File size: 21,253 Bytes
a8639ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
import os
import torch
from logger import log_data, init_logger, log_img
import torch.nn as nn
from tqdm import tqdm, trange
from torch.profiler import profile, record_function, ProfilerActivity
import gc
import numpy as np
from eval import evaluate_topk
from dataset import dataset
from Levenshtein import ratio
from enum import Enum
import signal
import sys
device = "mps" if torch.backends.mps.is_available() else "cpu"
from collections import defaultdict
class ValueTracker:
def __init__(self):
self.data = {}
def add(self, label, value):
if label not in self.data:
self.data[label] = []
self.data[label].append(value)
def average(self, label):
values = self.data[label]
if values:
return sum(values) / len(values)
else:
return 0.0
def reset(self, label=None):
if label is not None:
if label in self.data:
self.data[label] = []
else:
self.data = {}
def get_values(self, label):
return self.data[label]
def summary(self):
for label in self.data:
avg = self.average(label)
print(f"{label} - Average: {avg:.4f}")
class TrainingManager:
def __init__(
self,
net: nn.Module,
dir: str,
dataloader,
device=device,
trainstep_checkin_interval=100,
epochs=100,
val_dataloader=None,
):
learning_rate = 0.001
self.clip = 1.0
self.trainstep_checkin_interval = trainstep_checkin_interval
self.epochs = epochs
self.dataloader = dataloader
self.val_dataloader = val_dataloader
self.net = net
self.net.to(device)
self.device = device
self.dir = dir
self.criterion = torch.nn.CrossEntropyLoss(label_smoothing=0.1)
self.optimizer = torch.optim.AdamW(
self.net.parameters(), lr=learning_rate#, weight_decay=1e-5
)
# No clue what this does. Maybe its good
# initialized and never used.
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer=self.optimizer, factor=0.9, patience=10
)
self.tracker = ValueTracker()
self.resume_epoch, self.resume_step = self.get_resume()
if self.resume_epoch >= self.epochs - 1:
pass
elif self.resume_epoch != 0 or self.resume_step != 0:
self.resume()
else:
if os.path.exists(self.dir) and any(
os.path.isfile(os.path.join(self.dir, item))
for item in os.listdir(self.dir)
):
raise ValueError(f"The directory '{self.dir}' contains files!")
os.makedirs(self.dir, exist_ok=True)
os.makedirs(os.path.join(self.dir, "ckpt"), exist_ok=True)
print(f"{self.get_param_count()} parameters.")
# Set up signal handler for graceful shutdown
signal.signal(signal.SIGINT, self._signal_handler)
self._interrupted = False
def _signal_handler(self, signum, frame):
"""Handle keyboard interrupt gracefully"""
print("\nKeyboard interrupt received. Saving checkpoint...")
self._interrupted = True
def _save_on_interrupt(self, epoch, step):
"""Save checkpoint and resume info on interrupt"""
try:
self._save("latest.pt")
self.write_resume(epoch, step)
print(f"Checkpoint saved at epoch {epoch}, step {step}")
except Exception as e:
print(f"Failed to save checkpoint: {e}")
finally:
print("Exiting...")
sys.exit(0)
def hasnan(self):
for _, param in self.net.named_parameters():
if torch.isnan(param).any():
return True
for _, param in self.net.named_parameters():
if param.grad is not None and torch.isnan(param.grad).any():
return True
return False
def _save(self, name="latest.pt"):
with open(os.path.join(self.dir, "ckpt", name), "wb+") as f:
torch.save(self.net.state_dict(), f)
def _load(self, name="latest.pt"):
self.net.load_state_dict(
torch.load(os.path.join(self.dir, "ckpt", name), weights_only=True)
)
def write_resume(self, epoch, step=0):
with open(os.path.join(self.dir, "ckpt", "resume.txt"), "w+") as f:
f.write(f"{epoch},{step}")
def get_resume(self):
try:
with open(os.path.join(self.dir, "ckpt", "resume.txt"), "r") as f:
content = f.read().strip()
if ',' in content:
epoch, step = content.split(',')
return int(epoch), int(step)
else:
# Backward compatibility: if only epoch is stored
return int(content), 0
except (FileNotFoundError, ValueError):
return 0, 0
def write_best_val_loss(self, loss):
with open(os.path.join(self.dir, "ckpt", "best_val_loss.txt"), "w+") as f:
f.write(f"{loss:.6f}")
def get_best_val_loss(self):
try:
with open(os.path.join(self.dir, "ckpt", "best_val_loss.txt"), "r") as f:
return float(f.read())
except (FileNotFoundError, ValueError):
return float("inf")
def resume(self):
self._load("latest.pt")
def save(self, loss):
self._save("latest.pt")
best_val_loss = self.get_best_val_loss()
if loss < best_val_loss:
best_val_loss = loss
self._save("best.pt")
self.write_best_val_loss(best_val_loss)
# self._save(f"{prefix}_{step}.pt")
def on_trainloop_checkin(self, epoch, step, dataloader_len):
if self.hasnan():
# revert
print("RESUMING")
self.resume()
self._save("latest.pt") # Just update latest checkpoint
self.write_resume(epoch, step + 1) # Save current progress
log_data(
{"Loss/Trainstep": self.tracker.average("Loss/trainstep")},
epoch * dataloader_len + step,
)
log_data(
{"Acc/Trainstep": self.tracker.average("Acc/trainstep")},
epoch * dataloader_len + step,
)
log_data(
{"TopKAcc/Trainstep": self.tracker.average("TopKAcc/trainstep")},
epoch * dataloader_len + step,
)
self.tracker.reset("Loss/trainstep")
self.tracker.reset("Acc/trainstep")
self.tracker.reset("TopKAcc/trainstep")
def on_epoch_checkin(self, epoch):
if self.hasnan():
# revert
self.resume()
val_loss = float("inf")
try:
val_loss = self.tracker.average("Loss/val/epoch")
except KeyError:
pass
self.save(
val_loss if val_loss < float("inf") else self.tracker.average("Loss/epoch")
)
log_data(
{
"Loss/Epoch": self.tracker.average("Loss/epoch"),
"Loss/Val/Epoch": val_loss,
"Perplexity/Val/Epoch": float(np.exp(val_loss)),
"TopKAcc/Epoch": self.tracker.average("TopKAcc/epoch"),
},
epoch,
)
self.tracker.reset("Acc/epoch")
self.tracker.reset("Loss/epoch")
self.tracker.reset("Loss/val/epoch")
self.tracker.reset("TopKAcc/epoch")
self.tracker.reset("Perplexity/val/epoch")
self.write_resume(epoch + 1, 0) # Start next epoch at step 0
def eval_model(self, data, compute_metrics=True):
if type(data) == tuple or type(data) == list:
data = tuple(d.to(self.device) for d in data)
batch, attn_mask = data
else:
data = data.to(self.device)
batch = data
attn_mask = None
del attn_mask # unused
labels = batch[:, 1:].contiguous()
batch = batch[:, :-1].contiguous()
# Forward pass
results = self.net(batch, transpose=True) # , padding_mask=attn_mask[:, :-1])
results = results.transpose(0, 1) # average bug
# Compute loss
loss = self.criterion(results.reshape(-1, results.size(-1)), labels.reshape(-1))
if not compute_metrics:
return loss, None, None
# Compute accuracy
preds = results.reshape(-1, results.size(-1)).argmax(dim=1)
labels_flat = labels.reshape(-1)
acc = (preds == labels_flat).float().mean()
# Top-k accuracy
top_k = 5
top_k_preds = results.reshape(-1, results.size(-1)).topk(top_k, dim=1).indices
top_k_acc = (top_k_preds == labels_flat.unsqueeze(1)).any(dim=1).float().mean().item()
return loss, acc, top_k_acc
def run_generation(self, data):
batch, attn_mask = data
start_sequence = batch[:, :-1].contiguous()[0][:100].unsqueeze(0)
result = evaluate_topk(
self.net, start_sequence, amt=100, k=10, temperature=0.8, device=device
)
result = dataset.manager.decode(result[0])
batch_str = dataset.manager.decode(start_sequence[0])
result = f"<data>{batch_str}</data>{result[len(batch_str):]}"
# print(result)
with open(os.path.join(self.dir, "ckpt", "generated.txt"), "a+") as f:
f.write(f"K=10,T=0.8: {result}\n")
def epoch_gen(self, loader):
if loader is not None:
for data in loader:
self.run_generation(data)
break
def trainstep(self, data):
self.optimizer.zero_grad()
loss, acc, topk_acc = self.eval_model(data)
self.tracker.add("Loss/trainstep", loss.item())
self.tracker.add("Loss/epoch", loss.item())
self.tracker.add("Acc/trainstep", acc.item())
self.tracker.add("TopKAcc/trainstep", topk_acc)
self.tracker.add("TopKAcc/epoch", topk_acc)
loss.backward()
self.optimizer.step()
return loss.detach(), acc.detach()
@torch.no_grad() # decorator yay
def valstep(self, data):
loss, acc, topk_acc = self.eval_model(data)
self.tracker.add("Loss/valstep", loss.item())
self.tracker.add("Loss/val/epoch", loss.item())
self.tracker.add("Perplexity/val/epoch", float(np.exp(loss.item())))
self.tracker.add("TopKAcc/valstep", topk_acc)
self.tracker.add("TopKAcc/val/epoch", topk_acc)
return loss.detach(), acc.detach()
def val_loop(self, val_loader):
if val_loader is not None:
for step, data in enumerate(
test_tqdm := tqdm(
val_loader, leave=False, dynamic_ncols=True, desc=f"valloop"
)
):
self.valstep(data)
avg_val_loss = self.tracker.average("Loss/val/epoch")
test_tqdm.set_postfix({"Val Loss": f"{avg_val_loss:.3f}"})
def train_loop(self, dataloader, epoch):
start_step = self.resume_step if epoch == self.resume_epoch else 0
for step, data in enumerate(
train_tqdm := tqdm(
dataloader, leave=False, dynamic_ncols=True, desc=f"trainloop"
)
):
# Check for interrupt
if self._interrupted:
self._save_on_interrupt(epoch, step)
raise KeyboardInterrupt("Training interrupted by user")
# Skip steps if resuming
if step < start_step:
continue
self.trainstep(data)
avg_train_loss = self.tracker.average("Loss/trainstep")
train_tqdm.set_postfix({"Train Loss": f"{avg_train_loss:.3f}"})
if (
step % self.trainstep_checkin_interval
== self.trainstep_checkin_interval - 1
):
self.on_trainloop_checkin(epoch, step, len(dataloader))
def epoch(self, epoch: int, dataloader, val_loader=None):
if self._interrupted:
return
self.net.train()
self.train_loop(dataloader, epoch)
if self._interrupted:
return
tqdm.write(self.get_memory_stats(self.net, dataloader.dataset, sep=" / "))
self.net.eval()
self.val_loop(val_loader)
if self._interrupted:
return
self.epoch_gen(val_loader)
self.on_epoch_checkin(epoch)
def train(self, epochs=None, dataloader=None):
if epochs is not None:
self.epochs = epochs
if dataloader is not None:
self.dataloader = dataloader
try:
for e in trange(
self.resume_epoch, self.epochs, dynamic_ncols=True, unit_scale=True, unit_divisor=60
):
if self._interrupted:
break
self.epoch(e, self.dataloader, self.val_dataloader)
except KeyboardInterrupt:
print("\nTraining interrupted. Checkpoint saved.")
finally:
print("Training session ended.")
gc.collect()
os.system(
"""osascript -e 'display notification "Training complete" with title "Training Complete"'"""
)
@staticmethod
def get_curriculum_enum():
return Enum(
"Curriculum",
[
("NOOP", 1),
("CURRICULUM", 2),
("ANTICURRICULUM", 3),
("SEQUENTIAL", 4),
("HYBRID", 5),
],
)
def train_curriculum(
self, epochs=None, dataloader=None, curriculum_type=None, loss_based=False
):
print(f"Training curriculum: {curriculum_type} loss_based: {loss_based}")
Curriculum = self.get_curriculum_enum()
if curriculum_type is None:
curriculum_type = Curriculum.NOOP
if epochs is not None:
self.epochs = epochs
if dataloader is not None:
self.dataloader = dataloader
sorted_indices = sorted(
range(len(self.dataloader.dataset)),
key=lambda i: self.dataloader.dataset[i][1],
reverse=(curriculum_type.value == Curriculum.ANTICURRICULUM.value),
)
# [min(1.0, ((i+1))/epochs) for i in range(epochs)] for normal range
standard_schedule = [
min(1.0, ((i + 2) - (i % 2)) / self.epochs) for i in range(self.epochs)
] # [0.2,0.2, 0.4,0.4,0.6,0.6,0.8,0.8,1.0,1.0]
hybrid_schedule = [
min(1.0, (i + 2) / self.epochs) for i in range(self.epochs)
] # [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.0]
step_size = 1 / (self.epochs / 2)
try:
for e in trange(
self.resume_epoch, self.epochs, dynamic_ncols=True, unit_scale=True, unit_divisor=60
):
if loss_based:
sorted_indices = self.get_loss_based_indices(
self.dataloader,
anti=(curriculum_type.value == Curriculum.ANTICURRICULUM.value),
)
subset_indices = None
if curriculum_type.value == Curriculum.NOOP.value:
print("No curriculum")
subset_indices = sorted_indices # full dataset
elif curriculum_type.value == Curriculum.SEQUENTIAL.value:
print("Sequential curriculum")
subset_indices = sorted_indices[
int(
max(len(sorted_indices) * (standard_schedule[e] - step_size), 0)
) : int(len(sorted_indices) * standard_schedule[e])
]
elif curriculum_type.value == Curriculum.HYBRID.value:
print("Hybrid curriculum")
subset_indices = sorted_indices[
int(
max(len(sorted_indices) * (hybrid_schedule[e] - step_size), 0)
) : int(len(sorted_indices) * hybrid_schedule[e])
]
elif curriculum_type.value == Curriculum.CURRICULUM.value:
print("Curriculum")
subset_indices = sorted_indices[
: int(len(sorted_indices) * standard_schedule[e])
]
elif curriculum_type.value == Curriculum.ANTICURRICULUM.value:
print("Anti curriculum")
subset_indices = sorted_indices[
: int(len(sorted_indices) * standard_schedule[e])
]
else:
raise ValueError(f"Unknown curriculum type: {curriculum_type}")
subset = torch.utils.data.Subset(self.dataloader.dataset, subset_indices)
cur_dataloader = torch.utils.data.DataLoader(
subset, batch_size=self.dataloader.batch_size, shuffle=True#, pin_memory=True
)
self.epoch(e, cur_dataloader, self.val_dataloader)
except KeyboardInterrupt:
print("\nCurriculum training interrupted. Checkpoint saved.")
finally:
print("Curriculum training session ended.")
gc.collect()
os.system(
"""osascript -e 'display notification "Training complete" with title "Training Complete"'"""
)
print("All done!")
gc.collect()
os.system(
"""osascript -e 'display notification "Training complete" with title "Training Complete"'"""
)
def get_loss_based_indices(self, dataloader, anti=False):
losses = []
# Create a new dataloader with the same dataset but without shuffling
temp_dataloader = torch.utils.data.DataLoader(
dataloader.dataset,
batch_size=dataloader.batch_size,
shuffle=False,
num_workers=(
dataloader.num_workers if hasattr(dataloader, "num_workers") else 0
),
)
with torch.no_grad(): # Add this for faster inference
for batch, _ in tqdm(
temp_dataloader,
dynamic_ncols=True,
leave=False,
desc="Loss-based sorting",
):
loss, _, _ = self.eval_model(batch, compute_metrics=False)
# If the output is a single tensor, convert to list
if isinstance(loss, torch.Tensor) and loss.dim() == 0:
losses.extend([loss.item()] * batch.size(0))
else:
# If the output is already batched
losses.extend(loss.detach().cpu().tolist())
sorted_indices = sorted(
range(len(dataloader.dataset)), key=lambda i: losses[i], reverse=anti
)
return sorted_indices
def nan_debug(self):
torch.autograd.set_detect_anomaly(True)
def forward_hook(module, input, output):
if isinstance(output, tuple):
return
if torch.isnan(output).any() or torch.isinf(output).any():
print(f"NaNs/Infs detected in {module}")
for module in self.net.modules():
module.register_forward_hook(forward_hook)
self.val_loop(self.val_dataloader)
def get_param_count(self):
return sum(p.numel() for p in self.net.parameters())
def profile_trainstep(self):
self.net.train()
data = next(iter(self.dataloader))
# https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
with profile(activities=[ProfilerActivity.CPU], record_shapes=True) as prof:
with record_function("train_step"):
self.trainstep(data)
print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10))
@staticmethod
def get_memory_stats(net, trainset, sep="\n"):
result = ""
import datetime
import time
result += f"Time: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}" + sep
import psutil
if torch.backends.mps.is_available():
result += f"MPS: {torch.mps.current_allocated_memory()/1e9:.2f} GB" + sep
result += f"RAM: {psutil.virtual_memory().percent}% used" + sep
# Print dataset size
chunks = getattr(trainset, 'chunks', getattr(trainset.dataset, 'chunks', None))
if chunks is not None:
result += f"data: {sum(p.numel() * p.element_size() for p in [chunks]) / 1e9:.2f} GB" + sep
# Print model size
model_size = sum(p.numel() * p.element_size() for p in net.parameters()) / 1e9
result += f"Params: {model_size:.2f} GB" + sep
# Estimate optimizer size
optimizer_size = model_size * 2
result += f"Optim (est): {optimizer_size:.2f} GB" + sep
return result
|