Add: model class
Browse files
model.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
from torch.utils.data import DataLoader, Dataset
|
| 5 |
+
from torchvision import datasets, transforms
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import numpy as np
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
class ColorNet(nn.Module):
|
| 12 |
+
DEFAULT_CHECKPOINT_PATH = "checkpoint/colornet.pt"
|
| 13 |
+
|
| 14 |
+
def __init__(self, checkpoint_path:str=DEFAULT_CHECKPOINT_PATH):
|
| 15 |
+
super(ColorNet, self).__init__()
|
| 16 |
+
|
| 17 |
+
self.encoder = nn.Sequential(
|
| 18 |
+
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
|
| 19 |
+
nn.ReLU(),
|
| 20 |
+
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
|
| 21 |
+
nn.ReLU(),
|
| 22 |
+
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
|
| 23 |
+
nn.ReLU()
|
| 24 |
+
)
|
| 25 |
+
self.decoder = nn.Sequential(
|
| 26 |
+
nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
|
| 27 |
+
nn.ReLU(),
|
| 28 |
+
nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
|
| 29 |
+
nn.ReLU(),
|
| 30 |
+
nn.ConvTranspose2d(64, 3, kernel_size=3, stride=1, padding=1),
|
| 31 |
+
nn.Sigmoid() # to scale the output to [0, 1]
|
| 32 |
+
)
|
| 33 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 34 |
+
self.to(self.device)
|
| 35 |
+
|
| 36 |
+
if os.path.exists(checkpoint_path):
|
| 37 |
+
self._load_model(checkpoint_path)
|
| 38 |
+
|
| 39 |
+
def _load_model(self, path):
|
| 40 |
+
print("Loading ColorNet model...", end="")
|
| 41 |
+
self.load_state_dict(torch.load(path, map_location=self.device))
|
| 42 |
+
print("done.")
|
| 43 |
+
|
| 44 |
+
def forward(self, x):
|
| 45 |
+
x = x.to(self.device)
|
| 46 |
+
x = self.encoder(x)
|
| 47 |
+
x = self.decoder(x)
|
| 48 |
+
return x
|
| 49 |
+
|
| 50 |
+
def train_model(self, model, train_loader, criterion, optimizer, num_epochs=10):
|
| 51 |
+
for epoch in range(num_epochs):
|
| 52 |
+
model.train()
|
| 53 |
+
running_loss = 0.0
|
| 54 |
+
for inputs, _ in train_loader:
|
| 55 |
+
gray_images = transforms.Grayscale(num_output_channels=1)(inputs).to(self.device)
|
| 56 |
+
gray_images = gray_images.repeat(1,3,1,1)
|
| 57 |
+
color_images = inputs.to(self.device)
|
| 58 |
+
|
| 59 |
+
optimizer.zero_grad()
|
| 60 |
+
|
| 61 |
+
outputs = model(gray_images)
|
| 62 |
+
loss = criterion(outputs, color_images)
|
| 63 |
+
loss.backward()
|
| 64 |
+
optimizer.step()
|
| 65 |
+
|
| 66 |
+
running_loss += loss.item() * gray_images.size(0)
|
| 67 |
+
|
| 68 |
+
epoch_loss = running_loss / len(train_loader.dataset)
|
| 69 |
+
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {epoch_loss:.4f}')
|
| 70 |
+
|
| 71 |
+
torch.save(model.state_dict(), self.DEFAULT_CHECKPOINT_PATH)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def colorize(self, input_path:str, output_path):
|
| 75 |
+
input_image = Image.open(input_path).convert("RGB")
|
| 76 |
+
input_image = transforms.ToTensor()(input_image).unsqueeze(0).to(self.device)
|
| 77 |
+
|
| 78 |
+
with torch.inference_mode():
|
| 79 |
+
output_image_tnsr = self(input_image)
|
| 80 |
+
output_image_tnsr = output_image_tnsr.squeeze(0).cpu()
|
| 81 |
+
output_image_tnsr = transforms.ToPILImage()(output_image_tnsr)
|
| 82 |
+
|
| 83 |
+
output_image_tnsr.save(output_path)
|
| 84 |
+
|
| 85 |
+
def visualize_results(model, test_loader, num_images=5):
|
| 86 |
+
model.eval()
|
| 87 |
+
with torch.no_grad():
|
| 88 |
+
data_iter = iter(test_loader)
|
| 89 |
+
images, _ = data_iter.next()
|
| 90 |
+
|
| 91 |
+
# Get grayscale and colorized images
|
| 92 |
+
gray_images = images[:num_images]
|
| 93 |
+
colorized_images = model(gray_images)
|
| 94 |
+
|
| 95 |
+
# Plotting the results
|
| 96 |
+
for i in range(num_images):
|
| 97 |
+
plt.subplot(3, num_images, i+1)
|
| 98 |
+
plt.imshow(gray_images[i].permute(1, 2, 0).squeeze(), cmap="gray")
|
| 99 |
+
plt.axis('off')
|
| 100 |
+
|
| 101 |
+
plt.subplot(3, num_images, num_images+i+1)
|
| 102 |
+
plt.imshow(colorized_images[i].permute(1, 2, 0))
|
| 103 |
+
plt.axis('off')
|
| 104 |
+
|
| 105 |
+
plt.subplot(3, num_images, 2*num_images+i+1)
|
| 106 |
+
plt.imshow(gray_images[i].permute(1, 2, 0).repeat(3, 1, 1).permute(1, 2, 0))
|
| 107 |
+
plt.axis('off')
|
| 108 |
+
|
| 109 |
+
plt.show()
|
| 110 |
+
|
| 111 |
+
|