data: dataset: LSUN category: church_outdoor image_size: 64 channels: 3 logit_transform: false uniform_dequantization: false gaussian_dequantization: false random_flip: true rescaled: false num_workers: 32 model: sigma_begin: 140 num_classes: 788 ema: true ema_rate: 0.999 spec_norm: false sigma_dist: geometric sigma_end: 0.01 normalization: InstanceNorm++ nonlinearity: elu ngf: 128 unet: false dropout: 0.0 sampling: noise_first: false clamp: false experiment_name: 'logits_evolution_tracking_best_point' training: log_all_sigmas: true # whether to send training information to tensorboard optim: weight_decay: 0.000 optimizer: Adam lr: 0.0001 beta1: 0.9 beta2: 0.999 adv_beta1: -0.5 adv_beta2: 0.9 amsgrad: false eps: 0.00000001 momentum: 0.9 fast_fid: batch_size: 50 num_samples: 1000 adversarial: lambda_dae: 1 # multiplier term for Lp loss function (only used in GAN setting) lambda_D: 1 # multiplier term for GAN loss of the discriminator' lambda_G_gan: 1 # multiplier term for GAN loss of the generator D_steps: 1 # Discriminator steps per Generator step adv_loss: LSGAN # 'GAN, LSGAN, HingeGAN, RpGAN, RaGAN, RaLSGAN, RaHingeGAN' arch: 2 # 0 is DCGAN_D0, 1 is DCGAN_D1, 2 is BigGAN spectral: false # If True, spectral normalization in D no_batch_norm_D: false # Not active in BigGAN adv_clamp: true # If True, do not clamp output of score network before giving to discriminator biggan: ch: 64 # Number of channels thin: false # If True, use thin Discriminator (D_ch = 0 with D_thin = True leads to ) kernel_size: 3 attn: '64' # Number of attention filters (If 0, do not use self-attention) n_classes: 1 # Number of classes of the dataset (If = 1 leads to Unconditional GAN) # inactive init: xavier # Type of init,: ortho, xavier, N02