File size: 21,253 Bytes
a8639ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
import os
import torch
from logger import log_data, init_logger, log_img
import torch.nn as nn
from tqdm import tqdm, trange
from torch.profiler import profile, record_function, ProfilerActivity
import gc
import numpy as np
from eval import evaluate_topk
from dataset import dataset
from Levenshtein import ratio
from enum import Enum
import signal
import sys

device = "mps" if torch.backends.mps.is_available() else "cpu"


from collections import defaultdict


class ValueTracker:
    def __init__(self):
        self.data = {}

    def add(self, label, value):
        if label not in self.data:
            self.data[label] = []
        self.data[label].append(value)

    def average(self, label):
        values = self.data[label]
        if values:
            return sum(values) / len(values)
        else:
            return 0.0

    def reset(self, label=None):
        if label is not None:
            if label in self.data:
                self.data[label] = []
        else:
            self.data = {}

    def get_values(self, label):
        return self.data[label]

    def summary(self):
        for label in self.data:
            avg = self.average(label)
            print(f"{label} - Average: {avg:.4f}")


class TrainingManager:
    def __init__(
        self,
        net: nn.Module,
        dir: str,
        dataloader,
        device=device,
        trainstep_checkin_interval=100,
        epochs=100,
        val_dataloader=None,
    ):

        learning_rate = 0.001

        self.clip = 1.0

        self.trainstep_checkin_interval = trainstep_checkin_interval
        self.epochs = epochs

        self.dataloader = dataloader
        self.val_dataloader = val_dataloader

        self.net = net
        self.net.to(device)
        self.device = device

        self.dir = dir

        self.criterion = torch.nn.CrossEntropyLoss(label_smoothing=0.1)
        self.optimizer = torch.optim.AdamW(
            self.net.parameters(), lr=learning_rate#, weight_decay=1e-5
        )

        # No clue what this does. Maybe its good
        # initialized and never used.
        self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
            optimizer=self.optimizer, factor=0.9, patience=10
        )

        self.tracker = ValueTracker()

        self.resume_epoch, self.resume_step = self.get_resume()
        if self.resume_epoch >= self.epochs - 1:
            pass
        elif self.resume_epoch != 0 or self.resume_step != 0:
            self.resume()
        else:
            if os.path.exists(self.dir) and any(
                os.path.isfile(os.path.join(self.dir, item))
                for item in os.listdir(self.dir)
            ):
                raise ValueError(f"The directory '{self.dir}' contains files!")

            os.makedirs(self.dir, exist_ok=True)
            os.makedirs(os.path.join(self.dir, "ckpt"), exist_ok=True)

        print(f"{self.get_param_count()} parameters.")
        
        # Set up signal handler for graceful shutdown
        signal.signal(signal.SIGINT, self._signal_handler)
        self._interrupted = False

    def _signal_handler(self, signum, frame):
        """Handle keyboard interrupt gracefully"""
        print("\nKeyboard interrupt received. Saving checkpoint...")
        self._interrupted = True

    def _save_on_interrupt(self, epoch, step):
        """Save checkpoint and resume info on interrupt"""
        try:
            self._save("latest.pt")
            self.write_resume(epoch, step)
            print(f"Checkpoint saved at epoch {epoch}, step {step}")
        except Exception as e:
            print(f"Failed to save checkpoint: {e}")
        finally:
            print("Exiting...")
            sys.exit(0)

    def hasnan(self):
        for _, param in self.net.named_parameters():
            if torch.isnan(param).any():
                return True
        for _, param in self.net.named_parameters():
            if param.grad is not None and torch.isnan(param.grad).any():
                return True

        return False

    def _save(self, name="latest.pt"):
        with open(os.path.join(self.dir, "ckpt", name), "wb+") as f:
            torch.save(self.net.state_dict(), f)

    def _load(self, name="latest.pt"):
        self.net.load_state_dict(
            torch.load(os.path.join(self.dir, "ckpt", name), weights_only=True)
        )

    def write_resume(self, epoch, step=0):
        with open(os.path.join(self.dir, "ckpt", "resume.txt"), "w+") as f:
            f.write(f"{epoch},{step}")

    def get_resume(self):
        try:
            with open(os.path.join(self.dir, "ckpt", "resume.txt"), "r") as f:
                content = f.read().strip()
                if ',' in content:
                    epoch, step = content.split(',')
                    return int(epoch), int(step)
                else:
                    # Backward compatibility: if only epoch is stored
                    return int(content), 0
        except (FileNotFoundError, ValueError):
            return 0, 0

    def write_best_val_loss(self, loss):
        with open(os.path.join(self.dir, "ckpt", "best_val_loss.txt"), "w+") as f:
            f.write(f"{loss:.6f}")

    def get_best_val_loss(self):
        try:
            with open(os.path.join(self.dir, "ckpt", "best_val_loss.txt"), "r") as f:
                return float(f.read())
        except (FileNotFoundError, ValueError):
            return float("inf")

    def resume(self):
        self._load("latest.pt")

    def save(self, loss):
        self._save("latest.pt")

        best_val_loss = self.get_best_val_loss()
        if loss < best_val_loss:
            best_val_loss = loss
            self._save("best.pt")
            self.write_best_val_loss(best_val_loss)

        # self._save(f"{prefix}_{step}.pt")

    def on_trainloop_checkin(self, epoch, step, dataloader_len):
        if self.hasnan():
            # revert
            print("RESUMING")
            self.resume()

        self._save("latest.pt")  # Just update latest checkpoint
        self.write_resume(epoch, step + 1)  # Save current progress

        log_data(
            {"Loss/Trainstep": self.tracker.average("Loss/trainstep")},
            epoch * dataloader_len + step,
        )
        log_data(
            {"Acc/Trainstep": self.tracker.average("Acc/trainstep")},
            epoch * dataloader_len + step,
        )
        log_data(
            {"TopKAcc/Trainstep": self.tracker.average("TopKAcc/trainstep")},
            epoch * dataloader_len + step,
        )

        self.tracker.reset("Loss/trainstep")
        self.tracker.reset("Acc/trainstep")
        self.tracker.reset("TopKAcc/trainstep")

    def on_epoch_checkin(self, epoch):
        if self.hasnan():
            # revert
            self.resume()

        val_loss = float("inf")
        try:
            val_loss = self.tracker.average("Loss/val/epoch")
        except KeyError:
            pass

        self.save(
            val_loss if val_loss < float("inf") else self.tracker.average("Loss/epoch")
        )

        log_data(
            {
                "Loss/Epoch": self.tracker.average("Loss/epoch"),
                "Loss/Val/Epoch": val_loss,
                "Perplexity/Val/Epoch": float(np.exp(val_loss)),
                "TopKAcc/Epoch": self.tracker.average("TopKAcc/epoch"),
            },
            epoch,
        )

        self.tracker.reset("Acc/epoch")
        self.tracker.reset("Loss/epoch")
        self.tracker.reset("Loss/val/epoch")
        self.tracker.reset("TopKAcc/epoch")
        self.tracker.reset("Perplexity/val/epoch")

        self.write_resume(epoch + 1, 0)  # Start next epoch at step 0

    def eval_model(self, data, compute_metrics=True):
        if type(data) == tuple or type(data) == list:
            data = tuple(d.to(self.device) for d in data)
            batch, attn_mask = data
        else:
            data = data.to(self.device)
            batch = data
            attn_mask = None

        del attn_mask  # unused

        labels = batch[:, 1:].contiguous()
        batch = batch[:, :-1].contiguous()

        # Forward pass
        results = self.net(batch, transpose=True)  # , padding_mask=attn_mask[:, :-1])
        results = results.transpose(0, 1)  # average bug

        # Compute loss
        loss = self.criterion(results.reshape(-1, results.size(-1)), labels.reshape(-1))

        if not compute_metrics:
            return loss, None, None
        
        # Compute accuracy
        preds = results.reshape(-1, results.size(-1)).argmax(dim=1)
        labels_flat = labels.reshape(-1)
        acc = (preds == labels_flat).float().mean()

        # Top-k accuracy
        top_k = 5
        top_k_preds = results.reshape(-1, results.size(-1)).topk(top_k, dim=1).indices
        top_k_acc = (top_k_preds == labels_flat.unsqueeze(1)).any(dim=1).float().mean().item()

        return loss, acc, top_k_acc

    def run_generation(self, data):
        batch, attn_mask = data
        start_sequence = batch[:, :-1].contiguous()[0][:100].unsqueeze(0)
        result = evaluate_topk(
            self.net, start_sequence, amt=100, k=10, temperature=0.8, device=device
        )

        result = dataset.manager.decode(result[0])
        batch_str = dataset.manager.decode(start_sequence[0])

        result = f"<data>{batch_str}</data>{result[len(batch_str):]}"
        # print(result)

        with open(os.path.join(self.dir, "ckpt", "generated.txt"), "a+") as f:
            f.write(f"K=10,T=0.8: {result}\n")

    def epoch_gen(self, loader):
        if loader is not None:
            for data in loader:
                self.run_generation(data)
                break

    def trainstep(self, data):
        self.optimizer.zero_grad()

        loss, acc, topk_acc = self.eval_model(data)

        self.tracker.add("Loss/trainstep", loss.item())
        self.tracker.add("Loss/epoch", loss.item())

        self.tracker.add("Acc/trainstep", acc.item())
        self.tracker.add("TopKAcc/trainstep", topk_acc)
        self.tracker.add("TopKAcc/epoch", topk_acc)

        loss.backward()
        self.optimizer.step()

        return loss.detach(), acc.detach()

    @torch.no_grad()  # decorator yay
    def valstep(self, data):
        loss, acc, topk_acc = self.eval_model(data)

        self.tracker.add("Loss/valstep", loss.item())
        self.tracker.add("Loss/val/epoch", loss.item())

        self.tracker.add("Perplexity/val/epoch", float(np.exp(loss.item())))

        self.tracker.add("TopKAcc/valstep", topk_acc)
        self.tracker.add("TopKAcc/val/epoch", topk_acc)

        return loss.detach(), acc.detach()

    def val_loop(self, val_loader):
        if val_loader is not None:
            for step, data in enumerate(
                test_tqdm := tqdm(
                    val_loader, leave=False, dynamic_ncols=True, desc=f"valloop"
                )
            ):
                self.valstep(data)
                avg_val_loss = self.tracker.average("Loss/val/epoch")
                test_tqdm.set_postfix({"Val Loss": f"{avg_val_loss:.3f}"})

    def train_loop(self, dataloader, epoch):
        start_step = self.resume_step if epoch == self.resume_epoch else 0
        
        for step, data in enumerate(
            train_tqdm := tqdm(
                dataloader, leave=False, dynamic_ncols=True, desc=f"trainloop"
            )
        ):
            # Check for interrupt
            if self._interrupted:
                self._save_on_interrupt(epoch, step)
                raise KeyboardInterrupt("Training interrupted by user")
                
            # Skip steps if resuming
            if step < start_step:
                continue
                
            self.trainstep(data)

            avg_train_loss = self.tracker.average("Loss/trainstep")
            train_tqdm.set_postfix({"Train Loss": f"{avg_train_loss:.3f}"})

            if (
                step % self.trainstep_checkin_interval
                == self.trainstep_checkin_interval - 1
            ):
                
                self.on_trainloop_checkin(epoch, step, len(dataloader))
                

    def epoch(self, epoch: int, dataloader, val_loader=None):
        if self._interrupted:
            return
            
        self.net.train()
        self.train_loop(dataloader, epoch)
        
        if self._interrupted:
            return
            
        tqdm.write(self.get_memory_stats(self.net, dataloader.dataset, sep=" / "))
        self.net.eval()
        self.val_loop(val_loader)

        if self._interrupted:
            return
            
        self.epoch_gen(val_loader)
        self.on_epoch_checkin(epoch)

    def train(self, epochs=None, dataloader=None):

        if epochs is not None:
            self.epochs = epochs

        if dataloader is not None:
            self.dataloader = dataloader

        try:
            for e in trange(
                self.resume_epoch, self.epochs, dynamic_ncols=True, unit_scale=True, unit_divisor=60
            ):
                if self._interrupted:
                    break
                    
                self.epoch(e, self.dataloader, self.val_dataloader)

        except KeyboardInterrupt:
            print("\nTraining interrupted. Checkpoint saved.")
        finally:
            print("Training session ended.")
            gc.collect()
            os.system(
                """osascript -e 'display notification "Training complete" with title "Training Complete"'"""
            )

    @staticmethod
    def get_curriculum_enum():
        return Enum(
            "Curriculum",
            [
                ("NOOP", 1),
                ("CURRICULUM", 2),
                ("ANTICURRICULUM", 3),
                ("SEQUENTIAL", 4),
                ("HYBRID", 5),
            ],
        )

    def train_curriculum(
        self, epochs=None, dataloader=None, curriculum_type=None, loss_based=False
    ):

        print(f"Training curriculum: {curriculum_type} loss_based: {loss_based}")

        Curriculum = self.get_curriculum_enum()

        if curriculum_type is None:
            curriculum_type = Curriculum.NOOP

        if epochs is not None:
            self.epochs = epochs

        if dataloader is not None:
            self.dataloader = dataloader

        sorted_indices = sorted(
            range(len(self.dataloader.dataset)),
            key=lambda i: self.dataloader.dataset[i][1],
            reverse=(curriculum_type.value == Curriculum.ANTICURRICULUM.value),
        )

        # [min(1.0, ((i+1))/epochs) for i in range(epochs)] for normal range
        standard_schedule = [
            min(1.0, ((i + 2) - (i % 2)) / self.epochs) for i in range(self.epochs)
        ]  # [0.2,0.2, 0.4,0.4,0.6,0.6,0.8,0.8,1.0,1.0]
        hybrid_schedule = [
            min(1.0, (i + 2) / self.epochs) for i in range(self.epochs)
        ]  # [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.0]
        step_size = 1 / (self.epochs / 2)

        try:
            for e in trange(
                self.resume_epoch, self.epochs, dynamic_ncols=True, unit_scale=True, unit_divisor=60
            ):

                if loss_based:
                    sorted_indices = self.get_loss_based_indices(
                        self.dataloader,
                        anti=(curriculum_type.value == Curriculum.ANTICURRICULUM.value),
                    )

                subset_indices = None
                if curriculum_type.value == Curriculum.NOOP.value:
                    print("No curriculum")
                    subset_indices = sorted_indices  # full dataset
                elif curriculum_type.value == Curriculum.SEQUENTIAL.value:
                    print("Sequential curriculum")
                    subset_indices = sorted_indices[
                        int(
                            max(len(sorted_indices) * (standard_schedule[e] - step_size), 0)
                        ) : int(len(sorted_indices) * standard_schedule[e])
                    ]
                elif curriculum_type.value == Curriculum.HYBRID.value:
                    print("Hybrid curriculum")
                    subset_indices = sorted_indices[
                        int(
                            max(len(sorted_indices) * (hybrid_schedule[e] - step_size), 0)
                        ) : int(len(sorted_indices) * hybrid_schedule[e])
                    ]
                elif curriculum_type.value == Curriculum.CURRICULUM.value:
                    print("Curriculum")
                    subset_indices = sorted_indices[
                        : int(len(sorted_indices) * standard_schedule[e])
                    ]
                elif curriculum_type.value == Curriculum.ANTICURRICULUM.value:
                    print("Anti curriculum")
                    subset_indices = sorted_indices[
                        : int(len(sorted_indices) * standard_schedule[e])
                    ]
                else:
                    raise ValueError(f"Unknown curriculum type: {curriculum_type}")

                subset = torch.utils.data.Subset(self.dataloader.dataset, subset_indices)
                cur_dataloader = torch.utils.data.DataLoader(
                    subset, batch_size=self.dataloader.batch_size, shuffle=True#, pin_memory=True
                )

                self.epoch(e, cur_dataloader, self.val_dataloader)

        except KeyboardInterrupt:
            print("\nCurriculum training interrupted. Checkpoint saved.")
        finally:
            print("Curriculum training session ended.")
            gc.collect()
            os.system(
                """osascript -e 'display notification "Training complete" with title "Training Complete"'"""
            )

        print("All done!")
        gc.collect()
        os.system(
            """osascript -e 'display notification "Training complete" with title "Training Complete"'"""
        )

    def get_loss_based_indices(self, dataloader, anti=False):
        losses = []
        # Create a new dataloader with the same dataset but without shuffling
        temp_dataloader = torch.utils.data.DataLoader(
            dataloader.dataset,
            batch_size=dataloader.batch_size,
            shuffle=False,
            num_workers=(
                dataloader.num_workers if hasattr(dataloader, "num_workers") else 0
            ),
        )

        with torch.no_grad():  # Add this for faster inference
            for batch, _ in tqdm(
                temp_dataloader,
                dynamic_ncols=True,
                leave=False,
                desc="Loss-based sorting",
            ):
                loss, _, _ = self.eval_model(batch, compute_metrics=False)
                
                # If the output is a single tensor, convert to list
                if isinstance(loss, torch.Tensor) and loss.dim() == 0:
                    losses.extend([loss.item()] * batch.size(0))
                else:
                    # If the output is already batched
                    losses.extend(loss.detach().cpu().tolist())

        sorted_indices = sorted(
            range(len(dataloader.dataset)), key=lambda i: losses[i], reverse=anti
        )
        return sorted_indices

    def nan_debug(self):
        torch.autograd.set_detect_anomaly(True)

        def forward_hook(module, input, output):
            if isinstance(output, tuple):
                return
            if torch.isnan(output).any() or torch.isinf(output).any():
                print(f"NaNs/Infs detected in {module}")

        for module in self.net.modules():
            module.register_forward_hook(forward_hook)
        self.val_loop(self.val_dataloader)

    def get_param_count(self):
        return sum(p.numel() for p in self.net.parameters())

    def profile_trainstep(self):

        self.net.train()
        data = next(iter(self.dataloader))

        # https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
        with profile(activities=[ProfilerActivity.CPU], record_shapes=True) as prof:
            with record_function("train_step"):
                self.trainstep(data)

        print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10))

    @staticmethod
    def get_memory_stats(net, trainset, sep="\n"):
        result = ""
        import datetime
        import time
        result += f"Time: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}" + sep
        import psutil
        if torch.backends.mps.is_available():
            result += f"MPS: {torch.mps.current_allocated_memory()/1e9:.2f} GB" + sep
        result += f"RAM: {psutil.virtual_memory().percent}% used" + sep
        
        # Print dataset size
        chunks = getattr(trainset, 'chunks', getattr(trainset.dataset, 'chunks', None))
       
        if chunks is not None:
            result += f"data: {sum(p.numel() * p.element_size() for p in [chunks]) / 1e9:.2f} GB" + sep
        
        # Print model size
        model_size = sum(p.numel() * p.element_size() for p in net.parameters()) / 1e9
        result += f"Params: {model_size:.2f} GB" + sep
        
        # Estimate optimizer size
        optimizer_size = model_size * 2
        result += f"Optim (est): {optimizer_size:.2f} GB" + sep

        return result