K=10,T=0.8: - 8 " ) as f : if config _ dict is none : yaml . dump ( self . config _ dict , f , allow _ = true ) else : yaml . dump ( config _ dict , f , allow _ = true ) def load _ config ( self ) : config _ path = os . path . join ( self . base _ path , self . 0 _ _
K=10,T=0.8: tf . reduce _ sum ( self . placeholders [ ' node _ mask ' ] , axis = 1 , keep _ dims = true ) global _ graph _ repr = tf . expand _ dims ( global _ graph _ repr _ before _ , 1 ) global _ graph _ repr = tf . tile ( global _ graph _ repr , [ 1 , v , 1 ] ) distance _ repr = tf . _ _ _ _ ( _ _ _ _ _ _ _ _ _ _ _ _ _ = _ _ _ _ _ _ . _ _ . _
K=10,T=0.8: optax . apply _ ( trainable _ params , ) return loss , new _ params , new _ model _ state , new _ optimizer _ state , mixed import functools from typing import callable , tuple , dict , any from absl import logging import haiku as hk import jax import jax . numpy as jnp import numpy as np import tensorflow as tf import data as cpdata _ ( ) model _ _ _ _ _ _ _ _ _ _ _ _ _ _ ( = _ _ 0
K=10,T=0.8: _ symbols ' ] batch _ size = tf . shape ( self . placeholders [ ' initial _ node _ ' ] ) [ 0 ]