|
|
import re |
|
|
import logging |
|
|
|
|
|
import torch |
|
|
import torchvision.transforms as T |
|
|
from torchvision.transforms.functional import InterpolationMode |
|
|
from transformers import AutoModel, AutoTokenizer |
|
|
import math |
|
|
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
|
|
|
|
|
def split_model(model_name): |
|
|
device_map = {} |
|
|
world_size = torch.cuda.device_count() |
|
|
num_layers = { |
|
|
'InternVL2-1B': 24, 'InternVL2-2B': 24, 'InternVL2-4B': 32, 'InternVL2-8B': 32, |
|
|
'InternVL2-26B': 48, 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name] |
|
|
|
|
|
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5)) |
|
|
num_layers_per_gpu = [num_layers_per_gpu] * world_size |
|
|
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) |
|
|
layer_cnt = 0 |
|
|
for i, num_layer in enumerate(num_layers_per_gpu): |
|
|
for j in range(num_layer): |
|
|
device_map[f'language_model.model.layers.{layer_cnt}'] = i |
|
|
layer_cnt += 1 |
|
|
device_map['vision_model'] = 0 |
|
|
device_map['mlp1'] = 0 |
|
|
device_map['language_model.model.tok_embeddings'] = 0 |
|
|
device_map['language_model.model.embed_tokens'] = 0 |
|
|
device_map['language_model.output'] = 0 |
|
|
device_map['language_model.model.norm'] = 0 |
|
|
device_map['language_model.lm_head'] = 0 |
|
|
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0 |
|
|
|
|
|
return device_map |
|
|
|
|
|
|
|
|
def build_transform(input_size): |
|
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
|
transform = T.Compose([ |
|
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
|
T.ToTensor(), |
|
|
T.Normalize(mean=MEAN, std=STD) |
|
|
]) |
|
|
return transform |
|
|
|
|
|
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
|
best_ratio_diff = float('inf') |
|
|
best_ratio = (1, 1) |
|
|
area = width * height |
|
|
for ratio in target_ratios: |
|
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
|
if ratio_diff < best_ratio_diff: |
|
|
best_ratio_diff = ratio_diff |
|
|
best_ratio = ratio |
|
|
elif ratio_diff == best_ratio_diff: |
|
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
|
best_ratio = ratio |
|
|
return best_ratio |
|
|
|
|
|
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): |
|
|
orig_width, orig_height = image.size |
|
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
|
|
|
target_ratios = set( |
|
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
|
i * j <= max_num and i * j >= min_num) |
|
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
|
target_height = image_size * target_aspect_ratio[1] |
|
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
|
processed_images = [] |
|
|
for i in range(blocks): |
|
|
box = ( |
|
|
(i % (target_width // image_size)) * image_size, |
|
|
(i // (target_width // image_size)) * image_size, |
|
|
((i % (target_width // image_size)) + 1) * image_size, |
|
|
((i // (target_width // image_size)) + 1) * image_size |
|
|
) |
|
|
|
|
|
split_img = resized_img.crop(box) |
|
|
processed_images.append(split_img) |
|
|
assert len(processed_images) == blocks |
|
|
if use_thumbnail and len(processed_images) != 1: |
|
|
thumbnail_img = image.resize((image_size, image_size)) |
|
|
processed_images.append(thumbnail_img) |
|
|
return processed_images |
|
|
|
|
|
|
|
|
def load_image(image, input_size=448, max_num=12): |
|
|
transform = build_transform(input_size=input_size) |
|
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
|
pixel_values = [transform(image) for image in images] |
|
|
pixel_values = torch.stack(pixel_values) |
|
|
return pixel_values |
|
|
|
|
|
|
|
|
def process_query(sample): |
|
|
query = sample['query'] |
|
|
matches = re.findall(r"<(image_\d+)>", query) |
|
|
modified_query = re.sub(r"<image_\d+>", "<image>", query) |
|
|
images = [] |
|
|
for match in matches: |
|
|
if sample[match]: |
|
|
images.append(sample[match]) |
|
|
else: |
|
|
logging.error(f"The image token <{match}> is in the query, but there is no corresponding image provided by the data") |
|
|
return modified_query, images |
|
|
|
|
|
|
|
|
class Internvl_Model: |
|
|
def __init__( |
|
|
self, |
|
|
model_path, |
|
|
temperature=0, |
|
|
max_tokens=1024 |
|
|
): |
|
|
self.temperature = temperature |
|
|
self.max_tokens = max_tokens |
|
|
self.device_map = split_model('InternVL2-Llama3-76B') |
|
|
self.model = AutoModel.from_pretrained( |
|
|
model_path, |
|
|
torch_dtype=torch.bfloat16, |
|
|
low_cpu_mem_usage=True, |
|
|
use_flash_attn=True, |
|
|
trust_remote_code=True, |
|
|
device_map=self.device_map).eval() |
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False) |
|
|
|
|
|
def get_response(self, sample): |
|
|
model = self.model |
|
|
tokenizer = self.tokenizer |
|
|
|
|
|
try: |
|
|
query, images = process_query(sample) |
|
|
pixel_values_list = [] |
|
|
num_patches_list = [] |
|
|
|
|
|
for image in images: |
|
|
pixel_value = load_image(image, max_num=12).to(torch.bfloat16).cuda() |
|
|
pixel_values_list.append(pixel_value) |
|
|
|
|
|
num_patches_list.append(pixel_value.size(0)) |
|
|
|
|
|
pixel_values = torch.cat(pixel_values_list, dim=0) |
|
|
|
|
|
generation_config = dict(max_new_tokens=self.max_tokens, do_sample=True, temperature=self.temperature) |
|
|
|
|
|
|
|
|
response = model.chat(tokenizer, pixel_values, query, generation_config, |
|
|
num_patches_list=num_patches_list) |
|
|
return response |
|
|
except Exception as e: |
|
|
print(e) |
|
|
return None |
|
|
|