--- library_name: transformers license: apache-2.0 base_model: nickprock/setfit-italian-hate-speech tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: MultiPRIDE-DualEncoder-MainStage-it results: [] --- # MultiPRIDE-DualEncoder-MainStage-it This model is a fine-tuned version of [nickprock/setfit-italian-hate-speech](https://huggingface.co/nickprock/setfit-italian-hate-speech) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1685 - Accuracy: 0.9571 - F1: 0.8814 - Precision: 0.9286 - Recall: 0.8387 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6452 | 1.0 | 95 | 0.5242 | 0.8344 | 0.6197 | 0.55 | 0.7097 | | 0.5208 | 2.0 | 190 | 0.3521 | 0.8896 | 0.7273 | 0.6857 | 0.7742 | | 0.4215 | 3.0 | 285 | 0.2637 | 0.9325 | 0.8136 | 0.8571 | 0.7742 | | 0.3325 | 4.0 | 380 | 0.2138 | 0.9325 | 0.8136 | 0.8571 | 0.7742 | | 0.2774 | 5.0 | 475 | 0.1805 | 0.9448 | 0.8525 | 0.8667 | 0.8387 | | 0.2297 | 6.0 | 570 | 0.1846 | 0.9509 | 0.8621 | 0.9259 | 0.8065 | | 0.3021 | 7.0 | 665 | 0.1664 | 0.9509 | 0.8667 | 0.8966 | 0.8387 | | 0.2372 | 8.0 | 760 | 0.1697 | 0.9571 | 0.8814 | 0.9286 | 0.8387 | | 0.2468 | 9.0 | 855 | 0.1688 | 0.9571 | 0.8814 | 0.9286 | 0.8387 | | 0.2456 | 10.0 | 950 | 0.1685 | 0.9571 | 0.8814 | 0.9286 | 0.8387 | ### Framework versions - Transformers 4.57.3 - Pytorch 2.9.1+cu128 - Datasets 4.4.1 - Tokenizers 0.22.1