tRNA / 80_20_split_fixed.py
QPromaQ's picture
Upload 125 files
f8a4853 verified
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# 80_20_proportion.py stratified 80/20 split with Bacteria filter & grouped by base accession (GCA/GCF).
# Input: --ndjson (NDJSON), --supp1 (optional Supp1.csv filter: domain B by assembly), --supp2 (Supp2.xlsx for labels)
# Output: subsetXX/train.jsonl, subsetXX/test.jsonl, subsetXX/manifest.json
#
# CHANGE: Remove contaminated assemblies listed in Supp2.xlsx where
# "Evidence of assembly contamination with alt gen code" == "yes"
# (based on the "assembly" column).
import argparse, json, re, sys
from pathlib import Path
import numpy as np
import pandas as pd
from sklearn.model_selection import StratifiedGroupKFold
def extract_acc_base(acc: str) -> str:
m = re.match(r'^(G[CF]A_\d+)', str(acc))
return m.group(1) if m else str(acc).split('.')[0]
def load_bacterial_bases_from_supp1(supp1_csv: str) -> set:
df = pd.read_csv(supp1_csv)
cols = {c.lower().strip(): c for c in df.columns}
dom_col = cols.get('domain of life') or cols.get('domain_of_life') or cols.get('domain') or 'domain of life'
asm_col = cols.get('assembly') or cols.get('assembly accession') or 'assembly'
if dom_col not in df.columns or asm_col not in df.columns:
raise ValueError(f"Supp1.csv must contain columns similar to 'domain of life' and 'assembly'. Found: {list(df.columns)}")
mask = df[dom_col].astype(str).str.strip().str.upper().eq('B')
df_b = df.loc[mask, [asm_col]].dropna()
bases = set(extract_acc_base(a) for a in df_b[asm_col].astype(str))
return bases
def load_alt_bases_from_supp2_legacy(supp2_xlsx: str) -> set:
"""
ORIGINAL behavior (kept): column index-based extraction.
WARNING: This assumes the 4th column (usecols=[3]) contains assembly IDs for the ALT label.
"""
df = pd.read_excel(supp2_xlsx, header=None, usecols=[3])
alt = (
df.iloc[:, 0]
.dropna()
.astype(str)
.unique()
.tolist()
)
return set(extract_acc_base(x) for x in alt)
def load_contam_bases_from_supp2(supp2_xlsx: str) -> set:
"""
NEW: assemblies to REMOVE (contaminated), where:
Evidence of assembly contamination with alt gen code == 'yes'
Uses named columns: 'assembly' + 'Evidence of assembly contamination with alt gen code'
"""
df = pd.read_excel(supp2_xlsx)
cols = {c.lower().strip(): c for c in df.columns}
asm_col = cols.get('assembly')
ev_col = cols.get('evidence of assembly contamination with alt gen code')
if asm_col is None or ev_col is None:
raise ValueError(
"Supp2.xlsx must contain columns 'assembly' and "
"'Evidence of assembly contamination with alt gen code' to filter contaminated rows. "
f"Found columns: {list(df.columns)}"
)
mask = (
df[ev_col]
.astype(str)
.str.strip()
.str.lower()
.eq('yes')
)
contam_bases = (
df.loc[mask, asm_col]
.dropna()
.astype(str)
.apply(extract_acc_base)
.unique()
.tolist()
)
return set(contam_bases)
def read_ndjson_records(path: str):
with open(path, 'r') as fh:
for line in fh:
line = line.strip()
if not line:
continue
try:
yield json.loads(line)
except Exception:
continue
def main():
ap = argparse.ArgumentParser(description="Create grouped stratified 80/20 splits compatible with Mass_models.py")
ap.add_argument('--ndjson', required=True, help='Input NDJSON file (one JSON per line)')
ap.add_argument('--supp1', required=False, help='Optional Supp1.csv filter: keep only Bacteria (domain==B) by assembly')
ap.add_argument('--supp2', required=True, help='Supp2.xlsx (used for legacy alt labels + contamination filter)')
ap.add_argument('--outdir', required=True, help='Output directory root for subsets')
ap.add_argument('--n_splits', type=int, default=1, help='Number of replicate 80/20 splits')
ap.add_argument('--seed', type=int, default=42, help='Random seed')
args = ap.parse_args()
ndjson_path = Path(args.ndjson)
if not ndjson_path.exists():
sys.exit(f"[ERR ] NDJSON not found: {ndjson_path}")
bacteria_bases = None
if args.supp1:
print(f"[FILTER] Loading Supp1 (Bacteria-only by 'domain of life' & 'assembly')…")
bacteria_bases = load_bacterial_bases_from_supp1(args.supp1)
print(f"[FILTER] Allowed assembly bases: {len(bacteria_bases)}")
# Original label behavior preserved
alt_bases = load_alt_bases_from_supp2_legacy(args.supp2)
print(f"[LABEL] Alt bases from Supp2 (legacy col[3]): {len(alt_bases)}")
# NEW: contaminated -> remove
contam_bases = load_contam_bases_from_supp2(args.supp2)
print(f"[FILTER] Contaminated bases from Supp2 where evidence == 'yes': {len(contam_bases)}")
# If something is both "alt" (legacy) and contaminated, it MUST be removed.
overlap = len(alt_bases & contam_bases)
if overlap:
print(f"[WARN ] Overlap alt vs contaminated: {overlap} bases (will be REMOVED from dataset)")
print(f"[LOAD ] Reading NDJSON: {ndjson_path}")
records, groups, y = [], [], []
dropped_contam = 0
dropped_supp1 = 0
for obj in read_ndjson_records(str(ndjson_path)):
acc = obj.get("acc")
if not acc:
continue
base = extract_acc_base(acc)
# Optional bacteria-only filter
if bacteria_bases is not None and base not in bacteria_bases:
dropped_supp1 += 1
continue
# NEW contamination filter (REMOVE)
if base in contam_bases:
dropped_contam += 1
continue
records.append(obj)
groups.append(base)
y.append(1 if base in alt_bases else 0)
if not records:
sys.exit("[ERR ] No records after filtering. Check Supp1 filter / Supp2 contamination filter / NDJSON.")
y = np.array(y, dtype=int)
pos = int(y.sum())
print(
f"[DATA ] kept={len(records)} | positives={pos} ({100.0*pos/len(records):.2f}%) | "
f"groups={len(set(groups))} | dropped_contam={dropped_contam} | dropped_supp1={dropped_supp1}"
)
outroot = Path(args.outdir)
outroot.mkdir(parents=True, exist_ok=True)
sgkf = StratifiedGroupKFold(n_splits=5, shuffle=True, random_state=args.seed)
for k in range(args.n_splits):
subset_dir = outroot / f"subset{k+1:02d}"
subset_dir.mkdir(parents=True, exist_ok=True)
idx = np.arange(len(records))
tr_idx, te_idx = next(sgkf.split(idx, y, groups))
train_records = [records[i] for i in tr_idx]
test_records = [records[i] for i in te_idx]
with open(subset_dir / "train.jsonl", "w") as ftr:
for r in train_records:
ftr.write(json.dumps(r, separators=(',', ':')) + "\n")
with open(subset_dir / "test.jsonl", "w") as fte:
for r in test_records:
fte.write(json.dumps(r, separators=(',', ':')) + "\n")
y_tr = y[tr_idx]; y_te = y[te_idx]
manifest = {
"n_total": int(len(records)),
"n_train": int(len(train_records)),
"n_test": int(len(test_records)),
"positives_total": int(y.sum()),
"positives_train": int(y_tr.sum()),
"positives_test": int(y_te.sum()),
"pct_pos_total": float(100.0 * y.sum() / len(records)),
"pct_pos_train": float(100.0 * y_tr.sum() / len(train_records)),
"pct_pos_test": float(100.0 * y_te.sum() / len(test_records)),
"groups_total": int(len(set(groups))),
"seed": int(args.seed + k),
"source_ndjson": str(ndjson_path.resolve()),
"supp2_contam_removed": int(len(contam_bases)),
}
(subset_dir / "manifest.json").write_text(json.dumps(manifest, indent=2))
print(f"[WRITE] {subset_dir} | train={len(train_records)} test={len(test_records)} | pos_tr={int(y_tr.sum())} pos_te={int(y_te.sum())}")
print("[DONE ] All subsets written.")
if __name__ == "__main__":
main()