Create generate_gt.py
Browse files- generate_gt.py +443 -0
generate_gt.py
ADDED
|
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
from functools import partial
|
| 3 |
+
import os
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
import glob
|
| 6 |
+
import numpy as np
|
| 7 |
+
import cv2
|
| 8 |
+
from sklearn.neighbors import KDTree
|
| 9 |
+
from collections import Counter
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from mmengine import track_parallel_progress
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def load_voxels(path):
|
| 15 |
+
"""Load voxel labels from file.
|
| 16 |
+
|
| 17 |
+
Args:
|
| 18 |
+
path (str): The path of the voxel labels file.
|
| 19 |
+
|
| 20 |
+
Returns:
|
| 21 |
+
ndarray: The voxel labels with shape (N, 4), 4 is for [x, y, z, label].
|
| 22 |
+
"""
|
| 23 |
+
labels = np.load(path)
|
| 24 |
+
if labels.shape[1] == 7:
|
| 25 |
+
labels = labels[:, [0, 1, 2, 6]]
|
| 26 |
+
|
| 27 |
+
return labels
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def _downsample_label(label, voxel_size=(240, 144, 240), downscale=4):
|
| 31 |
+
r"""downsample the labeled data,
|
| 32 |
+
code taken from https://github.com/waterljwant/SSC/blob/master/dataloaders/dataloader.py#L262
|
| 33 |
+
Shape:
|
| 34 |
+
label, (240, 144, 240)
|
| 35 |
+
label_downscale, if downsample==4, then (60, 36, 60)
|
| 36 |
+
"""
|
| 37 |
+
if downscale == 1:
|
| 38 |
+
return label
|
| 39 |
+
ds = downscale
|
| 40 |
+
small_size = (
|
| 41 |
+
voxel_size[0] // ds,
|
| 42 |
+
voxel_size[1] // ds,
|
| 43 |
+
voxel_size[2] // ds,
|
| 44 |
+
) # small size
|
| 45 |
+
label_downscale = np.zeros(small_size, dtype=np.uint8)
|
| 46 |
+
empty_t = 0.95 * ds * ds * ds # threshold
|
| 47 |
+
s01 = small_size[0] * small_size[1]
|
| 48 |
+
label_i = np.zeros((ds, ds, ds), dtype=np.int32)
|
| 49 |
+
|
| 50 |
+
for i in range(small_size[0] * small_size[1] * small_size[2]):
|
| 51 |
+
z = int(i / s01)
|
| 52 |
+
y = int((i - z * s01) / small_size[0])
|
| 53 |
+
x = int(i - z * s01 - y * small_size[0])
|
| 54 |
+
|
| 55 |
+
label_i[:, :, :] = label[
|
| 56 |
+
x * ds : (x + 1) * ds, y * ds : (y + 1) * ds, z * ds : (z + 1) * ds
|
| 57 |
+
]
|
| 58 |
+
label_bin = label_i.flatten()
|
| 59 |
+
|
| 60 |
+
zero_count_0 = np.array(np.where(label_bin == 0)).size
|
| 61 |
+
zero_count_255 = np.array(np.where(label_bin == 255)).size
|
| 62 |
+
|
| 63 |
+
zero_count = zero_count_0 + zero_count_255
|
| 64 |
+
if zero_count > empty_t:
|
| 65 |
+
label_downscale[x, y, z] = 0 if zero_count_0 > zero_count_255 else 255
|
| 66 |
+
else:
|
| 67 |
+
label_i_s = label_bin[
|
| 68 |
+
np.where(np.logical_and(label_bin > 0, label_bin < 255))
|
| 69 |
+
]
|
| 70 |
+
label_downscale[x, y, z] = np.argmax(np.bincount(label_i_s))
|
| 71 |
+
return label_downscale
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
# 1. 从列表中删掉 pose 为 nan 的场景
|
| 75 |
+
def clear_posed_images(scene_list):
|
| 76 |
+
|
| 77 |
+
# 从 mmdet3d 处理得到的有问题场景sens列表
|
| 78 |
+
# TODO: how to generate wrong_scenes.txt?
|
| 79 |
+
with open('wrong_scenes.txt', 'r') as f:
|
| 80 |
+
wrongs = f.readlines()
|
| 81 |
+
# TODO: how to generate not_aligns.txt?
|
| 82 |
+
with open('not_aligns.txt', 'r') as f:
|
| 83 |
+
not_aligns = f.readlines()
|
| 84 |
+
|
| 85 |
+
# 清理为只有场景名称
|
| 86 |
+
wrongs = [w.split('/')[1] for w in wrongs]
|
| 87 |
+
wrongs = sorted(list(set(wrongs))) # 212 scenes
|
| 88 |
+
|
| 89 |
+
not_aligns = sorted([s.strip() for s in not_aligns])
|
| 90 |
+
|
| 91 |
+
# 除去这些场景的图片
|
| 92 |
+
scene_list = sorted(list(set(scene_list) - set(wrongs)))
|
| 93 |
+
scene_list = sorted(list(set(scene_list) - set(not_aligns)))
|
| 94 |
+
|
| 95 |
+
return scene_list
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# 2. 生成子场景的体素标签
|
| 99 |
+
def generate_subvoxels(name):
|
| 100 |
+
# print(name)
|
| 101 |
+
|
| 102 |
+
# basic scene parameters
|
| 103 |
+
height_belowfloor = - 0.05
|
| 104 |
+
voxUnit = 0.08 # 0.05 m
|
| 105 |
+
voxSizeCam = np.array([60, 60, 60]) # 96 x 96 x 96 voxs x y z in cam coordinate
|
| 106 |
+
voxSize = np.array([60, 60, 36]) # 96 x 96 x 64 voxs x y z in world coordinate
|
| 107 |
+
voxRangeExtremesCam = np.stack([-voxSizeCam * voxUnit / 2.,
|
| 108 |
+
-voxSizeCam * voxUnit / 2. + voxSizeCam * voxUnit]).T
|
| 109 |
+
voxRangeExtremesCam[-1, 0] = 0
|
| 110 |
+
voxRangeExtremesCam[-1, 1] = 6.8
|
| 111 |
+
# voxel origin in cam coordinate x y z in cam coordinate
|
| 112 |
+
voxOriginCam = np.mean(voxRangeExtremesCam, axis=1, keepdims=True)
|
| 113 |
+
|
| 114 |
+
# for name in tqdm(scenes_name):
|
| 115 |
+
poses = glob.glob(os.path.join('../scannet/posed_images', name, '*.txt'))
|
| 116 |
+
poses = sorted(poses)
|
| 117 |
+
if len(poses) == 0:
|
| 118 |
+
return
|
| 119 |
+
|
| 120 |
+
imgs = glob.glob(os.path.join('../scannet/posed_images', name, '*.jpg'))
|
| 121 |
+
imgs = sorted(imgs)
|
| 122 |
+
|
| 123 |
+
intrinsic = poses.pop(-1)
|
| 124 |
+
intrinsic = np.loadtxt(intrinsic)
|
| 125 |
+
|
| 126 |
+
for pose, img in zip(poses, imgs):
|
| 127 |
+
framename = os.path.basename(pose)[:-4]
|
| 128 |
+
extCam2World = np.loadtxt(pose)
|
| 129 |
+
# if os.path.exists(f'preprocessed_voxels/{name}/{framename}.npy'):
|
| 130 |
+
# continue
|
| 131 |
+
if np.isneginf(extCam2World).any():
|
| 132 |
+
continue
|
| 133 |
+
img = cv2.imread(img)
|
| 134 |
+
h, w, c = img.shape
|
| 135 |
+
|
| 136 |
+
voxOriginWorld = extCam2World[:3, :3] @ voxOriginCam + extCam2World[:3, -1:]
|
| 137 |
+
delta = np.array([[voxSize[0]/2*voxUnit], [voxSize[1]/2*voxUnit], [voxSize[2]/2*voxUnit]])
|
| 138 |
+
voxOriginWorld -= delta
|
| 139 |
+
voxOriginWorld[2, 0] = height_belowfloor
|
| 140 |
+
|
| 141 |
+
if os.path.exists(f"../completescannet/preprocessed/{name}.npy"):
|
| 142 |
+
scene_voxels = load_voxels(f"../completescannet/preprocessed/{name}.npy")
|
| 143 |
+
else:
|
| 144 |
+
continue
|
| 145 |
+
scene_voxels_delta = np.abs(scene_voxels[:, :3] - voxOriginWorld.reshape(-1)) # TODO: abs? or 0<=x<=4.8
|
| 146 |
+
mask = np.logical_and(scene_voxels_delta[:, 0] <=4.8,
|
| 147 |
+
np.logical_and(scene_voxels_delta[:, 1] <= 4.8,
|
| 148 |
+
scene_voxels_delta[:, 2] <= 4.8))
|
| 149 |
+
voxels = scene_voxels[mask]
|
| 150 |
+
|
| 151 |
+
xs = np.arange(voxOriginWorld[0, 0], voxOriginWorld[0, 0] + 100*voxUnit, voxUnit)[:voxSize[0]]
|
| 152 |
+
ys = np.arange(voxOriginWorld[1, 0], voxOriginWorld[1, 0] + 100*voxUnit, voxUnit)[:voxSize[1]]
|
| 153 |
+
zs = np.arange(voxOriginWorld[2, 0], voxOriginWorld[2, 0] + 100*voxUnit, voxUnit)[:voxSize[2]]
|
| 154 |
+
gridPtsWorldX, gridPtsWorldY, gridPtsWorldZ = np.meshgrid(xs, ys, zs)
|
| 155 |
+
gridPtsWorld = np.stack([gridPtsWorldX.flatten(),
|
| 156 |
+
gridPtsWorldY.flatten(),
|
| 157 |
+
gridPtsWorldZ.flatten()], axis=1)
|
| 158 |
+
|
| 159 |
+
gridPtsLabel = np.zeros((gridPtsWorld.shape[0]))
|
| 160 |
+
|
| 161 |
+
if voxels.shape[0] <= 0:
|
| 162 |
+
continue
|
| 163 |
+
|
| 164 |
+
kdtree = KDTree(voxels[:, :3], leaf_size=10)
|
| 165 |
+
dist, ind = kdtree.query(gridPtsWorld)
|
| 166 |
+
dist, ind = dist.reshape(-1), ind.reshape(-1)
|
| 167 |
+
mask = dist <= voxUnit
|
| 168 |
+
gridPtsLabel[mask] = voxels[:, -1][ind[mask]]
|
| 169 |
+
|
| 170 |
+
gridPtsWorld = np.hstack([gridPtsWorld, gridPtsLabel.reshape(-1, 1)])
|
| 171 |
+
|
| 172 |
+
g = gridPtsWorld[:, -1].reshape(voxSize[0], voxSize[1], voxSize[2])
|
| 173 |
+
g_not_0 = np.where(g > 0)
|
| 174 |
+
if len(g_not_0) == 0:
|
| 175 |
+
continue
|
| 176 |
+
g_not_0_x = g_not_0[0]
|
| 177 |
+
g_not_0_y = g_not_0[1]
|
| 178 |
+
if len(g_not_0_x) == 0:
|
| 179 |
+
continue
|
| 180 |
+
if len(g_not_0_y) == 0:
|
| 181 |
+
continue
|
| 182 |
+
valid_x_min = g_not_0_x.min()
|
| 183 |
+
valid_x_max = g_not_0_x.max()
|
| 184 |
+
valid_y_min = g_not_0_y.min()
|
| 185 |
+
valid_y_max = g_not_0_y.max()
|
| 186 |
+
# print(valid_x_min, valid_x_max, valid_y_min, valid_y_max)
|
| 187 |
+
# print(valid_x_min, valid_x_max, valid_y_min, valid_y_max)
|
| 188 |
+
mask = np.zeros_like(g)
|
| 189 |
+
if valid_x_min != valid_x_max and valid_y_min != valid_y_max:
|
| 190 |
+
mask[valid_x_min:valid_x_max, valid_y_min:valid_y_max, :] = 1
|
| 191 |
+
mask = 1 - mask #
|
| 192 |
+
mask = mask.astype(np.bool_)
|
| 193 |
+
g[mask] = 255
|
| 194 |
+
else:
|
| 195 |
+
continue
|
| 196 |
+
gridPtsWorld[:, -1] = g.reshape(-1)
|
| 197 |
+
|
| 198 |
+
voxels_cam = (np.linalg.inv(extCam2World)[:3, :3] @ gridPtsWorld[:, :3].T \
|
| 199 |
+
+ np.linalg.inv(extCam2World)[:3, -1:]).T
|
| 200 |
+
voxels_pix = (intrinsic[:3, :3] @ voxels_cam.T).T
|
| 201 |
+
voxels_pix = voxels_pix / voxels_pix[:, -1:]
|
| 202 |
+
mask = np.logical_and(voxels_pix[:, 0] >= 0,
|
| 203 |
+
np.logical_and(voxels_pix[:, 0] < w,
|
| 204 |
+
np.logical_and(voxels_pix[:, 1] >= 0,
|
| 205 |
+
np.logical_and(voxels_pix[:, 1] < h,
|
| 206 |
+
voxels_cam[:, 2] > 0))))
|
| 207 |
+
inroom = gridPtsWorld[:, -1] != 255
|
| 208 |
+
mask = np.logical_and(~mask, inroom)
|
| 209 |
+
gridPtsWorld[mask, -1] = 0
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
os.makedirs(f'preprocessed_voxels/{name}', exist_ok=True)
|
| 213 |
+
np.save(f'preprocessed_voxels/{name}/{framename}.npy', gridPtsWorld)
|
| 214 |
+
# print("Save gt to", f'preprocessed_voxels/{name}/{framename}.npy')
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
# 3. 生成那些类别少于2, 有效语义体素数量少于5%的场景 和相机位姿还是有错误的那些场景
|
| 218 |
+
def get_badposescene():
|
| 219 |
+
bad_scenes = []
|
| 220 |
+
scenenames = glob.glob(os.path.join('../completescannet/preprocessed', '*.npy'))
|
| 221 |
+
scenenames = sorted(scenenames)
|
| 222 |
+
for name in tqdm(scenenames):
|
| 223 |
+
voxels = load_voxels(name)
|
| 224 |
+
voxelrange = [voxels[:, 0].min(),
|
| 225 |
+
voxels[:, 1].min(),
|
| 226 |
+
voxels[:, 2].min(),
|
| 227 |
+
voxels[:, 0].max(),
|
| 228 |
+
voxels[:, 1].max(),
|
| 229 |
+
voxels[:, 2].max(),]
|
| 230 |
+
print('vox range: ', voxelrange)
|
| 231 |
+
basename = os.path.basename(name)[:-4]
|
| 232 |
+
|
| 233 |
+
npys = glob.glob(os.path.join('preprocessed_voxels', basename, '*.npy'))
|
| 234 |
+
npys = sorted(npys)
|
| 235 |
+
|
| 236 |
+
for npy in npys:
|
| 237 |
+
jpg = os.path.basename(npy)[:-4]+'.txt'
|
| 238 |
+
cam_pose_path = os.path.join('../scannet/posed_images', basename, jpg)
|
| 239 |
+
cam_pose = np.loadtxt(cam_pose_path)
|
| 240 |
+
cam_origin = (cam_pose[:3, :3] @ np.zeros((1, 3)).T + cam_pose[:3, -1:]).T
|
| 241 |
+
print('cam_o: ', cam_origin)
|
| 242 |
+
|
| 243 |
+
x, y, z = cam_origin[0]
|
| 244 |
+
xmin, ymin, zmin, xmax, ymax, zmax = voxelrange
|
| 245 |
+
zmax = 3.0
|
| 246 |
+
|
| 247 |
+
in_x = xmin < x < xmax
|
| 248 |
+
in_y = ymin < y < ymax
|
| 249 |
+
in_z = zmin < z < zmax
|
| 250 |
+
|
| 251 |
+
valid = in_x & in_y & in_z
|
| 252 |
+
|
| 253 |
+
if not valid:
|
| 254 |
+
bad_scenes.append(npy)
|
| 255 |
+
bad_scenes.append('\n')
|
| 256 |
+
# with open('bad_scenes.txt', 'w') as f:
|
| 257 |
+
# f.writelines(bad_scenes)
|
| 258 |
+
# pprint(bad_scenes)
|
| 259 |
+
scene_path = os.path.join('preprocessed_voxels', name)
|
| 260 |
+
npys = glob.glob(os.path.join(scene_path, '*.npy'))
|
| 261 |
+
npys = sorted(npys)
|
| 262 |
+
for vox in npys:
|
| 263 |
+
voxels = np.load(vox)
|
| 264 |
+
labels = voxels[:, -1].tolist()
|
| 265 |
+
cnt = Counter(labels)
|
| 266 |
+
total = 0
|
| 267 |
+
valid = 0
|
| 268 |
+
for i in cnt.keys():
|
| 269 |
+
total += cnt[i]
|
| 270 |
+
if i != 0.0 and i != 255.0:
|
| 271 |
+
valid += 1
|
| 272 |
+
outroom = cnt[255.0]
|
| 273 |
+
empty = cnt[0.0]
|
| 274 |
+
if valid < 2:
|
| 275 |
+
bad_scenes.append(vox)
|
| 276 |
+
continue
|
| 277 |
+
|
| 278 |
+
if (outroom / total) > 0.95:
|
| 279 |
+
bad_scenes.append(vox)
|
| 280 |
+
continue
|
| 281 |
+
|
| 282 |
+
if (empty / total) > 0.95:
|
| 283 |
+
bad_scenes.append(vox)
|
| 284 |
+
continue
|
| 285 |
+
|
| 286 |
+
if ((empty + outroom) / total) > 0.95:
|
| 287 |
+
bad_scenes.append(vox)
|
| 288 |
+
continue
|
| 289 |
+
with open('bad_scenes.txt', 'w') as f:
|
| 290 |
+
f.writelines(bad_scenes)
|
| 291 |
+
# print(bad_scenes)
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
# 4. 整合数据
|
| 295 |
+
def gather_data(scene_list):
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
scenes = os.listdir('preprocessed_voxels')
|
| 300 |
+
scenes = set(sorted(scenes))
|
| 301 |
+
scenes = sorted(list(set(scene_list) & scenes))
|
| 302 |
+
|
| 303 |
+
for scene in scenes:
|
| 304 |
+
scene_path = os.path.join('preprocessed_voxels', scene)
|
| 305 |
+
scene_name = scene
|
| 306 |
+
|
| 307 |
+
os.makedirs(os.path.join('gathered_data', scene_name), exist_ok=True)
|
| 308 |
+
|
| 309 |
+
npys = glob.glob(os.path.join(scene_path, '*.npy'))
|
| 310 |
+
npys = sorted(npys)
|
| 311 |
+
|
| 312 |
+
for npy in npys:
|
| 313 |
+
data = {}
|
| 314 |
+
npy_name = os.path.basename(npy)[:-4]
|
| 315 |
+
npy_path = npy
|
| 316 |
+
|
| 317 |
+
img_path = os.path.join('../scannet/posed_images', scene_name, npy_name+'.jpg')
|
| 318 |
+
img_path = os.path.abspath(img_path)
|
| 319 |
+
depth_path = os.path.join('../scannet/posed_images', scene_name, npy_name+'.png')
|
| 320 |
+
depth_path = os.path.abspath(depth_path)
|
| 321 |
+
cam_pose_path = os.path.join('../scannet/posed_images', scene_name, npy_name+'.txt')
|
| 322 |
+
cam_intrin_path = os.path.join('../scannet/posed_images', scene_name, 'intrinsic.txt')
|
| 323 |
+
|
| 324 |
+
img = cv2.imread(img_path)
|
| 325 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 326 |
+
depth_img = Image.open(depth_path).convert('I;16')
|
| 327 |
+
depth_img = np.array(depth_img) / 1000.0
|
| 328 |
+
data['img'] = img_path
|
| 329 |
+
data['depth_gt'] = depth_path
|
| 330 |
+
cam_pose = np.loadtxt(cam_pose_path)
|
| 331 |
+
data['cam_pose'] = cam_pose
|
| 332 |
+
intrinsic = np.loadtxt(cam_intrin_path)
|
| 333 |
+
data['intrinsic'] = intrinsic
|
| 334 |
+
|
| 335 |
+
target_1_4 = np.load(npy_path)
|
| 336 |
+
data['target_1_4'] = target_1_4[:, -1].reshape(60, 60, 36)
|
| 337 |
+
|
| 338 |
+
voxel_origin = target_1_4[:, 0].min(), target_1_4[:, 1].min(), target_1_4[:, 2].min()
|
| 339 |
+
data['voxel_origin'] = voxel_origin
|
| 340 |
+
|
| 341 |
+
target_1_16 = _downsample_label(target_1_4[:, -1].reshape(60, 60, 36), (60, 60, 36), 4)
|
| 342 |
+
data['target_1_16'] = target_1_16
|
| 343 |
+
|
| 344 |
+
savepth = os.path.join('gathered_data', scene_name, npy_name+'.pkl')
|
| 345 |
+
print(savepth)
|
| 346 |
+
with open(savepth, "wb") as handle:
|
| 347 |
+
import pickle
|
| 348 |
+
pickle.dump(data, handle, protocol=pickle.HIGHEST_PROTOCOL)
|
| 349 |
+
# np.save(savepth, data)
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def generate_train_val_list():
|
| 353 |
+
with open('not_aligns.txt', 'r') as f:
|
| 354 |
+
not_aligns = f.readlines()
|
| 355 |
+
for i in range(len(not_aligns)):
|
| 356 |
+
not_aligns[i] = not_aligns[i].strip()
|
| 357 |
+
|
| 358 |
+
scan_names = os.listdir('gathered_data')
|
| 359 |
+
start = len(scan_names)
|
| 360 |
+
scan_names = list(set(scan_names) - set(not_aligns))
|
| 361 |
+
end = len(scan_names)
|
| 362 |
+
|
| 363 |
+
used_scan_names = sorted(scan_names)
|
| 364 |
+
used_scan_names.pop(-1)
|
| 365 |
+
with open('used_scan_names.txt', 'w') as f:
|
| 366 |
+
f.writelines('\n'.join(used_scan_names))
|
| 367 |
+
|
| 368 |
+
train_used_subscenes = []
|
| 369 |
+
val_used_subscenes = []
|
| 370 |
+
for s in used_scan_names:
|
| 371 |
+
paths = glob.glob(os.path.join('gathered_data', s, '*.pkl'))
|
| 372 |
+
paths = sorted(paths)
|
| 373 |
+
np.random.seed(21)
|
| 374 |
+
paths = np.random.permutation(paths)
|
| 375 |
+
n_paths = len(paths)
|
| 376 |
+
n_train = int(n_paths * 0.7)
|
| 377 |
+
train_paths = paths[:n_train]
|
| 378 |
+
val_paths = paths[n_train:]
|
| 379 |
+
|
| 380 |
+
train_used_subscenes.extend(train_paths)
|
| 381 |
+
val_used_subscenes.extend(val_paths)
|
| 382 |
+
|
| 383 |
+
with open('train_subscenes.txt', 'w') as f:
|
| 384 |
+
f.writelines('\n'.join(sorted(train_used_subscenes)))
|
| 385 |
+
with open('val_subscenes.txt', 'w') as f:
|
| 386 |
+
f.writelines('\n'.join(sorted(val_used_subscenes)))
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
def parse_args():
|
| 390 |
+
parser = argparse.ArgumentParser(description='Prepare for the ScanNetOcc Dataset.')
|
| 391 |
+
parser.add_argument('--outpath', type=str, required=False, help='Output path of the generated GT labels.')
|
| 392 |
+
args = parser.parse_args()
|
| 393 |
+
return args
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
def main():
|
| 397 |
+
# args = parse_args()
|
| 398 |
+
# if not os.path.exists(args.outpath):
|
| 399 |
+
# os.makedirs(args.outpath, exist_ok=True)
|
| 400 |
+
|
| 401 |
+
scene_name_list = sorted(os.listdir('../scannet/posed_images'))
|
| 402 |
+
|
| 403 |
+
# scene_name_list = sorted(list(set(scene_name_list) - set(not_aligns)))
|
| 404 |
+
|
| 405 |
+
failed_scene = []
|
| 406 |
+
|
| 407 |
+
# Step 1:
|
| 408 |
+
scene_name_list = clear_posed_images(scene_name_list)
|
| 409 |
+
print("===== Finish Step 1 =====")
|
| 410 |
+
|
| 411 |
+
# Step 2:
|
| 412 |
+
track_parallel_progress(generate_subvoxels,
|
| 413 |
+
scene_name_list,
|
| 414 |
+
nproc=12)
|
| 415 |
+
print("===== Finish Step 2 =====")
|
| 416 |
+
|
| 417 |
+
# # Step 3:
|
| 418 |
+
# TODO: what is bad pose scene?
|
| 419 |
+
get_badposescene()
|
| 420 |
+
with open('bad_scenes.txt', 'r') as f:
|
| 421 |
+
bs = f.readlines()
|
| 422 |
+
bs = [b.strip() for b in bs]
|
| 423 |
+
bs = list(set(bs))
|
| 424 |
+
# TODO: Remove or not?
|
| 425 |
+
for s in bs:
|
| 426 |
+
ss = s.replace('\n', '')
|
| 427 |
+
print(ss, "to be removed")
|
| 428 |
+
# path = os.path.join(*ss)
|
| 429 |
+
# print(path)
|
| 430 |
+
os.remove(ss)
|
| 431 |
+
print("===== Finish Step 3 =====")
|
| 432 |
+
|
| 433 |
+
# Step 4:
|
| 434 |
+
gather_data(scene_name_list)
|
| 435 |
+
print("===== Finish Step 4 =====")
|
| 436 |
+
|
| 437 |
+
# Step 5:
|
| 438 |
+
generate_train_val_list()
|
| 439 |
+
print("===== Finish Step 5 =====")
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
if __name__ == "__main__":
|
| 443 |
+
main()
|