Datasets:
Add a new text_only config option
Browse files- diffusiondb.py +91 -35
diffusiondb.py
CHANGED
|
@@ -3,8 +3,11 @@
|
|
| 3 |
"""Loading script for DiffusionDB."""
|
| 4 |
|
| 5 |
import numpy as np
|
|
|
|
|
|
|
| 6 |
from json import load, dump
|
| 7 |
from os.path import join, basename
|
|
|
|
| 8 |
|
| 9 |
import datasets
|
| 10 |
|
|
@@ -34,14 +37,20 @@ _LICENSE = "CC0 1.0"
|
|
| 34 |
_VERSION = datasets.Version("0.9.0")
|
| 35 |
|
| 36 |
# Programmatically generate the URLs for different parts
|
|
|
|
| 37 |
# https://huggingface.co/datasets/poloclub/diffusiondb/resolve/main/images/part-000001.zip
|
| 38 |
_URLS = {}
|
| 39 |
_PART_IDS = range(1, 2001)
|
| 40 |
|
| 41 |
for i in _PART_IDS:
|
| 42 |
-
_URLS[
|
| 43 |
-
i
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
class DiffusionDBConfig(datasets.BuilderConfig):
|
|
@@ -107,22 +116,46 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 107 |
),
|
| 108 |
)
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
# Default to only load 1k random images
|
| 111 |
DEFAULT_CONFIG_NAME = "random_1k"
|
| 112 |
|
| 113 |
def _info(self):
|
| 114 |
"""Specify the information of DiffusionDB."""
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
return datasets.DatasetInfo(
|
| 127 |
description=_DESCRIPTION,
|
| 128 |
features=features,
|
|
@@ -154,6 +187,11 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 154 |
data_dirs.append(data_dir)
|
| 155 |
json_paths.append(join(data_dir, f"part-{cur_part_id:06}.json"))
|
| 156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
return [
|
| 158 |
datasets.SplitGenerator(
|
| 159 |
name=datasets.Split.TRAIN,
|
|
@@ -171,26 +209,44 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 171 |
# The `key` is for legacy reasons (tfds) and is not important in itself,
|
| 172 |
# but must be unique for each example.
|
| 173 |
|
| 174 |
-
#
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
img_path = join(cur_data_dir, img_name)
|
| 187 |
-
|
| 188 |
-
# Yields examples as (key, example) tuples
|
| 189 |
-
yield img_name, {
|
| 190 |
-
"image": {"path": img_path, "bytes": open(img_path, "rb").read()},
|
| 191 |
-
"prompt": img_params["p"],
|
| 192 |
-
"seed": int(img_params["se"]),
|
| 193 |
-
"step": int(img_params["st"]),
|
| 194 |
-
"cfg": float(img_params["c"]),
|
| 195 |
-
"sampler": img_params["sa"],
|
| 196 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
"""Loading script for DiffusionDB."""
|
| 4 |
|
| 5 |
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
|
| 8 |
from json import load, dump
|
| 9 |
from os.path import join, basename
|
| 10 |
+
from huggingface_hub import hf_hub_url
|
| 11 |
|
| 12 |
import datasets
|
| 13 |
|
|
|
|
| 37 |
_VERSION = datasets.Version("0.9.0")
|
| 38 |
|
| 39 |
# Programmatically generate the URLs for different parts
|
| 40 |
+
# hf_hub_url() provides a more flexible way to resolve the file URLs
|
| 41 |
# https://huggingface.co/datasets/poloclub/diffusiondb/resolve/main/images/part-000001.zip
|
| 42 |
_URLS = {}
|
| 43 |
_PART_IDS = range(1, 2001)
|
| 44 |
|
| 45 |
for i in _PART_IDS:
|
| 46 |
+
_URLS[i] = hf_hub_url(
|
| 47 |
+
"datasets/poloclub/diffusiondb", filename=f"images/part-{i:06}.zip"
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Add the metadata parquet URL as well
|
| 51 |
+
_URLS["metadata"] = hf_hub_url(
|
| 52 |
+
"datasets/poloclub/diffusiondb", filename=f"metadata.parquet"
|
| 53 |
+
)
|
| 54 |
|
| 55 |
|
| 56 |
class DiffusionDBConfig(datasets.BuilderConfig):
|
|
|
|
| 116 |
),
|
| 117 |
)
|
| 118 |
|
| 119 |
+
# We also prove a text-only option, which loads the meatadata parquet file
|
| 120 |
+
BUILDER_CONFIGS.append(
|
| 121 |
+
DiffusionDBConfig(
|
| 122 |
+
name="text_only",
|
| 123 |
+
part_ids=[],
|
| 124 |
+
description="Only include all prompts and parameters (no image)",
|
| 125 |
+
),
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
# Default to only load 1k random images
|
| 129 |
DEFAULT_CONFIG_NAME = "random_1k"
|
| 130 |
|
| 131 |
def _info(self):
|
| 132 |
"""Specify the information of DiffusionDB."""
|
| 133 |
|
| 134 |
+
if self.config.name == "text_only":
|
| 135 |
+
features = datasets.Features(
|
| 136 |
+
{
|
| 137 |
+
"image_name": datasets.Value("string"),
|
| 138 |
+
"prompt": datasets.Value("string"),
|
| 139 |
+
"part_id": datasets.Value("int64"),
|
| 140 |
+
"seed": datasets.Value("int64"),
|
| 141 |
+
"step": datasets.Value("int64"),
|
| 142 |
+
"cfg": datasets.Value("float32"),
|
| 143 |
+
"sampler": datasets.Value("string"),
|
| 144 |
+
},
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
else:
|
| 148 |
+
features = datasets.Features(
|
| 149 |
+
{
|
| 150 |
+
"image": datasets.Image(),
|
| 151 |
+
"prompt": datasets.Value("string"),
|
| 152 |
+
"seed": datasets.Value("int64"),
|
| 153 |
+
"step": datasets.Value("int64"),
|
| 154 |
+
"cfg": datasets.Value("float32"),
|
| 155 |
+
"sampler": datasets.Value("string"),
|
| 156 |
+
},
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
return datasets.DatasetInfo(
|
| 160 |
description=_DESCRIPTION,
|
| 161 |
features=features,
|
|
|
|
| 187 |
data_dirs.append(data_dir)
|
| 188 |
json_paths.append(join(data_dir, f"part-{cur_part_id:06}.json"))
|
| 189 |
|
| 190 |
+
# If we are in text_only mode, we only need to download the parquet file
|
| 191 |
+
# For convenience, we save the parquet path in `data_dirs`
|
| 192 |
+
if self.config.name == "text_only":
|
| 193 |
+
data_dirs = [dl_manager.download(_URLS["metadata"])]
|
| 194 |
+
|
| 195 |
return [
|
| 196 |
datasets.SplitGenerator(
|
| 197 |
name=datasets.Split.TRAIN,
|
|
|
|
| 209 |
# The `key` is for legacy reasons (tfds) and is not important in itself,
|
| 210 |
# but must be unique for each example.
|
| 211 |
|
| 212 |
+
# Load the metadata parquet file if the config is text_only
|
| 213 |
+
if self.config.name == "text_only":
|
| 214 |
+
metadata_df = pd.read_parquet(data_dirs[0])
|
| 215 |
+
for _, row in metadata_df.iterrows():
|
| 216 |
+
yield row["image_name"], {
|
| 217 |
+
"image_name": row["image_name"],
|
| 218 |
+
"prompt": row["prompt"],
|
| 219 |
+
"part_id": row["part_id"],
|
| 220 |
+
"seed": row["seed"],
|
| 221 |
+
"step": row["step"],
|
| 222 |
+
"cfg": row["cfg"],
|
| 223 |
+
"sampler": row["sampler"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
}
|
| 225 |
+
|
| 226 |
+
else:
|
| 227 |
+
# Iterate through all extracted zip folders for images
|
| 228 |
+
num_data_dirs = len(data_dirs)
|
| 229 |
+
assert num_data_dirs == len(json_paths)
|
| 230 |
+
|
| 231 |
+
for k in range(num_data_dirs):
|
| 232 |
+
cur_data_dir = data_dirs[k]
|
| 233 |
+
cur_json_path = json_paths[k]
|
| 234 |
+
|
| 235 |
+
json_data = load(open(cur_json_path, "r", encoding="utf8"))
|
| 236 |
+
|
| 237 |
+
for img_name in json_data:
|
| 238 |
+
img_params = json_data[img_name]
|
| 239 |
+
img_path = join(cur_data_dir, img_name)
|
| 240 |
+
|
| 241 |
+
# Yields examples as (key, example) tuples
|
| 242 |
+
yield img_name, {
|
| 243 |
+
"image": {
|
| 244 |
+
"path": img_path,
|
| 245 |
+
"bytes": open(img_path, "rb").read(),
|
| 246 |
+
},
|
| 247 |
+
"prompt": img_params["p"],
|
| 248 |
+
"seed": int(img_params["se"]),
|
| 249 |
+
"step": int(img_params["st"]),
|
| 250 |
+
"cfg": float(img_params["c"]),
|
| 251 |
+
"sampler": img_params["sa"],
|
| 252 |
+
}
|