# Data Challenge Overview Welcome to the data challenge! This dataset release contains information for three predictive modeling tasks involving auto insurance policies and claims. ## Directory & File Structure The dataset is organized into CSV files and two folders containing images and PDF documents: ``` ├── train_claims.csv ├── test_claims.csv ├── train_policies_subset.csv ├── test_policies_subset.csv ├── vehicle_images/ │ ├── train/ │ │ ├── .jpg │ └── test/ │ ├── .jpg ├── invoices/ │ ├── train/ │ │ ├── invoice_.pdf │ └── test/ │ ├── invoice_.pdf ``` ## Claims Tables **Files:** `train_claims.csv`, `test_claims.csv` **Columns:** - **ClaimID**: Unique identifier for each claim. - **PolicyID**: Identifier linking the claim to a policy. - **ClaimDate**: Date the claim occurred. - **ClaimType**: Type of claim ("Fender-Bender", "Major Collision", "Theft/Comprehensive"). - **ReportedDamage**: Reported monetary damage of the claim. - **NumParties**: Number of parties involved in the claim. - **Description**: Textual description of the claim. - **ClaimComplexityLabel** (train only): Label indicating claim complexity ("Simple", "Moderate", "Complex"). - **FraudLabel** (train only): Binary indicator (0 or 1) of whether the claim is fraudulent. > Note: `ClaimComplexityLabel` and `FraudLabel` are not provided in the test set. ## Policies Tables These policy tables are a subset of policies—only those for which a vehicle image is available. **Files:** `train_policies_subset.csv`, `test_policies_subset.csv` **Columns:** - **PolicyID**: Unique identifier for the insurance policy. - **HolderAge**: Age of the policyholder. - **VehicleType**: Type of vehicle (Sedan, SUV, Sports). - **AnnualMileage**: Miles driven annually by the vehicle. - **LocationUrban**: 1 if urban, 0 if rural. - **CreditScore**: Credit score of policyholder (0 to 1 scale). - **PolicyStart**: Policy start date. - **PolicyEnd**: Policy end date. - **NextYearLoss** (train only): Total insurance loss expected for the next year (target variable). > Note: `NextYearLoss` is not provided in the test set. ## Image & PDF Folders `vehicle_images/train/` and `vehicle_images/test/`: Contains images named as `.jpg`, visually indicating the vehicle's condition. `invoices/train/` and `invoices/test/`: Contains PDF invoices for each claim, named as `invoice_.pdf`. ## Challenge Tasks & Submission Format ### Challenge 1: Claims Complexity Prediction Predict the `ClaimComplexityLabel` for each claim in `test_claims.csv`. **Submission CSV:** `ClaimID,ClaimComplexityLabel` **Evaluation Metric:** Macro-F1. ### Challenge 2: Risk-Based Pricing Predict the `NextYearLoss` for each policy in `test_policies_subset.csv`. **Submission CSV:** `PolicyID,NextYearLoss` **Evaluation Metric:** Normalized Gini. ### Challenge 3: Fraud Detection Predict the binary `FraudLabel` for each claim in `test_claims.csv`. **Submission CSV:** `ClaimID,FraudLabel` **Evaluation Metric:** Macro-F1. ## Notes & Tips - Only the described columns are provided. Participants must infer from provided text, images, or PDFs. - Ensure submissions strictly adhere to the specified CSV formats. Good luck!