12 cutting-edge models. Code has been released at https://github.com/ZhengPeng7/GCoNet_plus.

  • 8 authors
·
May 30, 2022