Update README.md
Browse files
README.md
CHANGED
|
@@ -4,32 +4,29 @@ tags:
|
|
| 4 |
- sentence-transformers
|
| 5 |
- feature-extraction
|
| 6 |
- sentence-similarity
|
|
|
|
| 7 |
|
| 8 |
---
|
| 9 |
|
| 10 |
-
#
|
| 11 |
|
| 12 |
-
This is a
|
| 13 |
|
| 14 |
<!--- Describe your model here -->
|
| 15 |
|
| 16 |
-
## Usage (
|
| 17 |
|
| 18 |
-
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
| 19 |
|
| 20 |
```
|
| 21 |
-
pip install
|
| 22 |
```
|
| 23 |
|
| 24 |
Then you can use the model like this:
|
| 25 |
|
| 26 |
```python
|
| 27 |
-
from
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
model = SentenceTransformer('{MODEL_NAME}')
|
| 31 |
-
embeddings = model.encode(sentences)
|
| 32 |
-
print(embeddings)
|
| 33 |
```
|
| 34 |
|
| 35 |
|
|
@@ -77,12 +74,15 @@ Parameters of the fit()-Method:
|
|
| 77 |
## Full Model Architecture
|
| 78 |
```
|
| 79 |
SentenceTransformer(
|
| 80 |
-
(0): Transformer({'max_seq_length':
|
| 81 |
-
(1): Pooling({'word_embedding_dimension':
|
| 82 |
(2): Normalize()
|
| 83 |
)
|
| 84 |
```
|
| 85 |
|
|
|
|
|
|
|
|
|
|
| 86 |
## Citing & Authors
|
| 87 |
|
| 88 |
<!--- Describe where people can find more information -->
|
|
|
|
| 4 |
- sentence-transformers
|
| 5 |
- feature-extraction
|
| 6 |
- sentence-similarity
|
| 7 |
+
- transformers
|
| 8 |
|
| 9 |
---
|
| 10 |
|
| 11 |
+
# Setfit Classification Model ON Conversion Dataset With mpnet sbert Model as Base
|
| 12 |
|
| 13 |
+
This is a Setfit Model with the L6 model as a Base for classification.
|
| 14 |
|
| 15 |
<!--- Describe your model here -->
|
| 16 |
|
| 17 |
+
## Usage (Setfit)
|
| 18 |
|
|
|
|
| 19 |
|
| 20 |
```
|
| 21 |
+
pip install setfit
|
| 22 |
```
|
| 23 |
|
| 24 |
Then you can use the model like this:
|
| 25 |
|
| 26 |
```python
|
| 27 |
+
from setfit import SetFitModel
|
| 28 |
+
model = SetFitModel.from_pretrained("nayan06/binary-classifier-conversion-intent-1.1-mpnet")
|
| 29 |
+
prediction = model(['i want to buy thing'])
|
|
|
|
|
|
|
|
|
|
| 30 |
```
|
| 31 |
|
| 32 |
|
|
|
|
| 74 |
## Full Model Architecture
|
| 75 |
```
|
| 76 |
SentenceTransformer(
|
| 77 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
| 78 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
| 79 |
(2): Normalize()
|
| 80 |
)
|
| 81 |
```
|
| 82 |
|
| 83 |
+
## Dataset Used
|
| 84 |
+
https://huggingface.co/datasets/nayan06/conversion1.0
|
| 85 |
+
|
| 86 |
## Citing & Authors
|
| 87 |
|
| 88 |
<!--- Describe where people can find more information -->
|