End of training
Browse files
README.md
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: mit
|
| 4 |
+
base_model: microsoft/deberta-v3-base
|
| 5 |
+
tags:
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
metrics:
|
| 8 |
+
- accuracy
|
| 9 |
+
- precision
|
| 10 |
+
- recall
|
| 11 |
+
- f1
|
| 12 |
+
model-index:
|
| 13 |
+
- name: mdeberta-domain_EN_fold1
|
| 14 |
+
results: []
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 18 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 19 |
+
|
| 20 |
+
# mdeberta-domain_EN_fold1
|
| 21 |
+
|
| 22 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
|
| 23 |
+
It achieves the following results on the evaluation set:
|
| 24 |
+
- Loss: 0.5362
|
| 25 |
+
- Accuracy: 0.8288
|
| 26 |
+
- Precision: 0.7887
|
| 27 |
+
- Recall: 0.7656
|
| 28 |
+
- F1: 0.7752
|
| 29 |
+
|
| 30 |
+
## Model description
|
| 31 |
+
|
| 32 |
+
More information needed
|
| 33 |
+
|
| 34 |
+
## Intended uses & limitations
|
| 35 |
+
|
| 36 |
+
More information needed
|
| 37 |
+
|
| 38 |
+
## Training and evaluation data
|
| 39 |
+
|
| 40 |
+
More information needed
|
| 41 |
+
|
| 42 |
+
## Training procedure
|
| 43 |
+
|
| 44 |
+
### Training hyperparameters
|
| 45 |
+
|
| 46 |
+
The following hyperparameters were used during training:
|
| 47 |
+
- learning_rate: 2e-05
|
| 48 |
+
- train_batch_size: 32
|
| 49 |
+
- eval_batch_size: 32
|
| 50 |
+
- seed: 42
|
| 51 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 52 |
+
- lr_scheduler_type: linear
|
| 53 |
+
- num_epochs: 10
|
| 54 |
+
|
| 55 |
+
### Training results
|
| 56 |
+
|
| 57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
| 58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
| 59 |
+
| 1.0312 | 1.0 | 19 | 0.8773 | 0.5890 | 0.8630 | 0.3333 | 0.2471 |
|
| 60 |
+
| 0.7596 | 2.0 | 38 | 0.7653 | 0.5890 | 0.8630 | 0.3333 | 0.2471 |
|
| 61 |
+
| 0.7097 | 3.0 | 57 | 0.7352 | 0.5890 | 0.8630 | 0.3333 | 0.2471 |
|
| 62 |
+
| 0.6673 | 4.0 | 76 | 0.7382 | 0.7466 | 0.6626 | 0.5889 | 0.5519 |
|
| 63 |
+
| 0.6028 | 5.0 | 95 | 0.7362 | 0.7740 | 0.6837 | 0.6406 | 0.5884 |
|
| 64 |
+
| 0.4939 | 6.0 | 114 | 0.6345 | 0.7466 | 0.6145 | 0.6034 | 0.5967 |
|
| 65 |
+
| 0.3969 | 7.0 | 133 | 0.5446 | 0.8014 | 0.7220 | 0.7140 | 0.6938 |
|
| 66 |
+
| 0.3291 | 8.0 | 152 | 0.5437 | 0.8082 | 0.7452 | 0.7468 | 0.7410 |
|
| 67 |
+
| 0.2975 | 9.0 | 171 | 0.5534 | 0.7945 | 0.7437 | 0.7101 | 0.7235 |
|
| 68 |
+
| 0.2573 | 10.0 | 190 | 0.5362 | 0.8288 | 0.7887 | 0.7656 | 0.7752 |
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
### Framework versions
|
| 72 |
+
|
| 73 |
+
- Transformers 4.46.0
|
| 74 |
+
- Pytorch 2.3.1
|
| 75 |
+
- Datasets 2.21.0
|
| 76 |
+
- Tokenizers 0.20.1
|
runs/Oct28_16-16-20_icuff-Z790-UD/events.out.tfevents.1730142981.icuff-Z790-UD.1133969.0
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:353cacf7e8cadd5a75c5deb02d297a7bf4973d34562a2edbcb1489987b57ec39
|
| 3 |
+
size 14339
|