File size: 1,223 Bytes
b5beb60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import argparse
from vlmeval.smp import *
from vlmeval.config import supported_VLM
def is_api(x):
return getattr(supported_VLM[x].func, 'is_api', False)
models = list(supported_VLM)
models = [x for x in models if 'fs' not in x]
models = [x for x in models if not is_api(x)]
exclude_list = ['cogvlm-grounding-generalist', 'emu2']
models = [x for x in models if x not in exclude_list]
def is_large(x):
return '80b' in x or 'emu2' in x or '34B' in x
small_models = [x for x in models if not is_large(x)]
large_models = [x for x in models if is_large(x)]
models = small_models + large_models
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, nargs='+', required=True)
args = parser.parse_args()
# Skip some models
models = [x for x in models if not listinstr(['MiniGPT', 'grounding-generalist'], x)]
for m in models:
unknown_datasets = [x for x in args.data if not osp.exists(f'{m}/{m}_{x}.xlsx')]
if len(unknown_datasets) == 0:
continue
dataset_str = ' '.join(unknown_datasets)
if '80b' in m:
cmd = f'python run.py --data {dataset_str} --model {m}'
else:
cmd = f'bash run.sh --data {dataset_str} --model {m}'
print(cmd)
os.system(cmd) |