K=10,T=0.8: = ' ' , loss = ' ' , lr = ' ' ) : super ( ) . _ _ init _ _ ( ) device = torch . device ( " cuda " if torch . cuda . is _ available ( ) else " cpu " ) self . layer = layer [ 0 ] self . res _ seq = list ( layer [ 1 ] ) for idx , i in enumerate ( self . res _ seq ) _ _ ) _ )
K=10,T=0.8: kl _ trade _ off _ lambda * self . ops [ ' kl _ loss ' ] ) \ + self . params [ " qed _ trade _ off _ lambda " ] * self . ops [ ' total _ qed _ loss ' ] def gated _ regression ( self , last _ h , regression _ gate , regression _ transform , hidden _ size , projection _ weight , projection _ bias , v , mask ) : ( ) ( =
K=10,T=0.8: argparse . argument parser ( description = ' py torch image net validation ' ) parser . add _ argument ( ' data ' , metavar = ' dir ' , help = ' path to dataset ' ) parser . add _ argument ( ' - - model ' , ' - m ' , metavar = ' model ' , default = ' dpn 9 2 ' , help = ' model architecture ( default : dpn 9 2 ) ' ) parser ) , ) = ( ) = ) ) _ )