File size: 59,376 Bytes
5374a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 |
import yaml
import regex
import random
import inspect
import numpy as np
from pydantic import Field
from copy import deepcopy
import xml.etree.ElementTree as ET
from typing import Literal, Union, Optional, List
from evoagentx.models import OpenAILLMConfig, OpenAILLM
from evoagentx.evaluators import Evaluator
from .optimizer import Optimizer
from ..core.logging import logger
from ..models.base_model import BaseLLM
from ..benchmark.benchmark import Benchmark
from ..workflow.action_graph import ActionGraph
from ..core.callbacks import suppress_logger_info
from ..workflow.workflow_graph import SequentialWorkFlowGraph,WorkFlowGraph
from ..prompts.workflow.sew_optimizer import mutation_prompts, thinking_styles
VALID_SCHEMES = ["python", "yaml", "code", "core", "bpmn"]
import difflib
def find_closest_name(inputname, name_refernece):
name_reference_correct = [step["task_name"] for step in name_refernece]
print("inputname", inputname)
print("correct_list", name_reference_correct)
correct_name = difflib.get_close_matches(inputname, name_reference_correct, n=1, cutoff=0.1)
print(correct_name)
correct_step = name_refernece[name_reference_correct.index(correct_name[0])]
return correct_step
class STRUCTUREWorkFlowScheme:
"""
The scheme of the workflow for SEW optimizer.
"""
def __init__(self, graph: WorkFlowGraph, **kwargs):
self.graph = graph # the workflow graph to be transformed
self.kwargs = kwargs
def convert_to_scheme(self, scheme: str) -> str:
"""
Transform the WorkflowGraph to the desired scheme.
"""
if scheme not in VALID_SCHEMES:
raise ValueError(f"Invalid scheme: {scheme}. The scheme should be one of {VALID_SCHEMES}.")
if scheme == "python":
repr = self.get_workflow_python_repr()
elif scheme == "yaml":
repr = self.get_workflow_yaml_repr()
elif scheme == "code":
repr = self.get_workflow_code_repr()
elif scheme == "core":
repr = self.get_workflow_core_repr()
elif scheme == "bpmn":
repr = self.get_workflow_bpmn_repr()
return repr
def parse_from_scheme(self, scheme: str, repr: str) -> WorkFlowGraph:
"""
Parse the SequentialWorkFlowGraph from the given scheme and representation.
"""
if scheme not in VALID_SCHEMES:
raise ValueError(f"Invalid scheme: {scheme}. The scheme should be one of {VALID_SCHEMES}.")
if scheme == "python":
graph = self.parse_workflow_python_repr(repr)
elif scheme == "yaml":
graph = self.parse_workflow_yaml_repr(repr)
elif scheme == "code":
graph = self.parse_workflow_code_repr(repr)
elif scheme == "core":
graph = self.parse_workflow_core_repr(repr)
elif scheme == "bpmn":
graph = self.parse_workflow_bpmn_repr(repr)
return graph
def _get_workflow_repr_info(self) -> List[dict]:
"""
Get the information for the workflow representation.
"""
info = []
for node in self.graph.nodes:
task_name = node.name
input_names = [param.name for param in node.inputs]
output_names = [param.name for param in node.outputs]
task_info = {
"task_name": task_name,
"input_names": input_names,
"output_names": output_names
}
info.append(task_info)
return info
def _convert_to_func_name(self, name: str) -> str:
"""
Convert the task name to the function name.
"""
name = name.lower().strip()
name = name.replace(' ', '_').replace('-', '_')
name = ''.join(c for c in name if c.isalnum() or c == '_')
# Replace multiple consecutive underscores with a single underscore
name = regex.sub(r'_+', "_", name)
# Remove leading/trailing underscores
name = name.strip('_')
return name
def _convert_to_title(self, name: str) -> str:
func_name = self._convert_to_func_name(name)
words = func_name.split('_')
return ' '.join(word.capitalize() for word in words)
def get_workflow_python_repr(self) -> str:
repr_info = self._get_workflow_repr_info()
if not repr_info:
return ""
python_workflow_info = []
for task_info in repr_info:
name = self._convert_to_func_name(task_info['task_name'])
input_names = [f'{input_name}' for input_name in task_info['input_names']]
output_names = [f'{output_name}' for output_name in task_info['output_names']]
python_workflow_info.append(
"{{'name': '{name}', 'args': {args}, 'outputs': {outputs}}}".format(
name=name,
args=input_names,
outputs=output_names
)
)
python_workflow_repr = "steps = [\n" + ",\n".join(python_workflow_info) + "\n]"
# print(python_workflow_repr)
return python_workflow_repr
def get_workflow_yaml_repr(self) -> str:
repr_info = self._get_workflow_repr_info()
if not repr_info:
return ""
yaml_workflow_info = []
for task_info in repr_info:
name = self._convert_to_func_name(task_info['task_name'])
input_names = "\n".join([f' - {input_name}' for input_name in task_info['input_names']])
output_names = "\n".join([f' - {output_name}' for output_name in task_info['output_names']])
yaml_workflow_info.append(
"- name: {name}\n args:\n{input_names}\n outputs:\n{output_names}".format(
name=name,
input_names=input_names,
output_names=output_names
)
)
yaml_workflow_repr = "\n\n".join(yaml_workflow_info)
return yaml_workflow_repr
def get_workflow_code_repr(self) -> str:
repr_info = self._get_workflow_repr_info()
if not repr_info:
return ""
workflow_lines = []
for task_info in repr_info:
# Convert task name to snake_case
name = self._convert_to_func_name(task_info['task_name'])
# Format inputs and outputs
inputs = ", ".join(task_info['input_names'])
outputs = ", ".join(task_info['output_names'])
# Create the line in format: task_name(inputs) -> outputs
line = f"{name}({inputs}) -> {outputs}"
workflow_lines.append(line)
# Join all lines with newlines
workflow_repr = "\n".join(workflow_lines)
return workflow_repr
def get_workflow_bpmn_repr(self) -> str:
repr_info = self._get_workflow_repr_info()
if not repr_info:
return ""
# Start the BPMN XML
bpmn_lines = [
'<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL">',
'<process id="software_dev_workflow" isExecutable="true">',
' <startEvent id="start" />'
]
# Add tasks
for i, task_info in enumerate(repr_info):
task_name = self._convert_to_func_name(task_info['task_name'])
task_title = self._convert_to_title(task_info['task_name'])
bpmn_lines.append(f' <task id="{task_name}" name="{task_title}" />')
bpmn_lines.append(' <endEvent id="end" />')
bpmn_lines.append('')
bpmn_lines.append(' <!-- Workflow connections -->')
# Add sequence flows
# First flow from start to first task
if repr_info:
first_task_id = self._convert_to_func_name(repr_info[0]['task_name'])
bpmn_lines.append(f' <sequenceFlow id="flow1" sourceRef="start" targetRef="{first_task_id}" />')
# Flows between tasks
for i in range(len(repr_info) - 1):
source_id = self._convert_to_func_name(repr_info[i]['task_name'])
target_id = self._convert_to_func_name(repr_info[i + 1]['task_name'])
flow_num = i + 2
bpmn_lines.append(f' <sequenceFlow id="flow{flow_num}" sourceRef="{source_id}" targetRef="{target_id}" />')
# Last flow from last task to end
if repr_info:
last_task_id = self._convert_to_func_name(repr_info[-1]['task_name'])
flow_num = len(repr_info) + 1
bpmn_lines.append(f' <sequenceFlow id="flow{flow_num}" sourceRef="{last_task_id}" targetRef="end" />')
# Close tags
bpmn_lines.append('</process>')
bpmn_lines.append('</definitions>')
return '\n'.join(bpmn_lines)
def get_workflow_core_repr(self) -> str:
repr_info = self._get_workflow_repr_info()
if not repr_info:
return ""
workflow_lines = []
for i, task_info in enumerate(repr_info, 1):
# Convert task name to title case
task_name = self._convert_to_title(task_info['task_name'])
# Create the line with the specified format
next_step = i + 1
line = f"Step {i}::: Process ::: {task_name}:::next::Step {next_step}"
workflow_lines.append(line)
# Add the terminal step
last_step = len(repr_info) + 1
workflow_lines.append(f"Step {last_step}::: Terminal ::: End of Workflow:::")
return "\n".join(workflow_lines)
def _find_task_index(self, step: dict, graph_repr_info: List[dict]) -> int:
"""
Find the index of the task in the original workflow graph. If the task is not found, return -1.
Args:
step (dict): The step of the workflow.
graph_repr_info (List[dict]): The information of the original workflow graph.
Returns:
int: The index of the task.
"""
def _is_task_name_match(task_name: str, another_name: str) -> bool:
return self._convert_to_func_name(task_name) == self._convert_to_func_name(another_name)
def _is_task_inputs_match(task_inputs: List[str], another_inputs: List[str]) -> bool:
return len(set(task_inputs) & set(another_inputs)) == len(task_inputs)
def _is_task_outputs_match(task_outputs: List[str], another_outputs: List[str]) -> bool:
return len(set(task_outputs) & set(another_outputs)) == len(task_outputs)
for i, task in enumerate(graph_repr_info):
# if _is_task_name_match(task["task_name"], step["name"]) and _is_task_inputs_match(task["input_names"], step["args"]) and _is_task_outputs_match(task["output_names"], step["outputs"]):
# return i
if _is_task_name_match(task["task_name"], step["name"]) and _is_task_outputs_match(task["output_names"], step["outputs"]):
return i
return -1
def create_workflow_graph_from_steps(
self,
steps: List[dict]
) -> WorkFlowGraph:
"""
Create a new workflow graph from the steps.
Since both the inputs and outputs are provided, new tasks will be created in the new workflow graph.
It is used for the `python` `yaml` and `code` representations.
Args:
steps (List[dict]): The steps of the workflow. The steps are in the format of:
[
{
"name": str,
"args": List[str],
"outputs": List[str]
}
]
Returns:
SequentialWorkFlowGraph: The new workflow graph.
"""
original_workflow_config = self.graph.get_graph_info()
repr_info = self._get_workflow_repr_info()
new_tasks = []
get_known_list = []
for step in repr_info:
get_known_list.append(step)
for step in steps:
task_index = self._find_task_index(step=step, graph_repr_info=repr_info)
if task_index == -1:
# create a new task
task_name = step["name"]
most_known_step = find_closest_name(task_name, get_known_list)
most_known_step['name'] = most_known_step['task_name']
most_known_step['args'] = most_known_step['input_names']
most_known_step['outputs'] = most_known_step['output_names']
task_index_new = self._find_task_index(step=most_known_step, graph_repr_info=repr_info)
print(step)
print(task_index)
item_new = deepcopy(original_workflow_config["tasks"][task_index_new])
item_new["name"] = task_name +str(np.random.randint(0,10000))
item_new['task_name'] = task_name +str(np.random.randint(0,10000))
new_tasks.append(item_new)
# description = f"Task to {task_name.lower()}. "
# if step["args"]:
# description += f"Takes {', '.join(step['args'])} as input. "
# if step["outputs"]:
# description += f"Produces {', '.join(step['outputs'])} as output."
# new_task = {
# "name": task_name,
# "description": description,
# "inputs": [
# {
# "name": input_name,
# "type": "str",
# "description": f"Input parameter {input_name} for {task_name}"
# } for input_name in step["args"]
# ],
# "outputs": [
# {
# "name": output_name,
# "type": "str",
# "description": f"Output parameter {output_name} from {task_name}"
# } for output_name in step["outputs"]
# ],
# "prompt": "to be updated",
# # "llm_config": original_workflow_config["tasks"][0]["llm_config"],
# "parse_mode": "str"
# }
# new_tasks.append(new_task)
else:
# copy the task from the original workflow graph
if original_workflow_config["tasks"][task_index] not in new_tasks:
new_tasks.append(deepcopy(original_workflow_config["tasks"][task_index]))
# create new workflow configuration
new_workflow_config = {
"goal": original_workflow_config["goal"],
"tasks": new_tasks
}
# create new workflow graph
new_graph = SequentialWorkFlowGraph.from_dict(new_workflow_config)
return new_graph
def create_workflow_graph_from_task_names(
self,
task_names: Optional[List[str]] = None,
task_titles: Optional[List[str]] = None
) -> SequentialWorkFlowGraph:
"""
Create a new workflow graph from the task names or titles.
Since only the task names or titles are provided, the tasks in the new workflow graph will be copied from the original workflow graph.
It is used for the `bpmn` and `core` representations.
Args:
task_names (Optional[List[str]]): The names of the tasks.
task_titles (Optional[List[str]]): The titles of the tasks.
Returns:
SequentialWorkFlowGraph: The new workflow graph.
"""
if task_names:
original_workflow_config = self.graph.get_graph_info()
tasks = task_names
original_tasks = {self._convert_to_func_name(task["name"]): task for task in original_workflow_config["tasks"]}
elif task_titles:
original_workflow_config = self.graph.get_graph_info()
tasks = task_titles
original_tasks = {self._convert_to_title(task["name"]): task for task in original_workflow_config["tasks"]}
else:
raise ValueError("No task names or titles provided.")
new_tasks = []
for task in tasks:
if task not in original_tasks:
raise ValueError(f"Task {task} not found in the original workflow.")
new_tasks.append(deepcopy(original_tasks[task]))
# create new workflow configuration
new_workflow_config = {
"goal": original_workflow_config["goal"],
"tasks": new_tasks
}
# create new workflow graph
new_graph = WorkFlowGraph.from_dict(new_workflow_config)
return new_graph
def parse_workflow_python_repr(self, repr: str) -> WorkFlowGraph:
"""
Parse the workflow from the python representation. The input format is:
steps = [
{"name": task_name, "args": [input1, input2, ...],"outputs": [output1, output2, ...]},
{"name": another_task_name, "args": [input1, input2, ...],"outputs": [output1, output2, ...]},
...
]
"""
# try:
# # extract ```python ```
# code_block = regex.search(r'```python\s*(.*?)\s*```', repr, regex.DOTALL)
# if not code_block:
# raise ValueError("No Python code block found in the representation")
# code_block = code_block.group(1).strip()
# # relevant_lines = []
# # for line in code_block.splitlines():
# # line = line.strip()
# # if not line or line.startswith("#") or line.startswith("```"):
# # continue
# # if all(key in line for key in ["name", "args", "outputs"]):
# # relevant_lines.append(line)
# # steps_str = "[\n" + "\n".join(relevant_lines) + "\n]"
# # steps = eval(steps_str)
# steps = eval(code_block.replace("steps = ", "").strip())
# new_graph = self.create_workflow_graph_from_steps(steps=steps)
# return new_graph
# except Exception as e:
# logger.warning(f"Failed to parse workflow string: {e}. Return the original workflow.")
# extract ```python ```
code_block = regex.search(r'```python\s*(.*?)\s*```', repr, regex.DOTALL)
if not code_block:
raise ValueError("No Python code block found in the representation")
code_block = code_block.group(1).strip()
# relevant_lines = []
# for line in code_block.splitlines():
# line = line.strip()
# if not line or line.startswith("#") or line.startswith("```"):
# continue
# if all(key in line for key in ["name", "args", "outputs"]):
# relevant_lines.append(line)
# steps_str = "[\n" + "\n".join(relevant_lines) + "\n]"
# steps = eval(steps_str)
steps = eval(code_block.replace("steps = ", "").strip())
# print(steps)
new_graph = self.create_workflow_graph_from_steps(steps=steps)
return new_graph
def parse_workflow_yaml_repr(self, repr: str) -> WorkFlowGraph:
"""
Parse the workflow from the yaml representation. The input format is:
- name: task_name
args:
- input1
- input2
outputs:
- output1
"""
try:
# extract ```yaml ```
match = regex.search(r'```yaml\s*(.*?)\s*```', repr, regex.DOTALL)
if not match:
raise ValueError("No YAML code block found in the representation")
yaml_block = match.group(1).strip()
steps = yaml.safe_load(yaml_block)
# relevant_lines = []
# in_step = False
# for line in yaml_block.splitlines():
# stripped_line = line.strip()
# if stripped_line.startswith('- name:'):
# in_step = True
# relevant_lines.append(line)
# elif in_step and (
# stripped_line.startswith('args:') or
# stripped_line.startswith('outputs:') or
# stripped_line.startswith('- ')
# ):
# relevant_lines.append(line)
# elif not stripped_line:
# in_step = False
# yaml_step = "\n".join(relevant_lines)
# steps = yaml.safe_load(yaml_step)
new_graph = self.create_workflow_graph_from_steps(steps=steps)
return new_graph
except Exception as e:
logger.warning(f"Failed to parse workflow string: {e}. Return the original workflow.")
return self.graph
def parse_workflow_code_repr(self, repr: str) -> WorkFlowGraph:
"""
Parse the workflow from the code representation.
The input format is:
task_name(input1, input2, ...) -> output1, output2, ...
another_task_name(input1, input2, ...) -> output1, output2, ...
...
"""
try:
# extract ```code ```
match = regex.search(r'```code\s*(.*?)\s*```', repr, regex.DOTALL)
if not match:
raise ValueError("No code block found in the representation")
code_block = match.group(1).strip()
lines = [line.strip() for line in code_block.split("\n") if line.strip() and "->" in line]
steps = []
for line in lines:
# Remove any leading numbers and dots (e.g., "1. ")
line = regex.sub(r'^\d+\.\s*', '', line)
func_part, output_part = line.split('->')
func_part = func_part.strip()
name = func_part[:func_part.index('(')]
args_str = func_part[func_part.index('(') + 1:func_part.rindex(')')]
args = [arg.strip() for arg in args_str.split(',') if arg.strip()]
outputs = [out.strip() for out in output_part.split(',') if out.strip()]
step = {"name": name, "args": args, "outputs": outputs}
steps.append(step)
if not steps:
raise ValueError("No steps found in the workflow.")
new_graph = self.create_workflow_graph_from_steps(steps=steps)
return new_graph
except Exception as e:
logger.warning(f"Failed to parse workflow string: {e}. Return the original workflow.")
return self.graph
def parse_workflow_bpmn_repr(self, repr: str) -> WorkFlowGraph:
"""
Parse the workflow from the BPMN XML representation.
The input format is BPMN XML with:
- task elements defining the tasks
- sequenceFlow elements defining the order of tasks
Will extract ordered task names from the sequence flows and create a workflow.
"""
try:
# extract ```bpmn ```
match = regex.search(r'```bpmn\s*(.*?)\s*```', repr, regex.DOTALL)
if not match:
raise ValueError("No BPMN code block found in the representation")
bpmn_block = match.group(1).strip()
# Parse XML string
root = ET.fromstring(bpmn_block)
# Define namespace for BPMN XML
ns = {'bpmn': 'http://www.omg.org/spec/BPMN/20100524/MODEL'}
# Get process element
process = root.find('bpmn:process', ns) or root.find('process')
if process is None:
raise ValueError("No process element found in BPMN XML")
# Create a dictionary of all tasks
tasks = {}
# for task in process.findall('.//task', ns) or process.findall('.//task'):
for task in process.findall("bpmn:task", ns):
tasks[task.get('id')] = task.get('name')
# Get sequence flows and order them
flows = {}
ordered_tasks = []
current_ref = 'start'
# Create dictionary of source -> target
# for flow in process.findall('.//sequenceFlow', ns) or process.findall('.//sequenceFlow'):
for flow in process.findall("bpmn:sequenceFlow", ns):
flows[flow.get('sourceRef')] = flow.get('targetRef')
# Follow the sequence flows to get ordered tasks
while current_ref in flows:
next_ref = flows[current_ref]
if next_ref in tasks: # Only add if it's a task (not end event)
ordered_tasks.append(tasks[next_ref])
current_ref = next_ref
# Create new workflow graph using the ordered task names
new_graph = self.create_workflow_graph_from_task_names(task_titles=ordered_tasks)
return new_graph
except Exception as e:
logger.warning(f"Failed to parse BPMN workflow string: {e}. Return the original workflow.")
return self.graph
def parse_workflow_core_repr(self, repr: str) -> WorkFlowGraph:
"""
Parse the workflow from the Core representation.
The input format is:
Step 1::: Process ::: Task Name:::next::Step 2
Step 2::: Process ::: Another Task:::next::Step 3
...
Step N::: Terminal ::: End of Workflow:::
Will extract task names from Process steps and create a workflow.
"""
try:
# extract ```core ```
match = regex.search(r'```core\s*(.*?)\s*```', repr, regex.DOTALL)
if not match:
raise ValueError("No core code block found in the representation")
core_block = match.group(1).strip()
# Split into lines and remove empty lines
lines = [line.strip() for line in core_block.split('\n') if line.strip()]
# Initialize flows and tasks dictionaries
flows = {} # step -> next_step
tasks = {} # step -> task_title
# First pass: build flows and tasks mappings
for line in lines:
parts = line.split(':::')
current_step = parts[0].strip()
step_type = parts[1].strip()
if step_type == 'Process':
# Extract task title and next step
task_title = parts[2].strip()
tasks[current_step] = task_title
if len(parts) > 3 and "next" in parts[3]:
next_step = parts[3].split("::")[-1].strip()
flows[current_step] = next_step
elif step_type == 'Terminal':
flows[current_step] = None
# Second pass: follow flows to build ordered task list
ordered_tasks = []
current_step = 'Step 1'
while current_step in flows:
if current_step in tasks: # Only add if it's a Process step
ordered_tasks.append(tasks[current_step])
current_step = flows[current_step]
# Create new workflow graph using the ordered task titles
new_graph = self.create_workflow_graph_from_task_names(task_titles=ordered_tasks)
return new_graph
except Exception as e:
logger.warning(f"Failed to parse Core workflow string: {e}. Return the original workflow.")
return self.graph
class SimplePromptBreeder:
def __init__(self, llm: BaseLLM, evaluator: None, **kwargs):
self.llm = llm
self.evaluator = evaluator
self.history_log = []
self.kwargs = kwargs
def generate_mutation_prompt(self, task_description: str, **kwargs) -> str:
"""
Generate the mutation prompt for optimization.
"""
thinking_style = random.choice(thinking_styles)
# hyper_mutation_prompt = thinking_style + "\n\nProblem Description: " + task_description + ".\n" + "Output: "
hyper_mutation_prompt = "Please generate a improved prompts based on the following information. " + "\n\nProblem Description: " + task_description + ".\n" + "Output: "
# print(">>>>>>>>>> Hyper mutation prompt: <<<<<<<<<<<\n", hyper_mutation_prompt)
try:
mutation_prompt = self.llm.generate(
prompt=hyper_mutation_prompt,
system_message="You are a helpful assistant. Do not generate harmful content. ",
).content
except:
mutation_prompt = self.llm.generate(
prompt=hyper_mutation_prompt,
system_message="You are a helpful assistant. Do not generate harmful content. ",
).content
return mutation_prompt
def get_mutation_prompt(self, task_description: str, order: Literal["zero-order", "first-order"], **kwargs) -> str:
"""
Get the mutation prompt for optimization.
"""
if order == "zero-order":
mutation_prompt = self.generate_mutation_prompt(task_description=task_description)
elif order == "first-order":
mutation_prompt = random.choice(mutation_prompts)
else:
raise ValueError(f"Invalid order: {order}. The order should be either 'zero-order' or 'first-order'.")
return mutation_prompt
def generate_prompt(self, task_description: str, prompt: str, order: Literal["zero-order", "first-order"], **kwargs) -> str:
"""
Generate the prompt for optimization.
Args:
task_description (str): The description of the task, normally the goal of the workflow.
prompt (str): The prompt to optimize.
order (Literal["zero-order", "first-order"]): The order of the mutation prompt.
Returns:
str: The optimized prompt.
"""
mutation_prompt = self.get_mutation_prompt(task_description=task_description, order=order)
prompt = mutation_prompt + "\n\nINSTRUCTION:\n\n" + prompt
# print(">>>>>>>>>> Prompt: <<<<<<<<<<<\n", prompt)
new_prompt = self.llm.generate(
prompt=prompt,
system_message="You are a helpful assistant",
).content
return new_prompt
def critic_and_update_prompt(self, task_description: str, prompt: str, order: Literal["zero-order", "first-order"], scorer=None, calltime=1, **kwargs) -> str:
"""
Generate the prompt for optimization.
Args:
task_description (str): The description of the task, normally the goal of the workflow.
prompt (str): The prompt to optimize.
order (Literal["zero-order", "first-order"]): The order of the mutation prompt.
Returns:
str: The optimized prompt.
"""
# print(self.evaluator._evaluation_records)
problem_list = ''''''
for item in self.evaluator._evaluation_records.keys():
problem_s = "Questions: " + self.evaluator._evaluation_records[item]['trajectory'][0].content['question']+'\n'
prediction_s = "Predictions: " + self.evaluator._evaluation_records[item]['prediction']+'\n'
solution_s = "Solutions: " + self.evaluator._evaluation_records[item]['label']['canonical_solution']+'\n'
# if self.evaluator.dataname != "humanevalplus":
# if 'test' in list(self.evaluator._evaluation_records[item]['label'].keys()):
# test_s = "Unit tests: " + self.evaluator._evaluation_records[item]['label']['test'][0:1000]
# elif 'tests' in list(self.evaluator._evaluation_records[item]['label'].keys()):
# test_s = "Unit tests: " + self.evaluator._evaluation_records[item]['label']['tests'][0:1000]
# else:
# test_s = "Example solution: " + self.evaluator._evaluation_records[item]['label']["canonical_solution"]
if 'test' in list(self.evaluator._evaluation_records[item]['label'].keys()):
test_s = "Unit tests: " + self.evaluator._evaluation_records[item]['label']['test'][0:10000]+'\n'
elif 'tests' in list(self.evaluator._evaluation_records[item]['label'].keys()):
test_s = "Unit tests: " + self.evaluator._evaluation_records[item]['label']['tests'][0:10000]+'\n'
metric_s = "Score: " + str(self.evaluator._evaluation_records[item]['metrics']['pass@1']) + "\n"
if self.evaluator._evaluation_records[item]['metrics']['pass@1'] ==0:
if "An error occurred:" == self.evaluator.error_list[item]:
metric_s += "Error reason: Computation result is incorrect."
else:
erroreason = self.evaluator.error_list[item].replace("An error occurred:", "")
metric_s += f"Error reason: {erroreason}"
else:
metric_s += "The solution is correct."
joint_s = problem_s + prediction_s + solution_s +test_s + metric_s
problem_list += joint_s
# print(problem_list)
if calltime==1:
critic_prompt = "You will evaluate a coding solution as a workflow for code generation. You should analyze failures using execution history as well as workflow trajectory. Do not attempt to solve it yourself, do not give a solution, only identify errors and problems in the structure of this AI agent workflow and incorrect information in prompts. Only return the problems in one paragraph. Be super concise. The workflow is:"
question_prompt = "The questions, solutions, unit tests, and evaluated metrics based on this workflow is: " + problem_list
# question_prompt = ""
critic_out = self.llm.generate(
prompt=prompt+question_prompt,
system_message=critic_prompt,
).content
print(critic_out)
else:
critic_prompt_outlist = '''Please summarize the following problems in one paragraph. Be super concise.\n'''
for item in range(calltime):
critic_prompt = "You will evaluate a coding solution as a workflow for code generation. You should analyze failures using execution history of tested problems as well as workflow trajectory. Do not attempt to solve it yourself, do not give a solution, only identify errors and problems in the structure of this agent workflow. Be super concise. The workflow is:"
question_prompt = "The questions, solutions, and evaluated metrics based on this workflow is: " + problem_list
critic_out = self.llm.generate(
prompt=prompt+question_prompt,
system_message=critic_prompt,
).content
critic_prompt_outlist = critic_prompt_outlist + f"Detected Issue {item+1}:" + critic_out +"\n"
critic_out = self.llm.generate(
prompt=critic_prompt_outlist,
system_message="You are an expert in summarizing information and data.",
).content
print(critic_out)
# mutation_prompt = self.get_mutation_prompt(task_description=task_description, order=order)
if scorer == None:
prompt = "The detected issue is:" + critic_out+"You should always improve workflow by correcting the issue without changing the inputs and outputs of nodes in the workflow. You can remove redundant agents. You should keep the graph executable.\n" + "\n\nThe original workflow is:\n\n" + prompt
else:
prompt = "The detected issue is:" + critic_out + f"You also need to ensure the new workflow can increase the model performance score: {scorer}." + "\n\nThe original workflow is:\n\n" + prompt + "You should always improve workflow by correcting the issue without changing the inputs and outputs of nodes in the workflow. You can remove redundant agents. You should keep the graph executable.\nYour OUTPUT:"
# print(">>>>>>>>>> Prompt: <<<<<<<<<<<\n", prompt)
new_prompt = self.llm.generate(
prompt=prompt,
system_message="You are a Graph Optimization Agent. Your goal is to iteratively improve graph performance through systematic optimization. You need to modify the workflow and improve the structure by solving the issue. Only change the order of agents or recall the KNOWN agents in the workflow. DO NOT change the names and inputs of agents. You should keep the graph executable.",
).content
print(new_prompt)
return new_prompt
def update_dev_set(dataset):
import numpy as np
permutation = np.random.permutation(len(dataset._dev_data_full))
# radnomly select 50 samples for dev and 100 samples for test (be consistent with other models)
dev_data_task_ids = [dataset._dev_data_full[idx]["task_id"] for idx in permutation[:len(dataset._dev_data)]]
full_data = dataset._dev_data_full
dev_data = [example for example in full_data if example["task_id"] in dev_data_task_ids]
return dev_data
class STRUCTUREOptimizer(Optimizer):
graph: Union[WorkFlowGraph, ActionGraph] = Field(description="The workflow to optimize.")
repr_scheme: str = Field(default="python", description="The scheme to represent the workflow.")
optimize_mode: Literal["all", "structure", "prompt"] = Field(default="all", description="The mode to optimize the workflow.")
order: Literal["zero-order", "first-order"] = Field(default="zero-order", description="Whether to use zero-order (using hyper-mutation prompt) or first-order (using mutation prompt) optimization.")
calltime: int = Field(default=1, description="Number of textgrad used for evaluation.")
num_workers: int = Field(default=1, description="Number of textgrad used for evaluation.")
def init_module(self, **kwargs):
self._snapshot: List[dict] = []
self._prompt_breeder = SimplePromptBreeder(llm=self.llm, evaluator = self.evaluator) # generate prompt for optimization
self._convergence_check_counter = 0
self._best_score = float("-inf")
self._prompt_dict = {}
if isinstance(self.graph, ActionGraph):
if self.optimize_mode != "prompt":
raise ValueError(
f"{type(self).__name__} only support prompt optimization when `graph` is an `ActionGraph`. "
f"The `optimize_mode` should be set to `prompt`, but got {self.optimize_mode}."
)
def optimize(self, dataset: Benchmark, **kwargs):
if isinstance(self.graph, WorkFlowGraph):
logger.info(f"Optimizing the {type(self.graph).__name__} workflow with {self.repr_scheme} representation.")
elif isinstance(self.graph, ActionGraph):
logger.info(f"Optimizing the {type(self.graph).__name__} graph ...")
graph: Union[WorkFlowGraph, ActionGraph] = self.graph
logger.info("Run initial evaluation on the original workflow ...")
with suppress_logger_info():
metrics = self.evaluate(dataset, eval_mode="dev", graph=graph)
self._prompt_breeder = SimplePromptBreeder(llm=self.llm, evaluator = self.evaluator) # generate prompt for optimization
logger.info(f"Initial metrics: {metrics}")
self.log_snapshot(graph=graph, metrics=metrics)
set_scorer = None
if kwargs["provided_scorer"] == True:
set_scorer = metrics
for i in range(self.max_steps):
# try:
# # perform a step of optimization
# graph = self.step(set_scorer=set_scorer)
# # print(graph)
# # evaluate the workflow
# if (i + 1) % self.eval_every_n_steps == 0:
# logger.info(f"Evaluate the workflow at step {i+1} ...")
# with suppress_logger_info():
# metrics = self.evaluate(dataset, eval_mode="dev")
# logger.info(f"Step {i+1} metrics: {metrics}")
# self.log_snapshot(graph=graph, metrics=metrics)
# except Exception as e:
# logger.warning(f"Error in step {i}: {e}. Skip this step.")
# continue
# if self.convergence_check():
# logger.info(f"Convergence check passed at step {i+1}. Stop the optimization.")
# break
# perform a step of optimization
graph = self.step(set_scorer=set_scorer, step=i)
# print(graph)
# evaluate the workflow
if (i + 1) % self.eval_every_n_steps == 0:
logger.info(f"Evaluate the workflow at step {i+1} ...")
with suppress_logger_info():
metrics = self.evaluate(dataset, eval_mode="dev")
logger.info(f"Step {i+1} metrics: {metrics}")
self.log_snapshot(graph=graph, metrics=metrics)
print("randomly update dataset")
self.dataset._dev_data = update_dev_set(self.dataset)
if i == self.max_steps - 1:
logger.info(f"Reach the maximum number of steps {self.max_steps}. Stop the optimization.")
# set self.graph to the best graph
logger.info("Restore the best graph from the snapshot ...")
self.restore_best_graph()
def step(self, **kwargs) -> Union[WorkFlowGraph, ActionGraph]:
"""
Take a step of optimization and return the optimized graph.
"""
graph = self._select_graph_with_highest_score(return_metrics=False)
if isinstance(graph, WorkFlowGraph):
new_graph = self._workflow_graph_step(graph, kwargs["set_scorer"], kwargs["step"])
elif isinstance(graph, ActionGraph):
new_graph = self._action_graph_step(graph, kwargs["set_scorer"], kwargs["step"])
else:
raise ValueError(f"Invalid graph type: {type(graph)}. The graph should be an instance of `WorkFlowGraph` or `ActionGraph`.")
return new_graph
def evaluate(
self,
dataset: Benchmark,
eval_mode: str = "test",
graph: Optional[Union[WorkFlowGraph, ActionGraph]] = None,
indices: Optional[List[int]] = None,
sample_k: Optional[int] = None,
**kwargs
) -> dict:
"""
Evaluate the workflow. If `graph` is provided, use the provided graph for evaluation. Otherwise, use the graph in the optimizer.
Args:
dataset (Benchmark): The dataset to evaluate the workflow on.
eval_mode (str): The evaluation mode. Choices: ["test", "dev", "train"].
graph (Union[WorkFlowGraph, ActionGraph], optional): The graph to evaluate. If not provided, use the graph in the optimizer.
indices (List[int], optional): The indices of the data to evaluate the workflow on.
sample_k (int, optional): The number of data to evaluate the workflow on. If provided, a random sample of size `sample_k` will be used.
Returns:
dict: The metrics of the workflow evaluation.
"""
self.dataset = dataset
graph = graph if graph is not None else self.graph
agent_manager = self.evaluator.agent_manager
agent_manager.add_agents_from_workflow(graph, llm_config=self.llm.config)
# print(agent_manager)
# obtain Evaluator
self.evaluator = Evaluator(llm=self.llm, agent_manager=agent_manager, collate_func=self.collate_func, num_workers=self.num_workers, verbose=True)
self.evaluator.dataname = self.dataset.dataname
metrics_list = []
for i in range(self.eval_rounds):
eval_info = [
f"[{type(graph).__name__}]",
f"Evaluation round {i+1}/{self.eval_rounds}",
f"Mode: {eval_mode}"
]
if indices is not None:
eval_info.append(f"Indices: {len(indices)} samples")
if sample_k is not None:
eval_info.append(f"Sample size: {sample_k}")
logger.info(" | ".join(eval_info))
# if self.dataset.dataname == 'scicode':
# metrics = await self.evaluator.async_evaluate(
# graph=graph,
# benchmark=dataset,
# eval_mode=eval_mode,
# indices=indices,
# sample_k=sample_k,
# **kwargs
# )
# else:
# metrics = self.evaluator.evaluate(
# graph=graph,
# benchmark=dataset,
# eval_mode=eval_mode,
# indices=indices,
# sample_k=sample_k,
# **kwargs
# )
metrics = self.evaluator.evaluate(
graph=graph,
benchmark=dataset,
eval_mode=eval_mode,
indices=indices,
sample_k=sample_k,
**kwargs
)
metrics_list.append(metrics)
avg_metrics = self.evaluator._calculate_average_score(metrics_list)
self.dataset = dataset
self.evaluator.error_list = deepcopy(self.dataset.error_list)
self.dataset.error_list = {}
return avg_metrics
def log_snapshot(self, graph: Union[WorkFlowGraph, ActionGraph], metrics: dict):
if isinstance(graph, WorkFlowGraph):
graph_info = graph.get_graph_info()
elif isinstance(graph, ActionGraph):
# TODO check if the action graph is valid
graph_info = graph
else:
raise ValueError(f"Invalid graph type: {type(graph)}. The graph should be an instance of `SequentialWorkFlowGraph` or `ActionGraph`.")
self._snapshot.append(
{
"index": len(self._snapshot),
"graph": deepcopy(graph_info),
"metrics": metrics,
}
)
def _select_graph_with_highest_score(self, return_metrics: bool = False) -> Union[SequentialWorkFlowGraph, ActionGraph]:
if len(self._snapshot) == 0:
return self.graph
snapshot_scores = [np.mean(list(snapshot["metrics"].values())) for snapshot in self._snapshot]
best_index = np.argmax(snapshot_scores)
if isinstance(self.graph, WorkFlowGraph):
graph = WorkFlowGraph.from_dict(self._snapshot[best_index]["graph"])
elif isinstance(self.graph, ActionGraph):
# TODO check if the action graph is valid
graph = self._snapshot[best_index]["graph"]
else:
raise ValueError(f"Invalid graph type: {type(self.graph)}. The graph should be an instance of `SequentialWorkFlowGraph` or `ActionGraph`.")
if return_metrics:
return graph, self._snapshot[best_index]["metrics"]
return graph
def restore_best_graph(self):
best_graph, best_metrics = self._select_graph_with_highest_score(return_metrics=True)
logger.info(f"Restore the best graph from snapshot with metrics {best_metrics} ...")
self.graph = best_graph
def _wfg_structure_optimization_step(self, graph: WorkFlowGraph, scorer, step) -> WorkFlowGraph:
"""
optinize the structure of the workflow graph and return the optimized graph.
Args:
graph (SequentialWorkFlowGraph): The workflow graph to optimize.
Returns:
SequentialWorkFlowGraph: The optimized workflow graph.
"""
graph_scheme = STRUCTUREWorkFlowScheme(graph=graph)
graph_repr = graph_scheme.convert_to_scheme(scheme=self.repr_scheme)
if self.repr_scheme == "python":
output_format = "\n\nALWAYS wrap the refined workflow in ```python\n``` format and DON'T include any other text within the code block!"
elif self.repr_scheme == "yaml":
output_format = "\n\nALWAYS wrap the refined workflow in ```yaml\n``` format and DON'T include any other text within the code block!"
elif self.repr_scheme == "code":
output_format = "\n\nALWAYS wrap the refined workflow in ```code\n``` format and DON'T include any other text within the code block!"
elif self.repr_scheme == "core":
output_format = "\n\nALWAYS wrap the refined workflow in ```core\n``` format and DON'T include any other text within the code block!"
elif self.repr_scheme == "bpmn":
output_format = "\n\nALWAYS wrap the refined workflow in ```bpmn\n``` format and DON'T include any other text within the code block!"
else:
raise ValueError(f"Invalid representation scheme: {self.repr_scheme}. The scheme should be one of {VALID_SCHEMES}.")
prompt = "Task Description: " + graph.goal + "\n\nWorkflow Steps: " + graph_repr + output_format
# if step%5==0:
# # print(prompt)
# new_graph_repr = self._prompt_breeder.critic_and_update_prompt(task_description=graph.goal, prompt=prompt, order=self.order, scorer=scorer, calltime=self.calltime)
# # print(new_graph_repr)
# new_graph = graph_scheme.parse_from_scheme(scheme=self.repr_scheme, repr=new_graph_repr)
# print(new_graph)
# else:
# new_graph = graph
new_graph_repr = self._prompt_breeder.critic_and_update_prompt(task_description=graph.goal, prompt=prompt, order=self.order, scorer=scorer, calltime=self.calltime)
new_graph = graph_scheme.parse_from_scheme(scheme=self.repr_scheme, repr=new_graph_repr)
return new_graph
def _wfg_prompt_optimization_step(self, graph: WorkFlowGraph, scorer=None) -> WorkFlowGraph:
task_description = graph.goal
graph_scheme = STRUCTUREWorkFlowScheme(graph=graph)
graph_repr = graph_scheme.convert_to_scheme(scheme=self.repr_scheme)
graph_info = graph.get_graph_info()
problem_list = ''''''
for item in self.evaluator._evaluation_records.keys():
problem_s = "Questions: " + self.evaluator._evaluation_records[item]['trajectory'][0].content['question']+'\n'
prediction_s = "Predictions: " + self.evaluator._evaluation_records[item]['prediction']+'\n'
solution_s = "Solutions: " + self.evaluator._evaluation_records[item]['label']['canonical_solution']+'\n'
# if self.evaluator.dataname != "humanevalplus":
# if 'test' in list(self.evaluator._evaluation_records[item]['label'].keys()):
# test_s = "Unit tests: " + self.evaluator._evaluation_records[item]['label']['test'][0:1000]
# elif 'tests' in list(self.evaluator._evaluation_records[item]['label'].keys()):
# test_s = "Unit tests: " + self.evaluator._evaluation_records[item]['label']['tests'][0:1000]
# else:
# test_s = "Example solution: " + self.evaluator._evaluation_records[item]['label']["canonical_solution"]
if 'test' in list(self.evaluator._evaluation_records[item]['label'].keys()):
test_s = "Unit tests: " + self.evaluator._evaluation_records[item]['label']['test'][0:10000]+'\n'
elif 'tests' in list(self.evaluator._evaluation_records[item]['label'].keys()):
test_s = "Unit tests: " + self.evaluator._evaluation_records[item]['label']['tests'][0:10000]+'\n'
metric_s = "Score: " + str(self.evaluator._evaluation_records[item]['metrics']['pass@1']) + "\n"
if self.evaluator._evaluation_records[item]['metrics']['pass@1'] ==0:
if "An error occurred: " == self.evaluator.error_list[item]:
metric_s += "Error reason: Computation result is incorrect."
else:
erroreason = self.evaluator.error_list[item].replace("An error occurred: ", "")
metric_s += f"Error reason: {erroreason}"
else:
metric_s += "The solution is correct."
joint_s = problem_s + prediction_s + solution_s +test_s + metric_s
problem_list += joint_s
print(problem_list)
for i, task in enumerate(graph_info["tasks"]):
if task['name'] not in list(self._prompt_dict.keys()):
self._prompt_dict[task['name']] = []
original_prompt = task["prompt"]
optimization_prompt = "Task Description: " + task_description + "\n\nWorkflow Steps:\n" + graph_repr + f"\n\nINSTRUCTION for the {i+1}-th task:\n\"\"\"\n" + original_prompt + "\n\"\"\""
error_prompt = optimization_prompt + f"The name of this agent is {task['name']}" + "The questions, solutions, and evaluated metrics based on this workflow is: " + problem_list + "You should detect the issues in the original prompt by considering these questions, predictions, tests, solutions, and score!"
critic_issues = self.llm.generate(error_prompt).content
optimization_prompt += f"The new prompts should consider fixing the issues by adjusting the prompt content: {critic_issues}. You should not change the original role and task of the assigned agent."
if self._prompt_dict[task['name']] != []:
prev_prompt = "\n".join(self._prompt_dict[task['name']])
optimization_prompt += f"The previous prompts are: {prev_prompt}\nYou should also fix the problems in these prompts."
optimization_prompt += f"\n\nGiven the above information, please refine the instruction for the {i+1}-th task.\n"
optimization_prompt += r"Note that you must always use bracket (e.g. `{input_name}`, `{code}`, `{question}`) to wrap the inputs of the tasks in your refined instruction. You must ensure the prompts contain all inputs. You cannot change the name of functions.\n"
###new one
optimization_prompt += "Your prompt should not change the function name and entry_point in the question. Only output the refined instruction and DON'T include any other text!"
new_prompt = self._prompt_breeder.generate_prompt(task_description=task_description, prompt=optimization_prompt, order=self.order)
graph_info["tasks"][i]["prompt"] = new_prompt
# print("task name", task['name'])
# print("detected issue", critic_issues)
# print("renewed prompt", new_prompt)
self._prompt_dict[task['name']].append(new_prompt)
new_graph = SequentialWorkFlowGraph.from_dict(graph_info)
return new_graph
def _workflow_graph_step(self, graph: WorkFlowGraph, scorer, step) -> WorkFlowGraph:
if self.optimize_mode == "structure" or self.optimize_mode == "all":
# optimize the structure of the graph
graph = self._wfg_structure_optimization_step(graph, scorer=scorer, step=step)
if self.optimize_mode == "prompt" or self.optimize_mode == "all":
# optimize the prompt of the graph
graph = self._wfg_prompt_optimization_step(graph, scorer=scorer)
return graph
def _action_graph_prompt_optimization_step(self, graph: ActionGraph) -> ActionGraph:
task_description = graph.description
graph_info = graph.get_graph_info()
graph_steps = inspect.getsource(getattr(graph, "execute"))
for operator_name, operator_info in graph_info["operators"].items():
original_prompt = operator_info["prompt"]
optimization_prompt = "Task Description: " + task_description + "\n\nWorkflow Steps:\n" + graph_steps + f"\n\nINSTRUCTION for the `{operator_name}` operator:\n\"\"\"\n" + original_prompt + "\n\"\"\""
optimization_prompt += "\n\nThe interface of the operator is as follows:\n" + operator_info["interface"]
optimization_prompt += f"\n\nGiven the above information, please refine the instruction for the `{operator_name}` operator.\n"
optimization_prompt += r"Note that you should always use bracket (e.g. `{input_name}`) to wrap the inputs of the operator in your refined instruction, "
optimization_prompt += "and the input names should be EXACTLY the same as those defined in the interface. DON'T use bracket to wrap output names."
optimization_prompt += "\nOnly output the refined instruction and DON'T include any other text!"
new_prompt = self._prompt_breeder.generate_prompt(task_description=task_description, prompt=optimization_prompt, order=self.order)
new_prompt = new_prompt.replace("\"", "").strip()
graph_info["operators"][operator_name]["prompt"] = new_prompt
new_graph = ActionGraph.from_dict(graph_info)
return new_graph
def _action_graph_step(self, graph: ActionGraph) -> ActionGraph:
if self.optimize_mode == "prompt":
graph = self._action_graph_prompt_optimization_step(graph)
else:
raise ValueError(f"{type(self).__name__} only support prompt optimization when `self.graph` is an `ActionGraph` instance. "
f"The `optimize_mode` should be set to `prompt`, but got {self.optimize_mode}.")
return graph
def convergence_check(self, **kwargs) -> bool:
if not self._snapshot:
logger.warning("No snapshots available for convergence check")
return False
# Get scores from snapshots
scores = [np.mean(list(snapshot["metrics"].values())) for snapshot in self._snapshot]
current_score = scores[-1]
if current_score > self._best_score:
self._best_score = current_score
self._convergence_check_counter = 0
else:
self._convergence_check_counter += 1
if self._convergence_check_counter >= self.convergence_threshold:
logger.info(f"Early stopping triggered: No improvement for {self.convergence_threshold} iterations")
# logger.info(f"Score history: {scores[-self.convergence_threshold:]}")
return True
return False
def save(self, path: str, ignore: List[str] = []):
"""
Save the (optimized) workflow graph to a file.
Args:
path (str): The path to save the workflow graph.
ignore (List[str]): The keys to ignore when saving the workflow graph.
"""
self.graph.save_module(path, ignore=ignore)
|