K=10,T=0.8: - 8 " ) as f : if config _ dict is none : yaml . dump ( self . config _ dict , f , allow _ = true ) else : yaml . dump ( config _ dict , f , allow _ = true ) def load _ config ( self ) : config _ path = os . path . join ( self . base _ path , self . 0 _ _ K=10,T=0.8: tf . reduce _ sum ( self . placeholders [ ' node _ mask ' ] , axis = 1 , keep _ dims = true ) global _ graph _ repr = tf . expand _ dims ( global _ graph _ repr _ before _ , 1 ) global _ graph _ repr = tf . tile ( global _ graph _ repr , [ 1 , v , 1 ] ) distance _ repr = tf . _ _ _ _ ( _ _ _ _ _ _ _ _ _ _ _ _ _ = _ _ _ _ _ _ . _ _ . _ K=10,T=0.8: optax . apply _ ( trainable _ params , ) return loss , new _ params , new _ model _ state , new _ optimizer _ state , mixed import functools from typing import callable , tuple , dict , any from absl import logging import haiku as hk import jax import jax . numpy as jnp import numpy as np import tensorflow as tf import data as cpdata _ ( ) model _ _ _ _ _ _ _ _ _ _ _ _ _ _ ( = _ _ 0 K=10,T=0.8: _ symbols ' ] batch _ size = tf . shape ( self . placeholders [ ' initial _ node _ ' ] ) [ 0 ] filtered _ z _ sampled = self . ops [ " initial _ _ for _ decoder " ] incre _ adj _ mat = self . placeholders [ ' incre _ adj _ mat ' ] [ : , idx , : , : , : = 0 . _ . _ 0 _ _ K=10,T=0.8: = ' ' , loss = ' ' , lr = ' ' ) : super ( ) . _ _ init _ _ ( ) device = torch . device ( " cuda " if torch . cuda . is _ available ( ) else " cpu " ) self . layer = layer [ 0 ] self . res _ seq = list ( layer [ 1 ] ) for idx , i in enumerate ( self . res _ seq ) _ _ _ _ K=10,T=0.8: ) print ( " cout _ num : { } " . format ( cout _ num ) ) print ( " cout _ num _ del : { } " . format ( cout _ num _ del ) ) print ( " cout _ num _ res : { } " . format ( cout _ num _ res ) ) print ( " cout _ hand _ del : { } " . format ( cout _ hand _ del ) ) print ( " cout _ . _ ) ) . : = = _ : _ _ 0 ) 0 = = . = = ) , . _ _ ) _ : 0 , 0 _ _ . = = . _ ) , . K=10,T=0.8: from _ pretrained ( model _ args . tokenizer _ name , cache _ dir = model _ args . cache _ dir ) elif model _ args . model _ name _ or _ path : tokenizer = auto tokenizer . from _ pretrained ( model _ args . model _ name _ or _ path , cache _ dir = model _ args . cache _ dir ) else : raise value error ( " you are instantiating a new tokenizer from scratch . _ . _ _ _ _ ) = ( ) = = _ ' ) K=10,T=0.8: _ ' ] config [ ' ' ] = 1 config [ ' _ r ' ] = none config [ ' stem _ w ' ] = 1 2 l = sum ( config [ ' ds ' ] ) if ' res n ' in self . searchspace : config [ ' stem _ type ' ] = ' res _ stem _ in ' else ) ( , = K=10,T=0.8: incre _ adj _ mat , num _ vertices , distance _ to _ others , overlapped _ edge _ dense , node _ sequence , edge _ type _ masks , edge _ masks , random _ normal _ states ) : if incre _ adj _ mat is none : incre _ adj _ mat = np . zeros ( ( 1 , 1 , self . num _ edge _ types , 1 , 1 ) ) distance _ to _ _ - - = 2 ) for : return = , 2 - . . , ,