File size: 2,068 Bytes
5374a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import evoagentx.workflow.operators as operator
import examples.aflow.livecodebench.optimized.round_1.prompt as prompt_custom
from evoagentx.models.model_configs import LLMConfig
from evoagentx.benchmark.benchmark import Benchmark
from evoagentx.models.model_utils import create_llm_instance

class Workflow:

    def __init__(
        self,
        name: str,
        llm_config: LLMConfig,
        benchmark: Benchmark
    ):
        self.name = name
        self.llm = create_llm_instance(llm_config)
        self.benchmark = benchmark 
        self.custom = operator.Custom(self.llm)
        self.custom_code_generate = operator.CustomCodeGenerate(self.llm)
        self.test = operator.Test(self.llm)
        self.sc_ensemble = operator.ScEnsemble(self.llm)

    async def __call__(self, problem: str, entry_point: str):
        """
        Implementation of the workflow
        Custom operator to generate initial insights about the problem.
        """
        insights = await self.custom(input=f"The following coding problem is provided: {problem}. Please provide detailed insights, including potential pitfalls, testing strategies, and relevant examples to clarify the approach. ", instruction="Provide enhanced insights for the problem.")

        solutions = []
        for _ in range(5):
            solution = await self.custom_code_generate(problem=problem+f" Insights:{insights['response']}", entry_point=entry_point, instruction=prompt_custom.GENERATE_PYTHON_CODE_PROMPT)
            solutions.append(solution['response'])

        best_solution = await self.sc_ensemble(solutions=solutions, problem=problem)

        test_result = await self.test(problem=problem, solution=best_solution['response'], entry_point=entry_point, benchmark=self.benchmark)
        if not test_result['result']:
            specific_feedback = f"Solution failed for the problem: {problem}. Errors encountered: {test_result['solution']}"  # Enhanced feedback
            return specific_feedback  # Provide detailed error feedback

        return best_solution['response']