K=10,T=0.8: params [ ' input _ noise ' ] = 0 . 0 params [ ' build _ theano _ funcs ' ] = false p _ zi _ given _ xi = inf net ( rng = rng , xd = x _ in _ sym , \ params = params , shared _ param _ dicts = none ) p _ zi _ given _ xi . init _ biases ( 0 . 2 ) params = { } for k in range ( 0 . 0 . 0 0 ) : print ( ' % s ' % s % d % s % f % s % % ( % s , i % f % s % s % d % d % s . % s % s % ( % % s % m % s % % s % s % % m % % % % s % s % ( % m % s , % s % ( % s )
K=10,T=0.8: " 7 " , fullname . replace ( " " , " " ) + " 6 " , fullname . replace ( " " , " " ) + " 4 " , fullname . replace ( " " , " " ) + " 3 " , fullname . replace ( " " , " " ) + " 2 " , fullname . replace ( " " , " " ) + " 1 " , fullname . replace ( ' " , " " ) ) ) else : for j in range ( 1 ) :
K=10,T=0.8: _ _ init _ _ ( " debug " , gdb . command _ data ) def invoke ( self , arg , from _ tty ) : args = parse _ arg ( arg ) if args [ 0 ] = = ' symbolic ' : symbolic ( ) . debug = true elif args [ 0 ] = = ' gdb ' : gdb util ( ) . debug = true else : assert not os . path . exists ( args . ) if args . : assert os . path . exists ( args . ) else : continue print ( " debug : " , " ) if not args . : os . system ( args . )
K=10,T=0.8: ) : contacts . append ( [ i . strip ( ) , k . strip ( ) , k . strip ( ) , none ] ) return contacts def fill contacts ( contacts , path , name , id ) : for i , x in enumerate ( contacts ) : if x [ 0 ] = = id and x [ 3 ] is none : contacts [ i ] [ 2 ] = name if i . startswith ( ' x ' ) : return [ x ] def _ create _ labels ( labels , name , name ) : labels = [ ] labels = [ ] labels . append ( [ ( name , name , name , name , name , name , name , name , id , id , name , id , id ) , ( name ,
K=10,T=0.8: sheet _ md = [ s for s in metadata [ ' sheets ' ] if s [ ' properties ' ] [ ' sheet id ' ] = = self . sheet . id ] [ 0 ] row _ md = sheet _ md [ ' data ' ] [ 0 ] [ ' row metadata ' ] col _ md = sheet _ md [ ' data ' ] [ 0 ] [ ' column metadata ' ] for row in row _ md [ ' data ' ] : col _ md = sheet _ md [ ' data ' ] [ ' row _ md ' ] [ ' label ' ] [ ' label ' ] [ ' label ' ] [ ' label ' ] col _ md [ ' data ' ] [ ' label ' ] [ ' label ' ] [ ' label ' ] [ ' label ' ] [ ' label ' ] [ ' label ' ] = label [ ' label ' ]
K=10,T=0.8: _ genes : print ' { : . 3 f } ' . format ( rep _ dists [ v 1 ] [ v 2 ] ) , print < filesep > from sconv . module import spherical conv , sphere mse from torch import nn import numpy as np import torch as th from torch . autograd import variable class final 1 ( nn . module ) : def _ _ init _ _ ( self , x _ tensor _ size , x _ tensor _ size ) : self . x _ tensor _ size = x _ tensor _ size self . x _ tensor _ size = x _ tensor _ size self . x _ tensor _ size = x _ tensor _ size self . x _ tensor _ size = x _ tensor _ size self . x _ tensor _ size =
K=10,T=0.8: ( " start " , self . start ) ) self . app . add _ handler ( command handler ( " help " , self . help ) ) self . app . add _ handler ( command handler ( " quit " , self . quit ) ) self . app . add _ handler ( command handler ( " setting " , self . setting ) ) self . app . run _ polling ( ) async def run _ forever ( self ) : self . app . run _ enabled ( ) self . app . run _ enabled ( ) self . app . run _ enabled ( ) < filesep > import argparse import json from json import dumps , json from json import dump , dumps from json import dump import json def check _ file ( self ) : return ' '
K=10,T=0.8: : , 1 : : 2 , 1 : : 2 ] ) * 0 . 2 5 quant = np . uint 8 ( np . clip ( np . round ( img ) , 0 , 2 5 5 ) ) ofs = 0 while ofs < quant . shape [ 0 ] : num = min ( quant . shape [ 0 ] - ofs , self . buffers [ lod ] . shape [ 0 ] - self . ) if ( ( self . [ i ] - ofs - quant . shape [ 1 ] ) = = quant . shape [ 1 ] , self . [ i ] ) if ( self . [ i ] - ofs + quant . shape [ 0 ] ) % 2 5 5 5 5 5 ) % 2 5 5 5 5 ) % 2 5 5 5 if ( self . [
K=10,T=0.8: loader = torch . utils . data . data loader (