iLOVE2D's picture
Upload 2846 files
5374a2d verified
from typing import Union, Optional
from pydantic import Field
from ..core.module import BaseModule
from ..models.base_model import BaseLLM
from ..benchmark.benchmark import Benchmark
from ..evaluators.evaluator import Evaluator
from ..workflow.action_graph import ActionGraph
from ..workflow.workflow_graph import WorkFlowGraph
class Optimizer(BaseModule):
graph: Union[WorkFlowGraph, ActionGraph] = Field(description="The workflow to optimize.")
evaluator: Evaluator = Field(description="The evaluator to use for optimization.")
llm: BaseLLM = Field(default=None, description="The LLM to use for optimization and evaluation.")
max_steps: int = Field(default=5, description="The maximum number of optimization steps to take.")
eval_every_n_steps: int = Field(default=1, description="Evaluate the workflow every `eval_every_n_steps` steps.")
eval_rounds: int = Field(default=1, description="Run evaluation for `eval_rounds` times and compute the average score.")
convergence_threshold: int = Field(default=5, description="If the optimization has not improved the score for `convergence_threshold` steps, the optimization will be stopped.")
def optimize(self, dataset: Benchmark, **kwargs):
"""
Optimize the workflow.
"""
raise NotImplementedError(f"``optimize`` function for {type(self).__name__} is not implemented!")
def step(self, **kwargs):
"""
Take a step of optimization.
"""
raise NotImplementedError(f"``step`` function for {type(self).__name__} is not implemented!")
def evaluate(self, dataset: Benchmark, eval_mode: str = "test", graph: Optional[Union[WorkFlowGraph, ActionGraph]] = None, **kwargs) -> dict:
"""
Evaluate the workflow. If `graph` is provided, use the provided graph for evaluation. Otherwise, use the graph in the optimizer.
"""
raise NotImplementedError(f"``evaluate`` function for {type(self).__name__} is not implemented!")
def convergence_check(self, *args, **kwargs) -> bool:
"""
Check if the optimization has converged.
"""
raise NotImplementedError(f"``convergence_check`` function for {type(self).__name__} is not implemented!")