import evoagentx.workflow.operators as operator import examples.aflow.livecodebench.optimized.round_1.prompt as prompt_custom from evoagentx.models.model_configs import LLMConfig from evoagentx.benchmark.benchmark import Benchmark from evoagentx.models.model_utils import create_llm_instance class Workflow: def __init__( self, name: str, llm_config: LLMConfig, benchmark: Benchmark ): self.name = name self.llm = create_llm_instance(llm_config) self.benchmark = benchmark self.custom = operator.Custom(self.llm) self.custom_code_generate = operator.CustomCodeGenerate(self.llm) self.test = operator.Test(self.llm) self.sc_ensemble = operator.ScEnsemble(self.llm) async def __call__(self, problem: str, entry_point: str): """ Implementation of the workflow Custom operator to generate initial insights about the problem. """ insights = await self.custom(input=f"The following coding problem is provided: {problem}. Please provide detailed insights, including potential pitfalls, testing strategies, and relevant examples to clarify the approach. ", instruction="Provide enhanced insights for the problem.") solutions = [] for _ in range(5): solution = await self.custom_code_generate(problem=problem+f" Insights:{insights['response']}", entry_point=entry_point, instruction=prompt_custom.GENERATE_PYTHON_CODE_PROMPT) solutions.append(solution['response']) best_solution = await self.sc_ensemble(solutions=solutions, problem=problem) test_result = await self.test(problem=problem, solution=best_solution['response'], entry_point=entry_point, benchmark=self.benchmark) if not test_result['result']: specific_feedback = f"Solution failed for the problem: {problem}. Errors encountered: {test_result['solution']}" # Enhanced feedback return specific_feedback # Provide detailed error feedback return best_solution['response']