File size: 12,611 Bytes
b5beb60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
"""
Answer checker API that uses sympy to simplify expressions and check for equality.
Call grade_answer(given_answer: str, ground_truth: str).
FROM: https://github.com/openai/prm800k/blob/main/prm800k/grading/grader.py
"""
import re
import sympy
from pylatexenc import latex2text
from sympy.parsing import sympy_parser
import sys
sys.path.append('/data/xuqixin/tablefactory/verl/utils/reward_score/')
from math_utils import math_normalize
from math_utils.grader import math_equal
# import math_normalize
# from grader import math_equal
# sympy might hang -- we don't care about trying to be lenient in these cases
BAD_SUBSTRINGS = ["^{", "^("]
BAD_REGEXES = ["\^[0-9]+\^", "\^[0-9][0-9]+"]
TUPLE_CHARS = "()[]"
def _sympy_parse(expr: str):
"""Parses an expression with sympy."""
py_expr = expr.replace("^", "**")
return sympy_parser.parse_expr(
py_expr,
transformations=(
sympy_parser.standard_transformations
+ (sympy_parser.implicit_multiplication_application,)
),
)
def _parse_latex(expr: str) -> str:
"""Attempts to parse latex to an expression sympy can read."""
expr = expr.replace("\\tfrac", "\\frac")
expr = expr.replace("\\dfrac", "\\frac")
expr = expr.replace("\\frac", " \\frac") # Play nice with mixed numbers.
expr = latex2text.LatexNodes2Text().latex_to_text(expr)
# Replace the specific characters that this parser uses.
expr = expr.replace("√", "sqrt")
expr = expr.replace("π", "pi")
expr = expr.replace("∞", "inf")
expr = expr.replace("∪", "U")
expr = expr.replace("·", "*")
expr = expr.replace("×", "*")
return expr.strip()
def _is_float(num: str) -> bool:
try:
float(num)
return True
except ValueError:
return False
def _is_int(x: float) -> bool:
try:
return abs(x - int(round(x))) <= 1e-7
except:
return False
def _is_frac(expr: str) -> bool:
return bool(re.search(r"^-?[0-9]+.?/0*[1-9][0-9]*.?$", expr))
def _str_is_int(x: str) -> bool:
try:
x = _strip_properly_formatted_commas(x)
x = float(x)
return abs(x - int(round(x))) <= 1e-7
except:
return False
def _str_to_int(x: str) -> bool:
x = x.replace(",", "")
x = float(x)
return int(x)
def _inject_implicit_mixed_number(step: str):
"""
Automatically make a mixed number evalable
e.g. 7 3/4 => 7+3/4
"""
p1 = re.compile("([0-9]) +([0-9])")
step = p1.sub("\\1+\\2", step) ## implicit mults
return step
def _strip_properly_formatted_commas(expr: str):
# We want to be careful because we don't want to strip tuple commas
p1 = re.compile("(\d)(,)(\d\d\d)($|\D)")
while True:
next_expr = p1.sub("\\1\\3\\4", expr)
if next_expr == expr:
break
expr = next_expr
return next_expr
def _normalize(expr: str) -> str:
"""Normalize answer expressions."""
if expr is None:
return None
# Remove enclosing `\text{}`.
m = re.search("^\\\\text\{(?P<text>.+?)\}$", expr)
if m is not None:
expr = m.group("text")
expr = expr.replace("\\%", "%")
expr = expr.replace("\\$", "$")
expr = expr.replace("$", "")
expr = expr.replace("%", "")
expr = expr.replace("³", "")
expr = expr.replace("²", "")
expr = expr.replace("°", "")
expr = expr.replace(" or ", " , ")
expr = expr.replace(" and ", " , ")
expr = expr.replace("million", "*10^6")
expr = expr.replace("billion", "*10^9")
expr = expr.replace("trillion", "*10^12")
for unit in [
"degree",
"cm",
"centimeter",
"meter",
"mile",
"second",
"minute",
"hour",
"day",
"week",
"month",
"year",
"foot",
"feet",
"inch",
"yard",
"liter",
]:
expr = re.sub(f"{unit}(es)?(s)? *(\^[0-9]+)?", "", expr)
expr = re.sub(f"\^ *\\\\circ", "", expr)
# expr = re.sub(f"\^*\\\\circ", "", expr)
if len(expr) > 0 and expr[0] == "{" and expr[-1] == "}":
expr = expr[1:-1]
expr = re.sub(",\\\\! *", "", expr)
if _is_float(expr) and _is_int(float(expr)):
expr = str(int(round(float(expr))))
if "\\" in expr:
try:
expr = _parse_latex(expr)
except:
pass
# edge case with mixed numbers and negative signs
expr = re.sub("- *", "-", expr)
expr = _inject_implicit_mixed_number(expr)
# expr = expr.replace(" ", "")
# # if we somehow still have latex braces here, just drop them
# expr = expr.replace("{", "")
# expr = expr.replace("}", "")
# don't be case sensitive for text answers
expr = expr.lower()
if _str_is_int(expr):
expr = str(_str_to_int(expr))
return expr
def count_unknown_letters_in_expr(expr: str):
expr = expr.replace("sqrt", "")
expr = expr.replace("frac", "")
letters_in_expr = set([x for x in expr if x.isalpha()])
return len(letters_in_expr)
def should_allow_eval(expr: str):
# we don't want to try parsing unknown text or functions of more than two variables
if count_unknown_letters_in_expr(expr) > 2:
return False
for bad_string in BAD_SUBSTRINGS:
if bad_string in expr:
return False
for bad_regex in BAD_REGEXES:
if re.search(bad_regex, expr) is not None:
return False
return True
def are_equal_under_sympy(ground_truth_normalized: str, given_normalized: str):
are_equal = False
try:
expr = f"({ground_truth_normalized})-({given_normalized})"
if should_allow_eval(expr):
sympy_diff = _sympy_parse(expr)
simplified = sympy.simplify(sympy_diff)
if simplified == 0:
are_equal = True
except:
pass
return are_equal
def split_tuple(expr: str):
"""
Split the elements in a tuple/interval, while handling well-formatted commas in large numbers
"""
expr = _strip_properly_formatted_commas(expr)
if len(expr) == 0:
return []
if (
len(expr) > 2
and expr[0] in TUPLE_CHARS
and expr[-1] in TUPLE_CHARS
and all([ch not in expr[1:-1] for ch in TUPLE_CHARS])
):
elems = [elem.strip() for elem in expr[1:-1].split(",")]
else:
elems = [expr]
return elems
def grade_answer(given_answer: str, ground_truth: str) -> bool:
"""
The answer will be considered correct if:
(a) it normalizes to the same string as the ground truth answer
OR
(b) sympy can simplify the difference between the expressions to 0
"""
if given_answer is None:
return False
ground_truth_normalized_mathd = math_normalize.normalize_answer(ground_truth)
given_answer_normalized_mathd = math_normalize.normalize_answer(given_answer)
# be at least as lenient as mathd
if ground_truth_normalized_mathd == given_answer_normalized_mathd:
return True
ground_truth_normalized = _normalize(ground_truth)
given_normalized = _normalize(given_answer)
if ground_truth_normalized is None:
return False
if ground_truth_normalized == given_normalized:
return True
if len(given_normalized) == 0:
return False
ground_truth_elems = split_tuple(ground_truth_normalized)
given_elems = split_tuple(given_normalized)
if len(ground_truth_elems) > 1 and (
ground_truth_normalized[0] != given_normalized[0]
or ground_truth_normalized[-1] != given_normalized[-1]
):
is_correct = False
elif len(ground_truth_elems) != len(given_elems):
is_correct = False
else:
for ground_truth_elem, given_elem in zip(ground_truth_elems, given_elems):
if _is_frac(ground_truth_elem) and _is_frac(given_elem):
# if fractions aren't reduced, then shouldn't be marked as correct
# so, we don't want to allow sympy.simplify in this case
is_correct = ground_truth_elem == given_elem
elif _str_is_int(ground_truth_elem) != _str_is_int(given_elem):
# if the ground truth answer is an integer, we require the given answer to be a strict match (no sympy.simplify)
is_correct = False
else:
is_correct = are_equal_under_sympy(ground_truth_elem, given_elem)
if not is_correct:
break
return is_correct
def remove_boxed(s):
left = "\\boxed{"
try:
assert s[:len(left)] == left
assert s[-1] == "}"
return s[len(left):-1]
except:
return None
def _last_boxed_only_string(string):
idx = string.rfind("\\boxed")
if idx < 0:
idx = string.rfind("\\fbox")
if idx < 0:
return None
i = idx
left_brace_idx = None
right_brace_idx = None
num_left_braces_open = 0
while i < len(string):
if string[i] == "{":
num_left_braces_open += 1
if left_brace_idx is None:
left_brace_idx = i
elif string[i] == "}":
num_left_braces_open -= 1
if num_left_braces_open == 0:
right_brace_idx = i
break
i += 1
if left_brace_idx is None or right_brace_idx is None:
return None
return string[left_brace_idx + 1: right_brace_idx].strip()
def match_answer(response):
is_matched = False
for ans_marker in ['answer:', "answer is", "answers are"]:
ans_idx = response.lower().rfind(ans_marker)
if ans_idx != -1:
is_matched = True
response = response[ans_idx + len(ans_marker):].strip()
if response.endswith("\n"):
response = response[:-2]
for ans_marker in ["is answer", "is the answer", "are answers", "are the answers"]:
ans_idx = response.lower().rfind(ans_marker)
if ans_idx != -1:
is_matched = True
response = response[:ans_idx].strip()
if response.endswith("\n"):
response = response[:-2]
# Find boxed
ans_boxed = _last_boxed_only_string(response)
if ans_boxed:
is_matched = True
response = ans_boxed
if ". " in response:
dot_idx = response.lower().rfind(". ")
if dot_idx != -1:
response = response[:dot_idx].strip()
for ans_marker in ['be ', "is ", "are ", "=", ": ", "get ", 'be\n', "is\n", "are\n", ":\n", "get\n"]:
ans_idx = response.lower().rfind(ans_marker)
if ans_idx != -1:
is_matched = True
response = response[ans_idx + len(ans_marker):].strip()
if response.endswith("\n"):
response = response[:-2]
is_matched = is_matched if any([c.isdigit() for c in response]) else False # answer must have a digit
return is_matched, response
length_units = [
" m", " cm", " mm", " km", " mi", " yd", " ft",
" nm", " µm"
]
import math
def evaluate_math(model_output: str, ground_truth: str) -> bool:
model_output = str(model_output)
for unit in length_units:
if unit in model_output:
model_output = model_output.split(unit)[0].strip()
ground_truth = str(ground_truth)
for unit in length_units:
if unit in ground_truth:
ground_truth = ground_truth.split(unit)[0].strip()
if model_output == "False" and ground_truth == "No":
return True, model_output
if model_output.lower() == ground_truth.lower():
return True, model_output
is_matched, extracted_model_output = match_answer(model_output)
# grade simple algebra questions. if succeed, return; otherwise, proceed to more complex grading
if grade_answer(extracted_model_output, ground_truth):
return True, extracted_model_output
# return True
try:
if "\pi" in extracted_model_output or "\pi" in ground_truth:
equivs = []
for pi in [math.pi, 3.14]:
equivs.append(math_equal(extracted_model_output, ground_truth, timeout=True, pi=pi))
is_correct = any(equivs)
else:
is_correct = math_equal(extracted_model_output, ground_truth, timeout=True)
except:
is_correct = False
# print(f"{extracted_model_output=}\n", f"{model_output=}\n", f"{ground_truth=}\n")
return is_correct, extracted_model_output
is_corr= evaluate_math(model_output="45", ground_truth="45°")
print(is_corr)
|