#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ predict_models_dir.py Predict for all models in models_dir on a folder of FASTA genomes. Optionally annotate with ground truth from a TSV and compute the same metrics as in your original script (overall + Isolate + MAG + AUC). Inputs: --genomes_dir Folder with FASTA files (.fna/.fa/.fasta) --models_dir Folder with model_*.joblib + feature_columns_*.json --outdir Output folder --truth_tsv OPTIONAL: genomes-all_metadata_with_genetic_code_id_noNA.tsv (must contain Genome, Genome_type, Genetic_code_ID) Ground truth (if provided): ALT = Genetic_code_ID != 11 STD = Genetic_code_ID == 11 Outputs: - /__pred.csv (per model, per genome) - /all_models_predictions_long.csv (long: model x genome) - /prediction_summary.csv (ONLY if truth_tsv is provided) - /top_models_by_pr_auc.txt (ONLY if truth_tsv is provided) Requires: - aragorn in PATH (or pass --aragorn) """ import os import re import json import time import argparse import subprocess from pathlib import Path from collections import Counter import numpy as np import pandas as pd from joblib import load as joblib_load from sklearn.metrics import ( confusion_matrix, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, average_precision_score, ) from sklearn.base import BaseEstimator, ClassifierMixin, clone # ========================= # PU class (for joblib load) # ========================= class PUBaggingClassifier(BaseEstimator, ClassifierMixin): def __init__(self, base_estimator, n_bags=15, u_ratio=3.0, random_state=42): self.base_estimator = base_estimator self.n_bags = int(n_bags) self.u_ratio = float(u_ratio) self.random_state = int(random_state) self.models_ = None self.classes_ = np.array([0, 1], dtype=int) def fit(self, X, y, sample_weight=None): y = np.asarray(y).astype(int) pos_idx = np.where(y == 1)[0] unl_idx = np.where(y == 0)[0] if pos_idx.size == 0: raise ValueError("PU training requires at least one positive sample (y==1).") rng = np.random.RandomState(self.random_state) self.models_ = [] if unl_idx.size == 0: m = clone(self.base_estimator) try: if sample_weight is not None: m.fit(X, y, sample_weight=np.asarray(sample_weight)) else: m.fit(X, y) except TypeError: m.fit(X, y) self.models_.append(m) return self k_u = int(min(unl_idx.size, max(1, round(self.u_ratio * pos_idx.size)))) for _ in range(self.n_bags): u_b = rng.choice(unl_idx, size=k_u, replace=(k_u > unl_idx.size)) idx_b = np.concatenate([pos_idx, u_b]) X_b = X.iloc[idx_b] if hasattr(X, "iloc") else X[idx_b] y_b = y[idx_b] sw_b = None if sample_weight is not None: sw_b = np.asarray(sample_weight)[idx_b] m = clone(self.base_estimator) try: if sw_b is not None: m.fit(X_b, y_b, sample_weight=sw_b) else: m.fit(X_b, y_b) except TypeError: m.fit(X_b, y_b) self.models_.append(m) return self def predict_proba(self, X): if not self.models_: raise RuntimeError("PUBaggingClassifier not fitted") probs = [m.predict_proba(X) for m in self.models_] return np.mean(np.stack(probs, axis=0), axis=0) def predict(self, X): return (self.predict_proba(X)[:, 1] >= 0.5).astype(int) # ========================= # Feature extraction # ========================= CODON_RE = re.compile(r"\(([ACGTUacgtu]{3})\)") def set_single_thread_env(): os.environ["OMP_NUM_THREADS"] = "1" os.environ["OPENBLAS_NUM_THREADS"] = "1" os.environ["MKL_NUM_THREADS"] = "1" os.environ["VECLIB_MAXIMUM_THREADS"] = "1" os.environ["NUMEXPR_NUM_THREADS"] = "1" def list_fasta_files(genomes_dir: str): exts = (".fna", ".fa", ".fasta") paths = [] for fn in os.listdir(genomes_dir): p = os.path.join(genomes_dir, fn) if not os.path.isfile(p): continue if fn.endswith(exts): paths.append(p) return sorted(paths) def calc_gc_and_tetra(fasta_path): bases = ["A", "C", "G", "T"] all_kmers = ["".join([a, b, c, d]) for a in bases for b in bases for c in bases for d in bases] tetra_counts = {k: 0 for k in all_kmers} A = C = G = T = 0 tail = "" with open(fasta_path, "r") as fh: for line in fh: if line.startswith(">"): continue s = line.strip().upper().replace("U", "T") s = re.sub(r"[^ACGT]", "N", s) if not s: continue seq = tail + s for ch in s: if ch == "A": A += 1 elif ch == "C": C += 1 elif ch == "G": G += 1 elif ch == "T": T += 1 for i in range(len(seq) - 3): k = seq[i:i+4] if "N" in k: continue tetra_counts[k] += 1 tail = seq[-3:] if len(seq) >= 3 else seq total_acgt = A + C + G + T gc_percent = (float(G + C) / float(total_acgt) * 100.0) if total_acgt > 0 else 0.0 windows_total = sum(tetra_counts.values()) denom = float(windows_total) if windows_total > 0 else 1.0 tetra_freq = {f"tetra_{k}": float(v) / denom for k, v in tetra_counts.items()} features = { "gc_percent": float(gc_percent), "genome_length": float(total_acgt), } features.update(tetra_freq) return features def run_aragorn(aragorn_bin, fasta_path, out_txt): cmd = [aragorn_bin, "-t", "-l", "-gc1", "-w", "-o", out_txt, fasta_path] with open(os.devnull, "w") as devnull: subprocess.run(cmd, stdout=devnull, stderr=devnull, check=False) def parse_anticodons_from_aragorn(aragorn_txt): counts = Counter() if not os.path.isfile(aragorn_txt): return counts with open(aragorn_txt, "r") as fh: for line in fh: for m in CODON_RE.finditer(line): cod = m.group(1).upper().replace("U", "T") if re.fullmatch(r"[ACGT]{3}", cod): counts[cod] += 1 return counts def build_ac_features(anticodon_counts): bases = ["A", "C", "G", "T"] feats = {} for a in bases: for b in bases: for c in bases: cod = f"{a}{b}{c}" feats[f"ac_{cod}"] = float(anticodon_counts.get(cod, 0)) return feats def build_plr_features(ac_features, needed_plr_cols, eps=0.5): plr_feats = {} for col in needed_plr_cols: core = col[len("plr_"):] left, right = core.split("__") a = ac_features.get(f"ac_{left}", 0.0) b = ac_features.get(f"ac_{right}", 0.0) plr_feats[col] = float(np.log((a + eps) / (b + eps))) return plr_feats def build_features_for_genome(fasta_path, aragorn_bin, feature_columns, reuse_aragorn=True): acc = os.path.splitext(os.path.basename(fasta_path))[0] feat_gc_tetra = calc_gc_and_tetra(fasta_path) tmp_aragorn = fasta_path + ".aragorn.txt" if reuse_aragorn and os.path.isfile(tmp_aragorn): try: if os.path.getmtime(tmp_aragorn) < os.path.getmtime(fasta_path): run_aragorn(aragorn_bin, fasta_path, tmp_aragorn) except Exception: run_aragorn(aragorn_bin, fasta_path, tmp_aragorn) else: run_aragorn(aragorn_bin, fasta_path, tmp_aragorn) anticodon_counts = parse_anticodons_from_aragorn(tmp_aragorn) ac_feats = build_ac_features(anticodon_counts) plr_cols = [c for c in feature_columns if c.startswith("plr_")] plr_feats = build_plr_features(ac_feats, plr_cols) if plr_cols else {} all_feats = {} all_feats.update(ac_feats) all_feats.update(plr_feats) all_feats.update(feat_gc_tetra) row = {col: float(all_feats.get(col, 0.0)) for col in feature_columns} return acc, row # ========================= # Ground truth from TSV (optional) # ========================= def load_truth_tsv(tsv_path: str) -> pd.DataFrame: df = pd.read_csv(tsv_path, sep="\t", dtype=str) for col in ["Genome", "Genome_type", "Genetic_code_ID"]: if col not in df.columns: raise ValueError(f"TSV missing column '{col}'. Columns: {list(df.columns)}") df["Genome"] = df["Genome"].astype(str) df["Genome_type"] = df["Genome_type"].astype(str) df["Genetic_code_ID"] = pd.to_numeric(df["Genetic_code_ID"], errors="coerce").astype("Int64") # ALT ground truth: != 11 df["y_true_alt"] = df["Genetic_code_ID"].apply(lambda x: (pd.notna(x) and int(x) != 11)).astype(int) df["true_label"] = df["y_true_alt"].map({0: "STD", 1: "ALT"}) return df[["Genome", "Genome_type", "Genetic_code_ID", "y_true_alt", "true_label"]] # ========================= # Metrics (only if truth exists) # ========================= def safe_confusion(y_true, y_pred): cm = confusion_matrix(y_true, y_pred, labels=[0, 1]) tn, fp, fn, tp = int(cm[0,0]), int(cm[0,1]), int(cm[1,0]), int(cm[1,1]) return tn, fp, fn, tp def compute_metrics_block(y_true, y_pred, y_score=None): y_true = np.asarray(y_true, dtype=int) y_pred = np.asarray(y_pred, dtype=int) tn, fp, fn, tp = safe_confusion(y_true, y_pred) n = int(len(y_true)) pos = int(np.sum(y_true == 1)) out = { "n": n, "positives": pos, "tn": tn, "fp": fp, "fn": fn, "tp": tp, "accuracy": float(accuracy_score(y_true, y_pred)) if n else np.nan, "precision": float(precision_score(y_true, y_pred, zero_division=0)) if n else np.nan, "recall": float(recall_score(y_true, y_pred, zero_division=0)) if n else np.nan, "f1": float(f1_score(y_true, y_pred, zero_division=0)) if n else np.nan, "specificity": float(tn / (tn + fp)) if (tn + fp) > 0 else np.nan, "fn_rate": float(fn / (fn + tp)) if (fn + tp) > 0 else np.nan, # 1 - recall "fp_rate": float(fp / (fp + tn)) if (fp + tn) > 0 else np.nan, } if y_score is not None: y_score = np.asarray(y_score, dtype=float) if n > 0 and len(np.unique(y_true)) == 2: try: out["roc_auc"] = float(roc_auc_score(y_true, y_score)) except Exception: out["roc_auc"] = np.nan try: out["pr_auc"] = float(average_precision_score(y_true, y_score)) except Exception: out["pr_auc"] = np.nan else: out["roc_auc"] = np.nan out["pr_auc"] = np.nan else: out["roc_auc"] = np.nan out["pr_auc"] = np.nan return out # ========================= # Model discovery # ========================= def find_models(models_dir: Path): return sorted(models_dir.glob("model_*.joblib")) def pick_feature_cols(models_dir: Path, feature_cols_arg: str | None): if feature_cols_arg: return Path(feature_cols_arg) p = models_dir / "feature_columns_64log_gc_tetra.json" if p.exists(): return p candidates = sorted(models_dir.glob("feature_columns_*.json")) if not candidates: raise FileNotFoundError(f"No feature_columns_*.json found in {models_dir}") return candidates[0] # ========================= # Main # ========================= def main(): ap = argparse.ArgumentParser( description="Predict for all models in a directory; optionally annotate truth from TSV and compute metrics." ) ap.add_argument("--genomes_dir", required=True, help="Folder with FASTA genomes (.fna/.fa/.fasta).") ap.add_argument("--models_dir", required=True, help="Folder with model_*.joblib + feature_columns_*.json.") ap.add_argument("--outdir", required=True, help="Output folder for CSV predictions.") ap.add_argument("--aragorn", default="aragorn", help="Path to ARAGORN binary.") ap.add_argument("--feature_cols", default=None, help="Optional: force a specific feature_columns_*.json.") ap.add_argument("--reuse_aragorn", action="store_true", help="Reuse *.aragorn.txt if it exists and is fresh.") ap.add_argument( "--truth_tsv", default=None, help="OPTIONAL: genomes-all_metadata_with_genetic_code_id_noNA.tsv (Genome, Genome_type, Genetic_code_ID).", ) args = ap.parse_args() set_single_thread_env() genomes_dir = Path(args.genomes_dir) models_dir = Path(args.models_dir) outdir = Path(args.outdir) outdir.mkdir(parents=True, exist_ok=True) fasta_files = list_fasta_files(str(genomes_dir)) if not fasta_files: raise SystemExit(f"No FASTA files found in {genomes_dir}") models = find_models(models_dir) if not models: raise SystemExit(f"No model_*.joblib found in {models_dir}") feat_cols_path = pick_feature_cols(models_dir, args.feature_cols) print(f"[INFO] Genomes : {len(fasta_files)} in {genomes_dir}") print(f"[INFO] Models : {len(models)} in {models_dir}") print(f"[INFO] FeatCols: {feat_cols_path}") print(f"[INFO] Truth : {args.truth_tsv if args.truth_tsv else '(none)'}") # Load feature columns with open(feat_cols_path, "r") as fh: feature_columns = json.load(fh) # Optional truth truth = None if args.truth_tsv: truth = load_truth_tsv(args.truth_tsv) # Build features once (shared across all models) t_feat0 = time.time() rows, accs = [], [] for i, fasta in enumerate(fasta_files, 1): if i % 50 == 0 or i == 1 or i == len(fasta_files): print(f"[FEAT] {i}/{len(fasta_files)} {os.path.basename(fasta)}") acc, feats = build_features_for_genome( fasta_path=fasta, aragorn_bin=args.aragorn, feature_columns=feature_columns, reuse_aragorn=args.reuse_aragorn ) accs.append(acc) rows.append(feats) X = pd.DataFrame(rows, index=accs)[feature_columns] print(f"[FEAT] Built X={X.shape} in {(time.time()-t_feat0):.1f}s") # Annotation base table (always exists) ann = pd.DataFrame({"Genome": accs}) if truth is not None: ann = ann.merge(truth, how="left", on="Genome") n_annot = int(ann["y_true_alt"].notna().sum()) n_missing = int(len(ann) - n_annot) print(f"[TRUTH] Annotated: {n_annot}/{len(ann)} Missing_in_TSV: {n_missing}") else: # Ensure columns exist for consistent outputs ann["Genome_type"] = pd.NA ann["Genetic_code_ID"] = pd.NA ann["y_true_alt"] = pd.NA ann["true_label"] = pd.NA long_rows = [] summary_rows = [] for mi, model_path in enumerate(models, 1): model_name = model_path.stem print("\n" + "="*80) print(f"[{mi}/{len(models)}] MODEL: {model_path.name}") print("="*80) t0 = time.time() model = joblib_load(model_path) # Probabilities (if possible) proba = None if hasattr(model, "predict_proba"): try: proba = model.predict_proba(X)[:, 1] except Exception: proba = None # Pred class if hasattr(model, "predict"): try: yhat = model.predict(X) except Exception: yhat = (proba >= 0.5).astype(int) if proba is not None else np.zeros(len(X), dtype=int) else: yhat = (proba >= 0.5).astype(int) if proba is not None else np.zeros(len(X), dtype=int) elapsed = time.time() - t0 df_pred = ann.copy() df_pred["model"] = model_name df_pred["y_pred_alt"] = np.asarray(yhat).astype(int) df_pred["pred_label"] = df_pred["y_pred_alt"].map({0: "STD", 1: "ALT"}) df_pred["proba_alt"] = np.asarray(proba, dtype=float) if proba is not None else np.nan out_csv = outdir / f"{model_name}__pred.csv" df_pred.to_csv(out_csv, index=False) print(f"[WRITE] {out_csv} rows={len(df_pred)} time={(elapsed/60):.2f} min") # Long output keep_cols = ["model", "Genome", "Genome_type", "Genetic_code_ID", "y_true_alt", "y_pred_alt", "proba_alt"] keep_cols = [c for c in keep_cols if c in df_pred.columns] long_rows.extend(df_pred[keep_cols].to_dict(orient="records")) # Metrics only if we have truth annotations if truth is not None: df_eval = df_pred[df_pred["y_true_alt"].notna()].copy() if df_eval.shape[0] == 0: print("[METRICS] No annotated genomes for this run (truth TSV did not match Genome names).") continue y_true = df_eval["y_true_alt"].astype(int).values y_pred = df_eval["y_pred_alt"].astype(int).values y_score = df_eval["proba_alt"].astype(float).values if proba is not None else None overall = compute_metrics_block(y_true, y_pred, y_score=y_score) def subset_metrics(gen_type: str): sub = df_eval[df_eval["Genome_type"] == gen_type] if sub.shape[0] == 0: return None yt = sub["y_true_alt"].astype(int).values yp = sub["y_pred_alt"].astype(int).values ys = sub["proba_alt"].astype(float).values if proba is not None else None return compute_metrics_block(yt, yp, y_score=ys) iso = subset_metrics("Isolate") mag = subset_metrics("MAG") srow = { "model": model_name, "model_file": str(model_path), "feature_cols": str(feat_cols_path), "n_genomes_total": int(len(df_pred)), "n_annotated": int(df_eval.shape[0]), "n_missing_truth": int(len(df_pred) - df_eval.shape[0]), "elapsed_sec": float(elapsed), "elapsed_min": float(elapsed/60.0), } for k, v in overall.items(): srow[f"overall_{k}"] = v if iso is not None: for k, v in iso.items(): srow[f"isolate_{k}"] = v if mag is not None: for k, v in mag.items(): srow[f"mag_{k}"] = v summary_rows.append(srow) # Write combined outputs long_csv = outdir / "all_models_predictions_long.csv" pd.DataFrame(long_rows).to_csv(long_csv, index=False) print(f"\n[WRITE] {long_csv} rows={len(long_rows)}") if truth is not None: summary_csv = outdir / "prediction_summary.csv" df_sum = pd.DataFrame(summary_rows) df_sum.to_csv(summary_csv, index=False) print(f"[WRITE] {summary_csv} rows={len(df_sum)}") # Top models report if not df_sum.empty and "overall_pr_auc" in df_sum.columns: df_rank = df_sum.sort_values(["overall_pr_auc", "overall_roc_auc"], ascending=False, na_position="last") report_path = outdir / "top_models_by_pr_auc.txt" cols = [ "model", "n_annotated", "overall_positives", "overall_precision", "overall_recall", "overall_f1", "overall_pr_auc", "overall_roc_auc", "isolate_fn", "isolate_fp", "mag_fn", "mag_fp", "elapsed_min", ] cols = [c for c in cols if c in df_rank.columns] with open(report_path, "w", encoding="utf-8") as f: f.write("Top models by overall PR-AUC (ALT = Genetic_code_ID != 11)\n") f.write(df_rank[cols].head(25).to_string(index=False)) f.write("\n") print(f"[WRITE] {report_path}") print("[DONE]") if __name__ == "__main__": main()