import os from dotenv import load_dotenv from evoagentx.benchmark import MBPPPLUS, AFlowMBPPPLUS from evoagentx.optimizers import AFlowOptimizer from evoagentx.models import LiteLLMConfig, LiteLLM, OpenAILLMConfig, OpenAILLM import os EXPERIMENTAL_CONFIG = { "humaneval": { "question_type": "code", "operators": ["Custom", "CustomCodeGenerate", "Test", "ScEnsemble"] }, "mbpp": { "question_type": "code", "operators": ["Custom", "CustomCodeGenerate", "Test", "ScEnsemble"] }, "hotpotqa": { "question_type": "qa", "operators": ["Custom", "AnswerGenerate", "QAScEnsemble"] }, "gsm8k": { "question_type": "math", "operators": ["Custom", "ScEnsemble", "Programmer"] }, "math": { "question_type": "math", "operators": ["Custom", "ScEnsemble", "Programmer"] } } class MBPPSplits(AFlowMBPPPLUS): def _load_data(self): # load the original MBPP data mbpp_test_data = AFlowMBPPPLUS().get_dev_data() # split the data into dev and test import numpy as np np.random.seed(42) permutation = np.random.permutation(len(mbpp_test_data)) # radnomly select 50 samples for dev and 100 samples for test (be consistent with other models) dev_data_task_ids = [mbpp_test_data[idx]["task_id"] for idx in permutation[:30]] super()._load_data() full_data = self._dev_data self._dev_data = [example for example in full_data if example["task_id"] in dev_data_task_ids] def main(): from evoagentx.models import OpenAILLMConfig, OpenAILLM,AzureOpenAIConfig,LiteLLMConfig,LiteLLM from evoagentx.workflow import SEWWorkFlowGraph from evoagentx.agents import AgentManager from evoagentx.benchmark import ClassEval from evoagentx.evaluators import Evaluator from evoagentx.optimizers import SEWOptimizer from evoagentx.core.callbacks import suppress_logger_info os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"] = "gpt-4o-mini" os.environ["AZURE_OPENAI_ENDPOINT"] = "https://75244-mfztkr7x-eastus2.cognitiveservices.azure.com/" os.environ["AZURE_OPENAI_KEY"] = "8PNMdsUYGdMPsCfl0baO0hjtnGE2m40zJTrUGC3vKnHdpjnkOgeQJQQJ99BIACHYHv6XJ3w3AAAAACOG7VZI" os.environ["AZURE_OPENAI_API_VERSION"] = "2024-12-01-preview" # llm_config = OpenAILLMConfig(model="gpt-4o-mini-2024-07-18", openai_key=OPENAI_API_KEY, top_p=0.85, temperature=0.2, frequency_penalty=0.0, presence_penalty=0.0) llm_config = LiteLLMConfig(model="azure/" + os.getenv("AZURE_OPENAI_DEPLOYMENT_NAME"), # Azure model format azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"), azure_key=os.getenv("AZURE_OPENAI_KEY"), api_version=os.getenv("AZURE_OPENAI_API_VERSION", "2024-12-01-preview"), top_p=0.85, temperature=0.2, frequency_penalty=0.0, presence_penalty=0.0) executor_llm = LiteLLM(config=llm_config) optimizer_llm = LiteLLM(config=llm_config) # load benchmark mbpp_input = MBPPSplits() mbpp = AFlowMBPPPLUS() mbpp._dev_data = mbpp_input._dev_data mbpp.error_list = {} # create optimizer optimizer = AFlowOptimizer( graph_path = "examples/aflow/code_generation", optimized_path = "examples/aflow/mbppplus_full_new/optimized", optimizer_llm=optimizer_llm, executor_llm=executor_llm, validation_rounds=5, eval_rounds=1, max_rounds=10, **EXPERIMENTAL_CONFIG["mbpp"] ) # run optimization optimizer.optimize(mbpp) # run test optimizer.test(mbpp) # use `test_rounds: List[int]` to specify the rounds to test if __name__ == "__main__": main()