Add dynamic label management with Hub persistence
Browse files- Implement upsert_labels and reload_labels admin operations
- Add versioned snapshot persistence to HF dataset repo
- Maintain backward compatibility for classification API
- Add fingerprinting for model compatibility checks
- Enable incremental embedding updates without re-computation
- handler.py +216 -45
- requirements.txt +3 -1
handler.py
CHANGED
|
@@ -1,75 +1,246 @@
|
|
| 1 |
-
import contextlib, io, base64, torch, json
|
| 2 |
from PIL import Image
|
| 3 |
import open_clip
|
|
|
|
|
|
|
| 4 |
from reparam import reparameterize_model
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
class EndpointHandler:
|
| 7 |
def __init__(self, path: str = ""):
|
| 8 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 9 |
|
| 10 |
-
# 1
|
| 11 |
model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 12 |
-
"MobileCLIP-B", pretrained=
|
| 13 |
)
|
| 14 |
model.eval()
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
self.model.to(self.device)
|
| 18 |
-
|
| 19 |
if self.device == "cuda":
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
def __call__(self, data):
|
| 42 |
-
# The payload only needs the image now
|
| 43 |
payload = data.get("inputs", data)
|
| 44 |
-
img_b64 = payload["image"]
|
| 45 |
|
| 46 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 48 |
img_tensor = self.preprocess(image).unsqueeze(0).to(self.device)
|
| 49 |
-
|
| 50 |
if self.device == "cuda":
|
| 51 |
img_tensor = img_tensor.to(torch.float16)
|
| 52 |
-
|
| 53 |
-
# ---------------- forward pass (very fast) -----------------
|
| 54 |
with torch.no_grad():
|
| 55 |
-
# 1. Encode only the image
|
| 56 |
img_feat = self.model.encode_image(img_tensor)
|
| 57 |
img_feat /= img_feat.norm(dim=-1, keepdim=True)
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
# 3. Combine the results with your stored class IDs and names
|
| 63 |
-
# and convert the tensor of probabilities to a list of floats
|
| 64 |
-
results = zip(self.class_ids, self.class_names, probs.cpu().tolist())
|
| 65 |
-
|
| 66 |
-
# 4. Create a sorted list of dictionaries for a clean JSON response
|
| 67 |
return sorted(
|
| 68 |
[{"id": i, "label": name, "score": float(p)} for i, name, p in results],
|
| 69 |
key=lambda x: x["score"],
|
| 70 |
-
reverse=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
)
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
|
| 75 |
# """
|
|
@@ -213,4 +384,4 @@ class EndpointHandler:
|
|
| 213 |
# )
|
| 214 |
|
| 215 |
|
| 216 |
-
|
|
|
|
| 1 |
+
import contextlib, io, base64, torch, json, os, threading
|
| 2 |
from PIL import Image
|
| 3 |
import open_clip
|
| 4 |
+
from huggingface_hub import hf_hub_download, create_commit, CommitOperationAdd
|
| 5 |
+
from safetensors.torch import save_file, load_file
|
| 6 |
from reparam import reparameterize_model
|
| 7 |
|
| 8 |
+
ADMIN_TOKEN = os.getenv("ADMIN_TOKEN", "")
|
| 9 |
+
HF_LABEL_REPO = os.getenv("HF_LABEL_REPO", "") # e.g. "org/mobileclip-labels"
|
| 10 |
+
HF_WRITE_TOKEN = os.getenv("HF_WRITE_TOKEN", "")
|
| 11 |
+
HF_READ_TOKEN = os.getenv("HF_READ_TOKEN", HF_WRITE_TOKEN)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def _fingerprint(device: str, dtype: torch.dtype) -> dict:
|
| 15 |
+
return {
|
| 16 |
+
"model_id": "MobileCLIP-B",
|
| 17 |
+
"pretrained": "datacompdr",
|
| 18 |
+
"open_clip": getattr(open_clip, "__version__", "unknown"),
|
| 19 |
+
"torch": torch.__version__,
|
| 20 |
+
"cuda": torch.version.cuda if torch.cuda.is_available() else None,
|
| 21 |
+
"dtype_runtime": str(dtype),
|
| 22 |
+
"text_norm": "L2",
|
| 23 |
+
"logit_scale": 100.0,
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
|
| 27 |
class EndpointHandler:
|
| 28 |
def __init__(self, path: str = ""):
|
| 29 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 30 |
+
self.dtype = torch.float16 if self.device == "cuda" else torch.float32
|
| 31 |
|
| 32 |
+
# 1) Load model + transforms
|
| 33 |
model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 34 |
+
"MobileCLIP-B", pretrained="datacompdr"
|
| 35 |
)
|
| 36 |
model.eval()
|
| 37 |
+
model = reparameterize_model(model)
|
| 38 |
+
model.to(self.device)
|
|
|
|
|
|
|
| 39 |
if self.device == "cuda":
|
| 40 |
+
model = model.to(torch.float16)
|
| 41 |
+
self.model = model
|
| 42 |
+
self.tokenizer = open_clip.get_tokenizer("MobileCLIP-B")
|
| 43 |
+
self.fingerprint = _fingerprint(self.device, self.dtype)
|
| 44 |
+
self._lock = threading.Lock()
|
| 45 |
+
|
| 46 |
+
# 2) Try to load snapshot from Hub; else seed from items.json
|
| 47 |
+
loaded = False
|
| 48 |
+
if HF_LABEL_REPO:
|
| 49 |
+
with contextlib.suppress(Exception):
|
| 50 |
+
loaded = self._load_snapshot_from_hub_latest()
|
| 51 |
+
if not loaded:
|
| 52 |
+
with open(f"{path}/items.json", "r", encoding="utf-8") as f:
|
| 53 |
+
items = json.load(f)
|
| 54 |
+
prompts = [it["prompt"] for it in items]
|
| 55 |
+
self.class_ids = [int(it["id"]) for it in items]
|
| 56 |
+
self.class_names = [it["name"] for it in items]
|
| 57 |
+
with torch.no_grad():
|
| 58 |
+
toks = self.tokenizer(prompts).to(self.device)
|
| 59 |
+
feats = self.model.encode_text(toks)
|
| 60 |
+
feats = feats / feats.norm(dim=-1, keepdim=True)
|
| 61 |
+
self.text_features_cpu = feats.detach().cpu().to(torch.float32).contiguous()
|
| 62 |
+
self._to_device()
|
| 63 |
+
self.labels_version = 1
|
| 64 |
|
| 65 |
def __call__(self, data):
|
|
|
|
| 66 |
payload = data.get("inputs", data)
|
|
|
|
| 67 |
|
| 68 |
+
# Admin op: upsert_labels
|
| 69 |
+
op = payload.get("op")
|
| 70 |
+
if op == "upsert_labels":
|
| 71 |
+
if payload.get("token") != ADMIN_TOKEN:
|
| 72 |
+
return {"error": "unauthorized"}
|
| 73 |
+
items = payload.get("items", []) or []
|
| 74 |
+
added = self._upsert_items(items)
|
| 75 |
+
if added > 0:
|
| 76 |
+
new_ver = int(getattr(self, "labels_version", 1)) + 1
|
| 77 |
+
try:
|
| 78 |
+
self._persist_snapshot_to_hub(new_ver)
|
| 79 |
+
self.labels_version = new_ver
|
| 80 |
+
except Exception as e:
|
| 81 |
+
return {"status": "error", "added": added, "detail": str(e)}
|
| 82 |
+
return {"status": "ok", "added": added, "labels_version": getattr(self, "labels_version", 1)}
|
| 83 |
+
|
| 84 |
+
# Admin op: reload_labels
|
| 85 |
+
if op == "reload_labels":
|
| 86 |
+
if payload.get("token") != ADMIN_TOKEN:
|
| 87 |
+
return {"error": "unauthorized"}
|
| 88 |
+
try:
|
| 89 |
+
ver = int(payload.get("version"))
|
| 90 |
+
except Exception:
|
| 91 |
+
return {"error": "invalid_version"}
|
| 92 |
+
ok = self._load_snapshot_from_hub_version(ver)
|
| 93 |
+
return {"status": "ok" if ok else "nochange", "labels_version": getattr(self, "labels_version", 0)}
|
| 94 |
+
|
| 95 |
+
# Freshness guard (optional)
|
| 96 |
+
min_ver = payload.get("min_labels_version")
|
| 97 |
+
if isinstance(min_ver, int) and min_ver > getattr(self, "labels_version", 0):
|
| 98 |
+
with contextlib.suppress(Exception):
|
| 99 |
+
self._load_snapshot_from_hub_version(min_ver)
|
| 100 |
+
|
| 101 |
+
# Classification path (unchanged contract)
|
| 102 |
+
img_b64 = payload["image"]
|
| 103 |
image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 104 |
img_tensor = self.preprocess(image).unsqueeze(0).to(self.device)
|
|
|
|
| 105 |
if self.device == "cuda":
|
| 106 |
img_tensor = img_tensor.to(torch.float16)
|
|
|
|
|
|
|
| 107 |
with torch.no_grad():
|
|
|
|
| 108 |
img_feat = self.model.encode_image(img_tensor)
|
| 109 |
img_feat /= img_feat.norm(dim=-1, keepdim=True)
|
| 110 |
+
probs = (100.0 * img_feat @ self.text_features.T).softmax(dim=-1)[0]
|
| 111 |
+
results = zip(self.class_ids, self.class_names, probs.detach().cpu().tolist())
|
| 112 |
+
top_k = int(payload.get("top_k", len(self.class_ids)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
return sorted(
|
| 114 |
[{"id": i, "label": name, "score": float(p)} for i, name, p in results],
|
| 115 |
key=lambda x: x["score"],
|
| 116 |
+
reverse=True,
|
| 117 |
+
)[:top_k]
|
| 118 |
+
|
| 119 |
+
# ------------- helpers -------------
|
| 120 |
+
def _encode_text(self, prompts):
|
| 121 |
+
with torch.no_grad():
|
| 122 |
+
toks = self.tokenizer(prompts).to(self.device)
|
| 123 |
+
feats = self.model.encode_text(toks)
|
| 124 |
+
feats = feats / feats.norm(dim=-1, keepdim=True)
|
| 125 |
+
return feats
|
| 126 |
+
|
| 127 |
+
def _to_device(self):
|
| 128 |
+
self.text_features = self.text_features_cpu.to(
|
| 129 |
+
self.device, dtype=(torch.float16 if self.device == "cuda" else torch.float32)
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
def _upsert_items(self, new_items):
|
| 133 |
+
if not new_items:
|
| 134 |
+
return 0
|
| 135 |
+
with self._lock:
|
| 136 |
+
known = set(getattr(self, "class_ids", []))
|
| 137 |
+
batch = [it for it in new_items if int(it.get("id")) not in known]
|
| 138 |
+
if not batch:
|
| 139 |
+
return 0
|
| 140 |
+
prompts = [it["prompt"] for it in batch]
|
| 141 |
+
feats = self._encode_text(prompts).detach().cpu().to(torch.float32)
|
| 142 |
+
if not hasattr(self, "text_features_cpu"):
|
| 143 |
+
self.text_features_cpu = feats.contiguous()
|
| 144 |
+
self.class_ids = [int(it["id"]) for it in batch]
|
| 145 |
+
self.class_names = [it["name"] for it in batch]
|
| 146 |
+
else:
|
| 147 |
+
self.text_features_cpu = torch.cat([self.text_features_cpu, feats], dim=0).contiguous()
|
| 148 |
+
self.class_ids.extend([int(it["id"]) for it in batch])
|
| 149 |
+
self.class_names.extend([it["name"] for it in batch])
|
| 150 |
+
self._to_device()
|
| 151 |
+
return len(batch)
|
| 152 |
+
|
| 153 |
+
def _persist_snapshot_to_hub(self, version: int):
|
| 154 |
+
if not HF_LABEL_REPO:
|
| 155 |
+
raise RuntimeError("HF_LABEL_REPO not set")
|
| 156 |
+
if not HF_WRITE_TOKEN:
|
| 157 |
+
raise RuntimeError("HF_WRITE_TOKEN not set for publishing")
|
| 158 |
+
|
| 159 |
+
emb_path = "/tmp/embeddings.safetensors"
|
| 160 |
+
meta_path = "/tmp/meta.json"
|
| 161 |
+
latest_bytes = io.BytesIO(json.dumps({"version": int(version)}).encode("utf-8"))
|
| 162 |
+
|
| 163 |
+
save_file({"embeddings": self.text_features_cpu.to(torch.float32)}, emb_path)
|
| 164 |
+
meta = {
|
| 165 |
+
"items": [{"id": int(i), "name": n} for i, n in zip(self.class_ids, self.class_names)],
|
| 166 |
+
"fingerprint": self.fingerprint,
|
| 167 |
+
"dims": int(self.text_features_cpu.shape[1]),
|
| 168 |
+
"count": int(self.text_features_cpu.shape[0]),
|
| 169 |
+
"version": int(version),
|
| 170 |
+
}
|
| 171 |
+
with open(meta_path, "w", encoding="utf-8") as f:
|
| 172 |
+
json.dump(meta, f)
|
| 173 |
+
|
| 174 |
+
ops = [
|
| 175 |
+
CommitOperationAdd(
|
| 176 |
+
path_in_repo=f"snapshots/v{version}/embeddings.safetensors",
|
| 177 |
+
path_or_fileobj=emb_path,
|
| 178 |
+
lfs=True,
|
| 179 |
+
),
|
| 180 |
+
CommitOperationAdd(
|
| 181 |
+
path_in_repo=f"snapshots/v{version}/meta.json",
|
| 182 |
+
path_or_fileobj=meta_path,
|
| 183 |
+
),
|
| 184 |
+
CommitOperationAdd(
|
| 185 |
+
path_in_repo="snapshots/latest.json",
|
| 186 |
+
path_or_fileobj=latest_bytes,
|
| 187 |
+
),
|
| 188 |
+
]
|
| 189 |
+
create_commit(
|
| 190 |
+
repo_id=HF_LABEL_REPO,
|
| 191 |
+
repo_type="dataset",
|
| 192 |
+
operations=ops,
|
| 193 |
+
token=HF_WRITE_TOKEN,
|
| 194 |
+
commit_message=f"labels v{version}",
|
| 195 |
)
|
| 196 |
|
| 197 |
+
def _load_snapshot_from_hub_version(self, version: int) -> bool:
|
| 198 |
+
if not HF_LABEL_REPO:
|
| 199 |
+
return False
|
| 200 |
+
with self._lock:
|
| 201 |
+
emb_p = hf_hub_download(
|
| 202 |
+
HF_LABEL_REPO,
|
| 203 |
+
f"snapshots/v{version}/embeddings.safetensors",
|
| 204 |
+
repo_type="dataset",
|
| 205 |
+
token=HF_READ_TOKEN,
|
| 206 |
+
force_download=True,
|
| 207 |
+
)
|
| 208 |
+
meta_p = hf_hub_download(
|
| 209 |
+
HF_LABEL_REPO,
|
| 210 |
+
f"snapshots/v{version}/meta.json",
|
| 211 |
+
repo_type="dataset",
|
| 212 |
+
token=HF_READ_TOKEN,
|
| 213 |
+
force_download=True,
|
| 214 |
+
)
|
| 215 |
+
meta = json.load(open(meta_p, "r", encoding="utf-8"))
|
| 216 |
+
if meta.get("fingerprint") != self.fingerprint:
|
| 217 |
+
raise RuntimeError("Embedding/model fingerprint mismatch")
|
| 218 |
+
feats = load_file(emb_p)["embeddings"] # float32 CPU
|
| 219 |
+
self.text_features_cpu = feats.contiguous()
|
| 220 |
+
self.class_ids = [int(x["id"]) for x in meta.get("items", [])]
|
| 221 |
+
self.class_names = [x["name"] for x in meta.get("items", [])]
|
| 222 |
+
self.labels_version = int(meta.get("version", version))
|
| 223 |
+
self._to_device()
|
| 224 |
+
return True
|
| 225 |
+
|
| 226 |
+
def _load_snapshot_from_hub_latest(self) -> bool:
|
| 227 |
+
if not HF_LABEL_REPO:
|
| 228 |
+
return False
|
| 229 |
+
try:
|
| 230 |
+
latest_p = hf_hub_download(
|
| 231 |
+
HF_LABEL_REPO,
|
| 232 |
+
"snapshots/latest.json",
|
| 233 |
+
repo_type="dataset",
|
| 234 |
+
token=HF_READ_TOKEN,
|
| 235 |
+
)
|
| 236 |
+
except Exception:
|
| 237 |
+
return False
|
| 238 |
+
latest = json.load(open(latest_p, "r", encoding="utf-8"))
|
| 239 |
+
ver = int(latest.get("version", 0))
|
| 240 |
+
if ver <= 0:
|
| 241 |
+
return False
|
| 242 |
+
return self._load_snapshot_from_hub_version(ver)
|
| 243 |
+
|
| 244 |
|
| 245 |
|
| 246 |
# """
|
|
|
|
| 384 |
# )
|
| 385 |
|
| 386 |
|
| 387 |
+
|
requirements.txt
CHANGED
|
@@ -1,2 +1,4 @@
|
|
| 1 |
Pillow
|
| 2 |
-
open_clip_torch
|
|
|
|
|
|
|
|
|
| 1 |
Pillow
|
| 2 |
+
open_clip_torch
|
| 3 |
+
huggingface_hub>=0.23.0
|
| 4 |
+
safetensors>=0.4.3
|