hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
6cccae7fad14badcd9d04577d27f28d557fe726e
212
py
Python
visualizing_russian_tools/wsgi.py
arthurian/visualizing_russian_tools
65fd37839dc0650bb25d1f98904da5b79ae1a754
[ "BSD-3-Clause" ]
2
2020-07-10T14:17:03.000Z
2020-11-17T09:18:26.000Z
visualizing_russian_tools/wsgi.py
eelegiap/visualizing_russian_tools
9c36baebc384133c7c27d7a7c4e0cedc8cb84e74
[ "BSD-3-Clause" ]
13
2019-03-17T13:27:31.000Z
2022-01-18T17:03:14.000Z
visualizing_russian_tools/wsgi.py
eelegiap/visualizing_russian_tools
9c36baebc384133c7c27d7a7c4e0cedc8cb84e74
[ "BSD-3-Clause" ]
2
2019-10-19T16:37:44.000Z
2020-06-22T13:30:20.000Z
"""WSGI config.""" import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'visualizing_russian_tools.settings.local') application = get_wsgi_application()
21.2
91
0.811321
e6dc044dbc933e427b91aab0bc5b1f1fa4dc6c14
6,750
py
Python
examples/librispeech/evaluation/eval_ensemble8_ctc.py
sundogrd/tensorflow_end2end_speech_recognition
61e4a65fb5c9f3d9f690d713dcd77a48b1de0a14
[ "MIT" ]
351
2017-05-27T08:31:27.000Z
2022-03-03T16:47:27.000Z
examples/librispeech/evaluation/eval_ensemble8_ctc.py
eLavin11/tensorflow_end2end_speech_recognition
65b9728089d5e92b25b92384a67419d970399a64
[ "MIT" ]
19
2017-07-19T13:12:18.000Z
2019-06-12T06:07:13.000Z
examples/librispeech/evaluation/eval_ensemble8_ctc.py
eLavin11/tensorflow_end2end_speech_recognition
65b9728089d5e92b25b92384a67419d970399a64
[ "MIT" ]
127
2017-06-12T16:27:21.000Z
2021-12-29T02:22:34.000Z
#! /usr/bin/env python # -*- coding: utf-8 -*- """Evaluate the ensemble of 8 CTC models (Librispeech corpus).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from os.path import join, abspath import sys import yaml import argparse sys.path.append(abspath('../../../')) from experiments.librispeech.data.load_dataset_ctc import Dataset from experiments.librispeech.evaluation.eval_ensemble4_ctc import do_eval_cer from utils.io.labels.character import Idx2char, Char2idx from utils.evaluation.edit_distance import compute_cer, compute_wer, wer_align from models.ctc.decoders.beam_search_decoder import BeamSearchDecoder parser = argparse.ArgumentParser() parser.add_argument('--result_save_path', type=str, default=None, help='path to save results of ensemble') parser.add_argument('--model1_path', type=str, help='path to the 1st model to evaluate') parser.add_argument('--model2_path', type=str, help='path to the 2nd model to evaluate') parser.add_argument('--model3_path', type=str, help='path to the 3rd model to evaluate') parser.add_argument('--model4_path', type=str, help='path to the 4th model to evaluate') parser.add_argument('--model5_path', type=str, help='path to the 5th model to evaluate') parser.add_argument('--model6_path', type=str, help='path to the 6th model to evaluate') parser.add_argument('--model7_path', type=str, help='path to the 7th model to evaluate') parser.add_argument('--model8_path', type=str, help='path to the 8th model to evaluate') parser.add_argument('--epoch_model1', type=int, default=-1, help='the epoch of 1st model to restore') parser.add_argument('--epoch_model2', type=int, default=-1, help='the epoch of 2nd model to restore') parser.add_argument('--epoch_model3', type=int, default=-1, help='the epoch of 3rd model to restore') parser.add_argument('--epoch_model4', type=int, default=-1, help='the epoch of 4th model to restore') parser.add_argument('--epoch_model5', type=int, default=-1, help='the epoch of 5th model to restore') parser.add_argument('--epoch_model6', type=int, default=-1, help='the epoch of 6th model to restore') parser.add_argument('--epoch_model7', type=int, default=-1, help='the epoch of 7th model to restore') parser.add_argument('--epoch_model8', type=int, default=-1, help='the epoch of 8th model to restore') parser.add_argument('--beam_width', type=int, default=20, help='beam_width (int, optional): beam width for beam search.' + ' 1 disables beam search, which mean greedy decoding.') parser.add_argument('--temperature_infer', type=int, default=1, help='temperature parameter in the inference stage') def do_eval(save_paths, params, beam_width, temperature_infer, result_save_path): """Evaluate the model. Args: save_paths (list): params (dict): A dictionary of parameters epoch_list (list): list of the epoch to restore beam_width (int): beam width for beam search. 1 disables beam search, which mean greedy decoding. eval_batch_size (int): the size of mini-batch when evaluation temperature_infer (int): temperature in the inference stage result_save_path (string, optional): """ if 'temp1' in save_paths[0]: temperature_train = 1 elif 'temp2' in save_paths[0]: temperature_train = 2 else: raise ValueError if result_save_path is not None: sys.stdout = open(join(result_save_path, '8models_traintemp' + str(temperature_train) + '_inftemp' + str(temperature_infer) + '.log'), 'w') print('=' * 30) print(' frame stack %d' % int(params['num_stack'])) print(' beam width: %d' % beam_width) print(' ensemble: %d' % len(save_paths)) print(' temperature (training): %d' % temperature_train) print(' temperature (inference): %d' % temperature_infer) print('=' * 30) # Load dataset test_clean_data = Dataset( data_type='test_clean', train_data_size=params['train_data_size'], label_type=params['label_type'], batch_size=1, splice=params['splice'], num_stack=params['num_stack'], num_skip=params['num_skip'], sort_utt=True) test_other_data = Dataset( data_type='test_other', train_data_size=params['train_data_size'], label_type=params['label_type'], batch_size=1, splice=params['splice'], num_stack=params['num_stack'], num_skip=params['num_skip'], sort_utt=True) print('Test Data Evaluation:') cer_clean_test, wer_clean_test = do_eval_cer( save_paths=save_paths, dataset=test_clean_data, data_type='test_clean', label_type=params['label_type'], num_classes=params['num_classes'] + 1, beam_width=beam_width, temperature_infer=temperature_infer, is_test=True, progressbar=True) print(' CER (clean): %f %%' % (cer_clean_test * 100)) print(' WER (clean): %f %%' % (wer_clean_test * 100)) cer_other_test, wer_other_test = do_eval_cer( save_paths=save_paths, dataset=test_other_data, data_type='test_other', label_type=params['label_type'], num_classes=params['num_classes'] + 1, beam_width=beam_width, temperature_infer=temperature_infer, is_test=True, progressbar=True) print(' CER (other): %f %%' % (cer_other_test * 100)) print(' WER (other): %f %%' % (wer_other_test * 100)) def main(): args = parser.parse_args() # Load config file with open(join(args.model1_path, 'config.yml'), "r") as f: config = yaml.load(f) params = config['param'] # Except for a blank class if params['label_type'] == 'character': params['num_classes'] = 28 else: raise TypeError save_paths = [args.model1_path, args.model2_path, args.model3_path, args.model4_path, args.model5_path, args.model6_path, args.model7_path, args.model8_path] do_eval(save_paths=save_paths, params=params, beam_width=args.beam_width, temperature_infer=args.temperature_infer, result_save_path=args.result_save_path) if __name__ == '__main__': args = sys.argv main()
39.244186
84
0.642519
d4c18a4ba4f803a3f7db76ec1574b182e3a27b0f
1,654
py
Python
PollsProjectRest/urls.py
Parth-Shah-99/Polling-Project-API
6ce7b45d8518a63451ec5cc72ead37a0602eb5f5
[ "MIT" ]
1
2021-06-29T10:07:13.000Z
2021-06-29T10:07:13.000Z
PollsProjectRest/urls.py
Parth-Shah-99/Polling-Project-API
6ce7b45d8518a63451ec5cc72ead37a0602eb5f5
[ "MIT" ]
null
null
null
PollsProjectRest/urls.py
Parth-Shah-99/Polling-Project-API
6ce7b45d8518a63451ec5cc72ead37a0602eb5f5
[ "MIT" ]
null
null
null
"""PollsProjectRest URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf.urls import url from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi schema_view = get_schema_view( openapi.Info( title="Question, Answer, Comment API", default_version='v1', description="Test description", terms_of_service="https://www.google.com/policies/terms/", contact=openapi.Contact(email="example@gmail.com"), license=openapi.License(name="Test License"), ), public=True, permission_classes=(permissions.AllowAny,), ) urlpatterns = [ path('admin/', admin.site.urls), path('', include('polls_api.urls')), url(r'^swagger(?P<format>\.json|\.yaml)$', schema_view.without_ui(cache_timeout=0), name='schema-json'), path('swagger/', schema_view.with_ui('swagger', cache_timeout=0), name='schema-swagger-ui'), path('redoc/', schema_view.with_ui('redoc', cache_timeout=0), name='schema-redoc'), ]
36.755556
108
0.713422
45603116a29e49121ecf8ed8104d09c6e28caacc
1,379
py
Python
ceilometer/api/hooks.py
CiscoSystems/ceilometer
a9267fd94e7854afa0720d761fbe75d946e7167d
[ "Apache-2.0" ]
1
2021-11-22T11:00:53.000Z
2021-11-22T11:00:53.000Z
ceilometer/api/hooks.py
CiscoSystems/ceilometer
a9267fd94e7854afa0720d761fbe75d946e7167d
[ "Apache-2.0" ]
null
null
null
ceilometer/api/hooks.py
CiscoSystems/ceilometer
a9267fd94e7854afa0720d761fbe75d946e7167d
[ "Apache-2.0" ]
null
null
null
# -*- encoding: utf-8 -*- # # Copyright © 2012 New Dream Network, LLC (DreamHost) # # Author: Doug Hellmann <doug.hellmann@dreamhost.com> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo.config import cfg from pecan import hooks from ceilometer import storage class ConfigHook(hooks.PecanHook): """Attach the configuration object to the request so controllers can get to it. """ def before(self, state): state.request.cfg = cfg.CONF class DBHook(hooks.PecanHook): def before(self, state): storage_engine = storage.get_engine(state.request.cfg) state.request.storage_engine = storage_engine state.request.storage_conn = storage_engine.get_connection( state.request.cfg) # def after(self, state): # print 'method:', state.request.method # print 'response:', state.response.status
30.644444
75
0.715011
619e8c6d280c06b5306f0f76801e66eed1511057
882
py
Python
coding/learn_docker/client_demo.py
yatao91/learning_road
e88dc43de98e35922bfc71c222ec71766851e618
[ "MIT" ]
3
2021-05-25T16:58:52.000Z
2022-02-05T09:37:17.000Z
coding/learn_docker/client_demo.py
yataosu/learning_road
e88dc43de98e35922bfc71c222ec71766851e618
[ "MIT" ]
null
null
null
coding/learn_docker/client_demo.py
yataosu/learning_road
e88dc43de98e35922bfc71c222ec71766851e618
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import docker # 使用默认的socket连接docker服务 # client = docker.from_env() client = docker.DockerClient(base_url='tcp://127.0.0.1:2375') # 指定运行容器 # resp = client.containers.run('hello-world') # 后台运行container # resp = client.containers.run('hello-world', detach=True) # # print(resp) # 获取容器列表 container_list = client.containers.list() print(container_list) print("-"*30) # 获取容器 container = client.containers.get('5cbe57a9a7') print(container) print("-"*30) print(dir(container)) print("-"*30) print(container.attrs) print("-"*30) print(container.attrs['Config']['Image']) print("-"*30) print(container.logs(tail=20)) # 停止容器 # container.stop() print("-"*30) # 流式输出日志 # for line in container.logs(stream=True): # print(line.strip()) # 拉取镜像 # resp = client.images.pull('nginx') # print(resp) # 获取镜像列表 image_list = client.images.list() print(image_list)
16.961538
61
0.695011
4791e1de44c8386c2884dee3285db0bf5aa246bb
2,057
py
Python
tests/st/ops/ascend/vector/test_invert_001.py
tianjiashuo/akg
a9cbf642063fb1086a93e8bc6be6feb145689817
[ "Apache-2.0" ]
286
2020-06-23T06:40:44.000Z
2022-03-30T01:27:49.000Z
tests/st/ops/ascend/vector/test_invert_001.py
tianjiashuo/akg
a9cbf642063fb1086a93e8bc6be6feb145689817
[ "Apache-2.0" ]
10
2020-07-31T03:26:59.000Z
2021-12-27T15:00:54.000Z
tests/st/ops/ascend/vector/test_invert_001.py
tianjiashuo/akg
a9cbf642063fb1086a93e8bc6be6feb145689817
[ "Apache-2.0" ]
30
2020-07-17T01:04:14.000Z
2021-12-27T14:05:19.000Z
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ################################################ Testcase_PrepareCondition: Testcase_TestSteps: Testcase_ExpectedResult: """ import os import pytest from tests.common.base import TestBase from tests.common.test_run.ascend.invert_run import invert_run ############################################################ # TestCase= class: put to tests/*/ ############################################################ class TestCase(TestBase): def setup(self): case_name = "test_auto_invert_001" case_path = os.getcwd() self.params_init(case_name, case_path) self.caseresult = True self._log.info("============= {0} Setup case============".format(self.casename)) self.testarg = [ #caseflag,testfuncname,testRunArgs, dimArgs ("invert_001", invert_run, ((1, 128), "uint16", "cce_invert_fp16"), ((128, 128), (128, 128))), ("invert_002", invert_run, ((128, 128), "uint16", "cce_invert_fp16"), ((0, 0), (128, 128))), ("invert_003", invert_run, ((128, 256), "uint16", "cce_invert_fp16"), ((0, 0), (128, 128))), ] return @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_run(self): self.common_run(self.testarg) def teardown(self): self._log.info("============= {0} Teardown============".format(self.casename)) return
33.177419
106
0.609626
9b55d0f02de68b6a1ac653a8647b455b61b62c48
1,251
py
Python
src/pip/_internal/main.py
Nta1e/pip
828cbba70fffc3ad1e4eed40c6c47248ca07a827
[ "MIT" ]
null
null
null
src/pip/_internal/main.py
Nta1e/pip
828cbba70fffc3ad1e4eed40c6c47248ca07a827
[ "MIT" ]
null
null
null
src/pip/_internal/main.py
Nta1e/pip
828cbba70fffc3ad1e4eed40c6c47248ca07a827
[ "MIT" ]
null
null
null
"""Primary application entrypoint. """ from __future__ import absolute_import import locale import logging import os import sys from pip._internal.cli.autocompletion import autocomplete from pip._internal.cli.main_parser import parse_command from pip._internal.commands import create_command from pip._internal.exceptions import PipError from pip._internal.utils import deprecation logger = logging.getLogger(__name__) def main(args=None): if args is None: args = sys.argv[1:] # Configure our deprecation warnings to be sent through loggers deprecation.install_warning_logger() autocomplete() try: cmd_name, cmd_args = parse_command(args) except PipError as exc: sys.stderr.write("ERROR: %s" % exc) sys.stderr.write(os.linesep) sys.exit(1) # Needed for locale.getpreferredencoding(False) to work # in pip._internal.utils.encoding.auto_decode try: locale.setlocale(locale.LC_ALL, '') except locale.Error as e: # setlocale can apparently crash if locale are uninitialized logger.debug("Ignoring error %s when setting locale", e) command = create_command(cmd_name, isolated=("--isolated" in cmd_args)) return command.main(cmd_args)
27.8
75
0.728217
1b33f02720af0faae4b903c50db4103e684b639c
1,577
py
Python
inceptor/compilers/CscCompiler.py
pwnmeow/inceptor
4c1d17b1f29777aaae634c07ad6c4dd8ed61aa01
[ "BSD-4-Clause" ]
743
2021-08-02T16:27:27.000Z
2022-03-31T16:34:16.000Z
inceptor/compilers/CscCompiler.py
pwnmeow/inceptor
4c1d17b1f29777aaae634c07ad6c4dd8ed61aa01
[ "BSD-4-Clause" ]
32
2021-08-03T04:47:20.000Z
2022-03-28T23:15:45.000Z
inceptor/compilers/CscCompiler.py
pwnmeow/inceptor
4c1d17b1f29777aaae634c07ad6c4dd8ed61aa01
[ "BSD-4-Clause" ]
138
2021-08-02T16:27:28.000Z
2022-03-31T02:47:20.000Z
from compilers.Compiler import Compiler from compilers.CompilerExceptions import OperationNotSupported from config.Config import Config class CscCompiler(Compiler): def add_include_directory(self, directory): pass def __init__(self, args=None, aargs=None, arch="x64"): self.config = Config() super().__init__(None, args=args, aargs=aargs, sep=":", arch=arch) if not self.args: self.args = {} def default_exe_args(self, outfile): self.args = { "/target": "exe", "/platform": self.arch, "/unsafe": None, "/out": f'"{outfile}"' } def default_dll_args(self, outfile): self.args = { "/target": "library", "/platform": self.arch, "/unsafe": None, "/out": f'"{outfile}"' } # "/optimize-": None, def hide_window(self): if self.args["/target"] == "exe": self.args["/target"] = "winexe" else: raise OperationNotSupported( "DLLs don't support hidden windows at compiler level. Consider using SW_HIDE in the template" ) return True def set_outfile(self, outfile): self.args["/out"] = f'"{outfile}"' def set_architecture(self, arch): self.args["/platform"] = arch def set_libraries(self, libs: list): if len(libs) > 0: for lib in libs: self.args[f'/res:"{lib}"'] = None self.args["/r"] = ",".join([f'"{lib}"' for lib in libs])
28.672727
109
0.541535
108186af5724d4980050bddf8cfa1ff17bbbbf9b
1,089
py
Python
ixnetwork_restpy/testplatform/sessions/ixnetwork/traffic/trafficitem/configelement/stack/fCoEPlogiLsAcc_template.py
Vibaswan/ixnetwork_restpy
239fedc7050890746cbabd71ea1e91c68d9e5cad
[ "MIT" ]
null
null
null
ixnetwork_restpy/testplatform/sessions/ixnetwork/traffic/trafficitem/configelement/stack/fCoEPlogiLsAcc_template.py
Vibaswan/ixnetwork_restpy
239fedc7050890746cbabd71ea1e91c68d9e5cad
[ "MIT" ]
null
null
null
ixnetwork_restpy/testplatform/sessions/ixnetwork/traffic/trafficitem/configelement/stack/fCoEPlogiLsAcc_template.py
Vibaswan/ixnetwork_restpy
239fedc7050890746cbabd71ea1e91c68d9e5cad
[ "MIT" ]
null
null
null
from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class FCoE_PLOGI_LS_ACC(Base): __slots__ = () _SDM_NAME = 'fCoEPlogiLsAcc' _SDM_ATT_MAP = { 'FCoE Header': 'fCoEPlogiLsAcc.header.fcoeHeader', 'FC Header': 'fCoEPlogiLsAcc.header.fcHeader', 'FC ELS': 'fCoEPlogiLsAcc.header.FcEls', } def __init__(self, parent): super(FCoE_PLOGI_LS_ACC, self).__init__(parent) @property def FCoE_Header(self): from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCoE Header'])) @property def FC_Header(self): from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FC Header'])) @property def FC_ELS(self): from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FC ELS'])) def add(self): return self._create(self._map_locals(self._SDM_ATT_MAP, locals()))
32.029412
86
0.702479
b59fa5f55b6c96f2a1d796ad0fc9bc435dc0d9d7
2,674
py
Python
codes/000_visualization.py
baiyuang/Tensorflow-Computer-Vision-Tutorial
09db553dc23f0edeb8a9b0d51c13d0a27290016a
[ "MIT" ]
1
2021-06-02T01:09:32.000Z
2021-06-02T01:09:32.000Z
codes/000_visualization.py
Rookie-Eric/Tensorflow-Computer-Vision-Tutorial
09db553dc23f0edeb8a9b0d51c13d0a27290016a
[ "MIT" ]
null
null
null
codes/000_visualization.py
Rookie-Eric/Tensorflow-Computer-Vision-Tutorial
09db553dc23f0edeb8a9b0d51c13d0a27290016a
[ "MIT" ]
1
2020-07-23T08:17:20.000Z
2020-07-23T08:17:20.000Z
import numpy as np import matplotlib.pyplot as plt f = np.load('../mnist.npz') image, label = f['x_train'][7], f['y_train'][7] def show_conv(): filter = np.array([ [1, 1, 1], [0, 0, 0], [-1, -1, -1]]) plt.figure(0, figsize=(9, 5)) ax1 = plt.subplot(121) ax1.imshow(image, cmap='gray') plt.xticks(()) plt.yticks(()) ax2 = plt.subplot(122) plt.ion() texts = [] feature_map = np.zeros((26, 26)) flip_filter = np.flipud(np.fliplr(filter)) # flip both sides of the filter for i in range(26): for j in range(26): if texts: fm.remove() for n in range(3): for m in range(3): if len(texts) != 9: texts.append(ax1.text(j+m, i+n, filter[n, m], color='w', size=8, ha='center', va='center',)) else: texts[n*3+m].set_position((j+m, i+n)) feature_map[i, j] = np.sum(flip_filter * image[i:i+3, j:j+3]) fm = ax2.imshow(feature_map, cmap='gray', vmax=255*3, vmin=-255*3) plt.xticks(()) plt.yticks(()) plt.pause(0.001) plt.ioff() plt.show() def show_result(): filters = [ np.array([ [1, 1, 1], [0, 0, 0], [-1, -1, -1]]), np.array([ [-1, -1, -1], [0, 0, 0], [1, 1, 1]]), np.array([ [1, 0, -1], [1, 0, -1], [1, 0, -1]]), np.array([ [-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]) ] plt.figure(0) plt.title('Original image') plt.imshow(image, cmap='gray') plt.xticks(()) plt.yticks(()) plt.figure(1) for n in range(4): feature_map = np.zeros((26, 26)) flip_filter = np.flipud(np.fliplr(filters[n])) for i in range(26): for j in range(26): feature_map[i, j] = np.sum(image[i:i + 3, j:j + 3] * flip_filter) plt.subplot(3, 4, 1 + n) plt.title('Filter%i' % n) plt.imshow(filters[n], cmap='gray') plt.xticks(()) plt.yticks(()) plt.subplot(3, 4, 5 + n) plt.title('Conv%i' % n) plt.imshow(feature_map, cmap='gray') plt.xticks(()) plt.yticks(()) plt.subplot(3, 4, 9 + n) plt.title('ReLU%i' % n) feature_map = np.maximum(0, feature_map) plt.imshow(feature_map, cmap='gray') plt.xticks(()) plt.yticks(()) plt.tight_layout() plt.show() if __name__ == "__main__": show_conv() show_result()
25.466667
116
0.450636
106c140036dc1733b8eea8ed4eccd1bf0e4f8210
4,000
py
Python
server/app/commits/views.py
jialin-wu-02/aimde
7a8795df7f9df3be3bb607e5f7888731da837fde
[ "MIT" ]
null
null
null
server/app/commits/views.py
jialin-wu-02/aimde
7a8795df7f9df3be3bb607e5f7888731da837fde
[ "MIT" ]
null
null
null
server/app/commits/views.py
jialin-wu-02/aimde
7a8795df7f9df3be3bb607e5f7888731da837fde
[ "MIT" ]
null
null
null
import json import os import time from flask import Blueprint, jsonify, request, \ abort, make_response, send_from_directory from flask_restful import Api, Resource from app import App from app.commits.models import Commit, Tag from app.commits.utils import get_commits from services.executables.action import Action from app.db import db commits_bp = Blueprint('commits', __name__) commits_api = Api(commits_bp) @commits_api.resource('/search') class CommitSearchApi(Resource): def get(self): metric = '' tag = None experiment = None query = request.args.get('q').strip() sub_queries = query.split(' ') for sub_query in sub_queries: if 'metric' in sub_query: _, _, metric = sub_query.rpartition(':') metric = metric.strip() if 'tag' in sub_query: _, _, tag = sub_query.rpartition(':') tag = tag.strip() if 'experiment' in sub_query: _, _, experiment = sub_query.rpartition(':') experiment = experiment.strip() commits = get_commits(metric, tag, experiment) return jsonify(commits) @commits_api.resource('/tags/<commit_hash>') class CommitTagApi(Resource): def get(self, commit_hash): commit = Commit.query.filter(Commit.hash == commit_hash).first() if not commit: return make_response(jsonify({}), 404) commit_tags = [] for t in commit.tags: commit_tags.append({ 'id': t.uuid, 'name': t.name, 'color': t.color, }) return jsonify(commit_tags) @commits_api.resource('/tags/update') class CommitTagUpdateApi(Resource): def post(self): form = request.form commit_hash = form.get('commit_hash') experiment_name = form.get('experiment_name') tag_id = form.get('tag_id') commit = Commit.query.filter((Commit.hash == commit_hash) & (Commit.experiment_name == experiment_name) ).first() if not commit: commit = Commit(commit_hash, experiment_name) db.session.add(commit) db.session.commit() tag = Tag.query.filter(Tag.uuid == tag_id).first() if not tag: return make_response(jsonify({}), 404) if tag in commit.tags: commit.tags.remove(tag) else: for t in commit.tags: commit.tags.remove(t) commit.tags.append(tag) db.session.commit() return { 'tag': list(map(lambda t: t.uuid, commit.tags)), } @commits_api.resource('/info/<experiment>/<commit_hash>') class CommitInfoApi(Resource): def get(self, experiment, commit_hash): commit_path = os.path.join('/store', experiment, commit_hash) if not os.path.isdir(commit_path): return make_response(jsonify({}), 404) commit_config_file_path = os.path.join(commit_path, 'config.json') info = {} try: with open(commit_config_file_path, 'r+') as commit_config_file: info = json.loads(commit_config_file.read()) except: pass process = info.get('process') if process: if not process['finish']: action = Action(Action.SELECT, { 'experiment': experiment, 'commit_hash': commit_hash, }) processes_res = App.executables_manager.add(action, 30) if processes_res is not None and 'processes' in processes_res: processes = json.loads(processes_res)['processes'] if len(processes): process['pid'] = processes[0]['pid'] process['time'] = time.time() - info['start_date'] return jsonify(info)
30.075188
80
0.5675
fe0db5ca8accc2f8bb6b38f728c0f269233657e5
1,802
py
Python
chapter/six_exercises.py
sloscal1/ML-Prob-Perspective
3474faf8559cc2229426ab773460000c6c40fbb3
[ "MIT" ]
null
null
null
chapter/six_exercises.py
sloscal1/ML-Prob-Perspective
3474faf8559cc2229426ab773460000c6c40fbb3
[ "MIT" ]
null
null
null
chapter/six_exercises.py
sloscal1/ML-Prob-Perspective
3474faf8559cc2229426ab773460000c6c40fbb3
[ "MIT" ]
null
null
null
def question_1(): r""" Pessimism of LOOCV. I didn't like the question because I thought it was a little too open... You want to show that LOOCV can be a really bad estimate of error in some situations. For example, if you have a random class label that you're trying to predict (binary, equal proportions), LOOCV can report a really bad error bound. You're asked what the best classifier is for this data and what happens when you do its LOOCV estimate. The question is leading (though not prescribing) you towards a simple majority classifier. It will be right the maximum number of times (0.5), and it's LOOCV error rate will be extremely pessimistic, at 100%. The reason is simple enough - if you remove a single sample, then the other class becomese the majority so you'll predict that but it's only the majority because the test sample belonged to the other class and so you'll be wrong every time. But this isn't the only optimal classifier specification for this problem. You can also have a probabilistic classifier that outputs a label in proportion to the input. In this case you'll again achieve an accuracy of 0.5, but the LOOCV will essentially also be 0.5 as the training data grows. For small amounts of training data the process will give you something closer to a 0.49 error rate, but it's still not that bad. In short, the LOOCV is pessimistic, but to get the wild swing desired by the question it should have been explicit and asked the reader to investigate the majority classifier (as is done in the source discussion referred to in the question (Witten, Frank, Hall p.154 in Data mining 3rd edition). See ``chapter.six.demo_loocv`` for simulation study of this question. Returns: None. """
64.357143
119
0.746948
40355fe20bdfab65f42f2f5a3e63016466e69c50
6,645
py
Python
mars/dataframe/datastore/to_vineyard.py
perfumescent/mars
9bf9bb990587cb9f091d108ed7f725fb429a80e8
[ "Apache-2.0" ]
null
null
null
mars/dataframe/datastore/to_vineyard.py
perfumescent/mars
9bf9bb990587cb9f091d108ed7f725fb429a80e8
[ "Apache-2.0" ]
null
null
null
mars/dataframe/datastore/to_vineyard.py
perfumescent/mars
9bf9bb990587cb9f091d108ed7f725fb429a80e8
[ "Apache-2.0" ]
null
null
null
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd from ... import opcodes as OperandDef from ...core import OutputType from ...core.operand.base import SchedulingHint from ...serialization.serializables import StringField from ...tensor.datastore.to_vineyard import resolve_vineyard_socket from ..operands import DataFrameOperand, DataFrameOperandMixin from ..utils import parse_index try: import vineyard from vineyard.data.dataframe import make_global_dataframe from vineyard.data.utils import to_json except ImportError: vineyard = None class DataFrameToVineyardChunk(DataFrameOperand, DataFrameOperandMixin): _op_type_ = OperandDef.DATAFRAME_STORE_VINEYARD_CHUNK # vineyard ipc socket vineyard_socket = StringField("vineyard_socket") def __init__(self, vineyard_socket=None, dtypes=None, **kw): super().__init__( vineyard_socket=vineyard_socket, _dtypes=dtypes, _output_types=[OutputType.dataframe], **kw ) def __call__(self, df): return self.new_dataframe( [df], shape=(0, 0), dtypes=df.dtypes, index_value=df.index_value, columns_value=df.columns_value, ) @classmethod def _process_out_chunks(cls, op, out_chunks): dtypes = pd.Series([np.dtype("O")], index=pd.Index([0])) merge_op = DataFrameToVinyardStoreMeta( vineyard_socket=op.vineyard_socket, chunk_shape=op.inputs[0].chunk_shape, shape=(1, 1), dtypes=dtypes, ) return merge_op.new_chunks( out_chunks, shape=(1, 1), dtypes=dtypes, index=(0, 0) ) @classmethod def tile(cls, op): out_chunks = [] scheduling_hint = SchedulingHint(fuseable=False) dtypes = pd.Series([np.dtype("O")], index=pd.Index([0])) for idx, chunk in enumerate(op.inputs[0].chunks): chunk_op = op.copy().reset_key() chunk_op.scheduling_hint = scheduling_hint out_chunk = chunk_op.new_chunk( [chunk], shape=(1, 1), dtypes=dtypes, index_value=chunk.index_value, columns_value=chunk.columns_value, index=(idx, 0), ) out_chunks.append(out_chunk) out_chunks = cls._process_out_chunks(op, out_chunks) in_df = op.inputs[0] new_op = op.copy().reset_key() return new_op.new_dataframes( op.inputs, shape=(len(out_chunks), 1), dtypes=dtypes, index_value=in_df.index_value, columns_value=in_df.columns_value, chunks=out_chunks, nsplits=((np.prod(op.inputs[0].chunk_shape),),), ) @classmethod def execute(cls, ctx, op): if vineyard is None: raise RuntimeError("vineyard is not available") socket, needs_put = resolve_vineyard_socket(ctx, op) client = vineyard.connect(socket) # some op might be fused and executed twice on different workers if not needs_put: # might be fused try: # pragma: no cover meta = ctx.get_chunks_meta([op.inputs[0].key])[0] df_id = vineyard.ObjectID(meta["object_ref"]) if not client.exists(df_id): needs_put = True except KeyError: needs_put = True if needs_put: df_id = client.put( ctx[op.inputs[0].key], partition_index=op.inputs[0].index ) else: # pragma: no cover meta = client.get_meta(df_id) new_meta = vineyard.ObjectMeta() for k, v in meta.items(): if k not in ["id", "signature", "instance_id"]: if isinstance(v, vineyard.ObjectMeta): new_meta.add_member(k, v) else: new_meta[k] = v new_meta["partition_index_"] = to_json(op.inputs[0].index) df_id = client.create_metadata(new_meta).id client.persist(df_id) ctx[op.outputs[0].key] = pd.DataFrame({0: [df_id]}) class DataFrameToVinyardStoreMeta(DataFrameOperand, DataFrameOperandMixin): _op_type_ = OperandDef.DATAFRAME_STORE_VINEYARD_META # vineyard ipc socket vineyard_socket = StringField("vineyard_socket") def __init__(self, vineyard_socket=None, dtypes=None, **kw): super().__init__( vineyard_socket=vineyard_socket, dtypes=dtypes, _output_types=[OutputType.dataframe], **kw ) @classmethod def tile(cls, op): dtypes = pd.Series([np.dtype("O")], index=pd.Index([0])) chunk_op = op.copy().reset_key() out_chunk = chunk_op.new_chunk( op.inputs[0].chunks, shape=(1, 1), dtypes=dtypes, index_value=parse_index(pd.Index([-1])), columns_value=parse_index(pd.Index([0])), index=(0, 0), ) new_op = op.copy().reset_key() return new_op.new_dataframes( op.inputs, shape=(1, 1), dtypes=dtypes, index_value=parse_index(pd.Index([0])), columns_value=parse_index(pd.Index([0])), chunks=[out_chunk], nsplits=((1,), (1,)), ) @classmethod def execute(cls, ctx, op): if vineyard is None: raise RuntimeError("vineyard is not available") socket, _ = resolve_vineyard_socket(ctx, op) client = vineyard.connect(socket) # # store the result object id to execution context chunks = [ctx[chunk.key][0][0] for chunk in op.inputs] ctx[op.outputs[0].key] = pd.DataFrame( {0: [make_global_dataframe(client, chunks).id]} ) def to_vineyard(df, vineyard_socket=None): op = DataFrameToVineyardChunk(vineyard_socket=vineyard_socket) return op(df)
34.252577
75
0.60301
23090a7d9da1f9820b4f38d4a685aa98dc6a70c3
2,966
py
Python
tests/trainer/dynamic_args/test_multiple_optimizers.py
nahidgrid/pytorch-lightning
60bf48d3e0ee26ebafd7a98ad96c86ba304d4533
[ "Apache-2.0" ]
null
null
null
tests/trainer/dynamic_args/test_multiple_optimizers.py
nahidgrid/pytorch-lightning
60bf48d3e0ee26ebafd7a98ad96c86ba304d4533
[ "Apache-2.0" ]
null
null
null
tests/trainer/dynamic_args/test_multiple_optimizers.py
nahidgrid/pytorch-lightning
60bf48d3e0ee26ebafd7a98ad96c86ba304d4533
[ "Apache-2.0" ]
null
null
null
from pytorch_lightning import Trainer from tests.base.boring_model import BoringModel import torch def test_multiple_optimizers(tmpdir): """ Tests that only training_step can be used """ class TestModel(BoringModel): def on_train_epoch_start(self) -> None: self.opt_0_seen = False self.opt_1_seen = False def training_step(self, batch, batch_idx, optimizer_idx): if optimizer_idx == 0: self.opt_0_seen = True elif optimizer_idx == 1: self.opt_1_seen = True else: raise Exception('should only have two optimizers') self.training_step_called = True loss = self.step(batch[0]) return loss def training_epoch_end(self, outputs) -> None: # outputs should be an array with an entry per optimizer assert len(outputs) == 2 def configure_optimizers(self): optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1) optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1) return optimizer, optimizer_2 model = TestModel() model.val_dataloader = None trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, max_epochs=1, log_every_n_steps=1, weights_summary=None, ) trainer.fit(model) assert model.opt_0_seen assert model.opt_1_seen def test_multiple_optimizers_manual(tmpdir): """ Tests that only training_step can be used """ class TestModel(BoringModel): def on_train_epoch_start(self) -> None: self.opt_0_seen = False self.opt_1_seen = False def training_step(self, batch, batch_idx, optimizer_idx): # manual (opt_a, opt_b) = self.optimizers() loss_1 = self.step(batch[0]) # fake generator self.manual_backward(loss_1, opt_a) opt_a.step() opt_a.zero_grad() # fake discriminator loss_2 = self.step(batch[0]) self.manual_backward(loss_2, opt_b) opt_b.step() opt_b.zero_grad() def training_epoch_end(self, outputs) -> None: # outputs should be an array with an entry per optimizer assert len(outputs) == 2 def configure_optimizers(self): optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1) optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1) return optimizer, optimizer_2 model = TestModel() model.val_dataloader = None trainer = Trainer( automatic_optimization=False, default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, max_epochs=1, log_every_n_steps=1, weights_summary=None, ) trainer.fit(model)
29.366337
74
0.604181
08797a4125d0a3a087bc36e4ce13a299670b843a
3,374
py
Python
third_party/logilab/common/urllib2ext.py
yetu/repotools
1f52004a33ee27f539bb4c831b8e8a37751550a8
[ "BSD-3-Clause" ]
45
2015-10-12T10:02:11.000Z
2021-12-14T07:10:47.000Z
pylibs/logilab/common/urllib2ext.py
teranex/python-mode
51d0c3f341b5d0cd68300e16cc29a97a5783ce02
[ "Vim" ]
7
2021-02-08T20:22:15.000Z
2022-03-11T23:19:41.000Z
pylibs/logilab/common/urllib2ext.py
teranex/python-mode
51d0c3f341b5d0cd68300e16cc29a97a5783ce02
[ "Vim" ]
38
2016-06-25T05:57:35.000Z
2021-12-30T04:58:10.000Z
import logging import urllib2 import kerberos as krb class GssapiAuthError(Exception): """raised on error during authentication process""" import re RGX = re.compile('(?:.*,)*\s*Negotiate\s*([^,]*),?', re.I) def get_negociate_value(headers): for authreq in headers.getheaders('www-authenticate'): match = RGX.search(authreq) if match: return match.group(1) class HTTPGssapiAuthHandler(urllib2.BaseHandler): """Negotiate HTTP authentication using context from GSSAPI""" handler_order = 400 # before Digest Auth def __init__(self): self._reset() def _reset(self): self._retried = 0 self._context = None def clean_context(self): if self._context is not None: krb.authGSSClientClean(self._context) def http_error_401(self, req, fp, code, msg, headers): try: if self._retried > 5: raise urllib2.HTTPError(req.get_full_url(), 401, "negotiate auth failed", headers, None) self._retried += 1 logging.debug('gssapi handler, try %s' % self._retried) negotiate = get_negociate_value(headers) if negotiate is None: logging.debug('no negociate found in a www-authenticate header') return None logging.debug('HTTPGssapiAuthHandler: negotiate 1 is %r' % negotiate) result, self._context = krb.authGSSClientInit("HTTP@%s" % req.get_host()) if result < 1: raise GssapiAuthError("HTTPGssapiAuthHandler: init failed with %d" % result) result = krb.authGSSClientStep(self._context, negotiate) if result < 0: raise GssapiAuthError("HTTPGssapiAuthHandler: step 1 failed with %d" % result) client_response = krb.authGSSClientResponse(self._context) logging.debug('HTTPGssapiAuthHandler: client response is %s...' % client_response[:10]) req.add_unredirected_header('Authorization', "Negotiate %s" % client_response) server_response = self.parent.open(req) negotiate = get_negociate_value(server_response.info()) if negotiate is None: logging.warning('HTTPGssapiAuthHandler: failed to authenticate server') else: logging.debug('HTTPGssapiAuthHandler negotiate 2: %s' % negotiate) result = krb.authGSSClientStep(self._context, negotiate) if result < 1: raise GssapiAuthError("HTTPGssapiAuthHandler: step 2 failed with %d" % result) return server_response except GssapiAuthError, exc: logging.error(repr(exc)) finally: self.clean_context() self._reset() if __name__ == '__main__': import sys # debug import httplib httplib.HTTPConnection.debuglevel = 1 httplib.HTTPSConnection.debuglevel = 1 # debug import logging logging.basicConfig(level=logging.DEBUG) # handle cookies import cookielib cj = cookielib.CookieJar() ch = urllib2.HTTPCookieProcessor(cj) # test with url sys.argv[1] h = HTTPGssapiAuthHandler() response = urllib2.build_opener(h, ch).open(sys.argv[1]) print '\nresponse: %s\n--------------\n' % response.code, response.info()
38.340909
99
0.624185
dce1a6530be3c7b4d2c0d9c63a7ec68a30f351fa
411
py
Python
inventory/urls.py
kissops/ERPv
e5772f5e254d178bb29661d22401c9edcb6067ce
[ "MIT" ]
2
2019-07-25T10:58:59.000Z
2020-11-08T02:32:44.000Z
inventory/urls.py
kissops/ERPv-server
e5772f5e254d178bb29661d22401c9edcb6067ce
[ "MIT" ]
21
2021-01-01T14:08:41.000Z
2021-09-01T16:04:20.000Z
inventory/urls.py
kissops/ERPv-server
e5772f5e254d178bb29661d22401c9edcb6067ce
[ "MIT" ]
1
2020-10-05T03:35:28.000Z
2020-10-05T03:35:28.000Z
from django.urls import path, include from rest_framework.routers import DefaultRouter from . import views router = DefaultRouter() router.register(r"warehouses", views.WarehouseViewSet) router.register(r"products", views.ProductViewSet) router.register(r"locations", views.LocationViewSet) router.register(r"location_quantities", views.LocationQuantityViewSet) urlpatterns = [path("", include(router.urls))]
34.25
70
0.815085
e2fd6fc17aa88d1b6bd2ef10480a8924bcec4d39
679
py
Python
models/load_pretrained_crnn.py
Armyke/crnn.pytorch
3cba2d626d29c299f0204fc50f0c80b7bbc6315d
[ "MIT" ]
null
null
null
models/load_pretrained_crnn.py
Armyke/crnn.pytorch
3cba2d626d29c299f0204fc50f0c80b7bbc6315d
[ "MIT" ]
null
null
null
models/load_pretrained_crnn.py
Armyke/crnn.pytorch
3cba2d626d29c299f0204fc50f0c80b7bbc6315d
[ "MIT" ]
null
null
null
import torch from models import crnn as crnn def load_model(model_path, nh, alphabet='abcdefghijklmnopqrstuvwxyz'): # initialize crnn model model = crnn.CRNN(32, 1, len(alphabet) + 1, nh) # load model try: model.load_state_dict(torch.load(model_path, map_location='cpu')) except Exception as e: from collections import OrderedDict state_dict = torch.load(model_path, map_location='cpu') new_state_dict = OrderedDict() for key, layer in state_dict.items(): new_key = key[7:] new_state_dict[new_key] = layer model.load_state_dict(new_state_dict) model.eval() return model
24.25
73
0.661267
20734fbb8ff295d38c83047b642ddcd5f6c4f2d2
1,997
py
Python
model/model.py
AnuroopKeshav/NaiveBayesClassifier
f7f3a032426ede778cb4382dfd7a19465994a6b9
[ "MIT" ]
1
2022-01-22T07:07:52.000Z
2022-01-22T07:07:52.000Z
model/model.py
AnuroopKeshav/NaiveBayesClassifier
f7f3a032426ede778cb4382dfd7a19465994a6b9
[ "MIT" ]
null
null
null
model/model.py
AnuroopKeshav/NaiveBayesClassifier
f7f3a032426ede778cb4382dfd7a19465994a6b9
[ "MIT" ]
null
null
null
import numpy as np import scipy.stats as sp class NaiveBayesClassifier: # Grouping entries based on different discrete resultant values def groupClasses(self) -> None: self.classes = {} for entry in range(len(self.resultant_vector_train)): if self.resultant_vector_train[entry] not in self.classes: self.classes[self.resultant_vector_train[entry]] = [] self.classes[self.resultant_vector_train[entry]].append(self.feature_matrix_train[entry]) # Calculating the mean and standard deviation of all the classes # Used for the Gaussian Probability Density funtion def defineClassMeanAndStd(self) -> None: self.class_mean_std = {} for output_class, feature_class in self.classes.items(): self.class_mean_std[output_class] = [(np.mean(class_attr), np.std(class_attr)) for class_attr in zip(*feature_class)] # Funtion that iteratively finds the product of probabilities for all the classes and returns the max def findMaxProba(self, entry) -> np.float64: proba_dict = {} for output, class_info in self.class_mean_std.items(): probability = 1 for attr in range(len(class_info)): probability *= sp.norm(class_info[attr][0], class_info[attr][1]).pdf(entry[attr]) proba_dict[output] = probability return max(zip(proba_dict.values(), proba_dict.keys()))[1] # Fitting the model with the data def fit(self, feature_matrix: np.array, resultant_vector: np.array) -> None: self.feature_matrix_train = feature_matrix self.resultant_vector_train = resultant_vector self.groupClasses() self.defineClassMeanAndStd() # Predicting for test_data def predict(self, feature_matrix_test: np.array) -> np.array: predictions = [self.findMaxProba(feature_matrix_test[entry]) for entry in range(len(feature_matrix_test))] return np.array(predictions)
40.755102
129
0.685528
0bcec87e02b054687b0e775bf9f09d112847f7ae
1,433
py
Python
disk/tests/conftest.py
glasser/integrations-core
1dd515d49b1690a1369ee5195713605b1b072b1f
[ "BSD-3-Clause" ]
null
null
null
disk/tests/conftest.py
glasser/integrations-core
1dd515d49b1690a1369ee5195713605b1b072b1f
[ "BSD-3-Clause" ]
4
2019-07-03T02:53:19.000Z
2019-07-10T14:52:14.000Z
disk/tests/conftest.py
glasser/integrations-core
1dd515d49b1690a1369ee5195713605b1b072b1f
[ "BSD-3-Clause" ]
1
2019-12-23T13:35:17.000Z
2019-12-23T13:35:17.000Z
# (C) Datadog, Inc. 2018 # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import mock import pytest from datadog_checks.dev.utils import ON_WINDOWS, mock_context_manager from .metrics import CORE_GAUGES, CORE_RATES, UNIX_GAUGES from .mocks import MockDiskIOMetrics, MockDiskMetrics, MockInodesMetrics, MockPart @pytest.fixture def psutil_mocks(): if ON_WINDOWS: mock_statvfs = mock_context_manager() else: mock_statvfs = mock.patch('os.statvfs', return_value=MockInodesMetrics(), __name__='statvfs') with mock.patch('psutil.disk_partitions', return_value=[MockPart()], __name__='disk_partitions'), mock.patch( 'psutil.disk_usage', return_value=MockDiskMetrics(), __name__='disk_usage' ), mock.patch('psutil.disk_io_counters', return_value=MockDiskIOMetrics()), mock_statvfs: yield @pytest.fixture(scope='session') def dd_environment(instance_basic_volume): yield instance_basic_volume @pytest.fixture(scope='session') def instance_basic_volume(): return {'use_mount': 'false', 'tag_by_label': False} @pytest.fixture(scope='session') def instance_basic_mount(): return {'use_mount': 'true', 'tag_by_label': False} @pytest.fixture(scope='session') def gauge_metrics(): if ON_WINDOWS: return CORE_GAUGES else: return UNIX_GAUGES @pytest.fixture(scope='session') def rate_metrics(): return CORE_RATES
27.557692
113
0.7418
7ac57f4ac112977ef18454787f72d5ebd91f6405
918
py
Python
dtlpy/services/__init__.py
dataloop-ai/dtlpy
2c73831da54686e047ab6aefd8f12a8e53ea97c2
[ "Apache-2.0" ]
10
2020-05-21T06:25:35.000Z
2022-01-07T20:34:03.000Z
dtlpy/services/__init__.py
dataloop-ai/dtlpy
2c73831da54686e047ab6aefd8f12a8e53ea97c2
[ "Apache-2.0" ]
22
2019-11-17T17:25:16.000Z
2022-03-10T15:14:28.000Z
dtlpy/services/__init__.py
dataloop-ai/dtlpy
2c73831da54686e047ab6aefd8f12a8e53ea97c2
[ "Apache-2.0" ]
8
2020-03-05T16:23:55.000Z
2021-12-27T11:10:42.000Z
#! /usr/bin/env python3 # This file is part of DTLPY. # # DTLPY is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # DTLPY is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with DTLPY. If not, see <http://www.gnu.org/licenses/>. from .api_client import ApiClient, VerboseLoggingLevel from .async_utils import AsyncResponse, AsyncThreadEventLoop from .cookie import CookieIO from .create_logger import DataloopLogger from .reporter import Reporter from . import service_defaults
41.727273
70
0.784314
dbfc0777dccec83e3541b173c7c4aef3a48f85df
5,385
py
Python
nchs_mortality/delphi_nchs_mortality/run.py
JedGrabman/covidcast-indicators
d2a5a232431c8392c54bfc301dcb9beecc541b97
[ "MIT" ]
null
null
null
nchs_mortality/delphi_nchs_mortality/run.py
JedGrabman/covidcast-indicators
d2a5a232431c8392c54bfc301dcb9beecc541b97
[ "MIT" ]
null
null
null
nchs_mortality/delphi_nchs_mortality/run.py
JedGrabman/covidcast-indicators
d2a5a232431c8392c54bfc301dcb9beecc541b97
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Functions to call when running the function. This module should contain a function called `run_module`, that is executed when the module is run with `python -m MODULE_NAME`. """ from datetime import datetime, date, timedelta from os.path import join from os import remove, listdir from shutil import copy import numpy as np import pandas as pd from delphi_utils import read_params, S3ArchiveDiffer from .pull import pull_nchs_mortality_data from .export import export_csv # global constants METRICS = [ 'covid_deaths', 'total_deaths', 'percent_of_expected_deaths', 'pneumonia_deaths', 'pneumonia_and_covid_deaths', 'influenza_deaths', 'pneumonia_influenza_or_covid_19_deaths' ] SENSORS = [ "num", "prop" ] INCIDENCE_BASE = 100000 geo_res = "state" def run_module(): """Run module for processing NCHS mortality data.""" params = read_params() export_start_date = params["export_start_date"] if export_start_date == "latest": # Find the previous Saturday export_start_date = date.today() - timedelta( days=date.today().weekday() + 2) export_start_date = export_start_date.strftime('%Y-%m-%d') export_dir = params["export_dir"] daily_export_dir = params["daily_export_dir"] cache_dir = params["cache_dir"] daily_cache_dir = params["daily_cache_dir"] static_file_dir = params["static_file_dir"] token = params["token"] test_mode = params["mode"] daily_arch_diff = S3ArchiveDiffer( daily_cache_dir, daily_export_dir, params["bucket_name"], "nchs_mortality", params["aws_credentials"]) daily_arch_diff.update_cache() map_df = pd.read_csv( join(static_file_dir, "state_pop.csv"), dtype={"fips": int} ) df = pull_nchs_mortality_data(token, map_df, test_mode) for metric in METRICS: if metric == 'percent_of_expected_deaths': print(metric) df["val"] = df[metric] df["se"] = np.nan df["sample_size"] = np.nan sensor_name = "_".join(["wip", metric]) export_csv( df, geo_name=geo_res, export_dir=daily_export_dir, start_date=datetime.strptime(export_start_date, "%Y-%m-%d"), sensor=sensor_name, ) else: for sensor in SENSORS: print(metric, sensor) if sensor == "num": df["val"] = df[metric] else: df["val"] = df[metric] / df["population"] * INCIDENCE_BASE df["se"] = np.nan df["sample_size"] = np.nan sensor_name = "_".join(["wip", metric, sensor]) export_csv( df, geo_name=geo_res, export_dir=daily_export_dir, start_date=datetime.strptime(export_start_date, "%Y-%m-%d"), sensor=sensor_name, ) # Weekly run of archive utility on Monday # - Does not upload to S3, that is handled by daily run of archive utility # - Exports issues into receiving for the API if datetime.today().weekday() == 0: # Copy todays raw output to receiving for output_file in listdir(daily_export_dir): copy( join(daily_export_dir, output_file), join(export_dir, output_file)) weekly_arch_diff = S3ArchiveDiffer( cache_dir, export_dir, params["bucket_name"], "nchs_mortality", params["aws_credentials"]) # Dont update cache from S3 (has daily files), only simulate a update_cache() call weekly_arch_diff._cache_updated = True # Diff exports, and make incremental versions _, common_diffs, new_files = weekly_arch_diff.diff_exports() # Archive changed and new files only to_archive = [f for f, diff in common_diffs.items() if diff is not None] to_archive += new_files _, fails = weekly_arch_diff.archive_exports(to_archive, update_s3=False) # Filter existing exports to exclude those that failed to archive succ_common_diffs = {f: diff for f, diff in common_diffs.items() if f not in fails} weekly_arch_diff.filter_exports(succ_common_diffs) # Report failures: someone should probably look at them for exported_file in fails: print(f"Failed to archive (weekly) '{exported_file}'") # Daily run of archiving utility # - Uploads changed files to S3 # - Does not export any issues into receiving # Diff exports, and make incremental versions _, common_diffs, new_files = daily_arch_diff.diff_exports() # Archive changed and new files only to_archive = [f for f, diff in common_diffs.items() if diff is not None] to_archive += new_files _, fails = daily_arch_diff.archive_exports(to_archive) # Daily output not needed anymore, remove them for exported_file in new_files: remove(exported_file) for exported_file, diff_file in common_diffs.items(): remove(exported_file) remove(diff_file) # Report failures: someone should probably look at them for exported_file in fails: print(f"Failed to archive (daily) '{exported_file}'")
36.632653
91
0.633612
4be7961643c539131be63a5072d52ff7052a40d1
6,832
py
Python
ekorpkit/models/tokenizer/trainer.py
entelecheia/eKorpKit
9521ae4c4749419fa2b088d1b9e518e5927b7cb8
[ "CC-BY-4.0" ]
4
2022-02-26T10:54:16.000Z
2022-02-26T11:01:56.000Z
ekorpkit/models/tokenizer/trainer.py
entelecheia/eKorpKit
9521ae4c4749419fa2b088d1b9e518e5927b7cb8
[ "CC-BY-4.0" ]
1
2022-03-25T06:37:12.000Z
2022-03-25T06:45:53.000Z
ekorpkit/models/tokenizer/trainer.py
entelecheia/eKorpKit
9521ae4c4749419fa2b088d1b9e518e5927b7cb8
[ "CC-BY-4.0" ]
null
null
null
import os import logging from tokenizers import BertWordPieceTokenizer, ByteLevelBPETokenizer from transformers import ( WEIGHTS_NAME, AutoConfig, AutoModelWithLMHead, AutoTokenizer, BertConfig, BertForMaskedLM, BertTokenizer, BigBirdConfig, BigBirdForMaskedLM, BigBirdTokenizer, CamembertConfig, CamembertForMaskedLM, CamembertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, ElectraConfig, ElectraForMaskedLM, ElectraForPreTraining, ElectraTokenizer, GPT2Config, GPT2LMHeadModel, GPT2Tokenizer, LongformerConfig, LongformerForMaskedLM, LongformerTokenizer, OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, PreTrainedModel, PreTrainedTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, XLMRobertaConfig, XLMRobertaForMaskedLM, XLMRobertaTokenizer, ) log = logging.getLogger(__name__) MODEL_CLASSES = { "auto": (AutoConfig, AutoModelWithLMHead, AutoTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "electra": (ElectraConfig, ElectraForMaskedLM, ElectraTokenizer), "gpt2": (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer), } def train_tokenizer( train_files, args, tokenizer_name=None, output_dir=None, ): """ Train a new tokenizer on `train_files`. Args: - train_files: List of files to be used when training the tokenizer. - tokenizer_name: Name of a pretrained tokenizer or a path to a directory containing a tokenizer. - output_dir (optional): The directory where model files will be saved. If not given, args.output_dir will be used. Returns: None """ if not args.vocab_size: raise AttributeError( "Cannot train a new tokenizer as vocab_size is not specified in args dict. " "Either provide a tokenizer or specify vocab_size." ) if not isinstance(train_files, list): train_files = [train_files] if not output_dir: output_dir = args.output_dir if args.model_type in ["bert", "electra"]: tokenizer = BertWordPieceTokenizer( clean_text=args.clean_text, handle_chinese_chars=args.handle_chinese_chars, strip_accents=args.strip_accents, # Must be False if cased model lowercase=args.do_lower_case, ) # args.special_tokens = ["[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]"] # args.wordpieces_prefix = "##" unused_tokens = [f"[unused{n}]" for n in range(args.unused_token_num)] special_tokens = list(args.special_tokens) + unused_tokens tokenizer.train( files=train_files, vocab_size=args.vocab_size, limit_alphabet=args.limit_alphabet, min_frequency=args.min_frequency, special_tokens=special_tokens, wordpieces_prefix=args.wordpieces_prefix, ) elif args.model_type in ["bigbird", "xlmroberta"]: # The google BigBird way # Tokenizers sentencepiece does not build a BigBird compatible vocabulary model import sentencepiece as spm import shutil os.makedirs(output_dir, exist_ok=True) files = ",".join(train_files) if args.model_type in ["xlmroberta"]: # </s>,<s>,<unk>,<pad> are built in -- leave as default # XLMRoberta uses sentencepiece.bpe as a vocab model prefix prefix = "sentencepiece.bpe" spm.SentencePieceTrainer.Train( f"--input={files} --user_defined_symbols='<mask>,<s>NOTUSED,</s>NOTUSED' --model_prefix={prefix} --vocab_size={args.vocab_size - 2}" ) else: # </s>,<s>,<unk>,<pad> are built in -- leave as default # BigBird uses spiece as a vocab model prefix prefix = "spiece" spm.SentencePieceTrainer.Train( f"--input={files} --user_defined_symbols='[SEP],[CLS],[MASK]' --model_prefix=spiece --vocab_size={args.vocab_size - 3}" ) # SentencePiece There is no option for output path https://github.com/google/sentencepiece/blob/master/doc/options.md if os.path.exists(output_dir + "/" + f"{prefix}.model"): os.remove(output_dir + "/" + f"{prefix}.model") shutil.move(src=f"{prefix}.model", dst=output_dir) if os.path.exists(output_dir + "/" + f"{prefix}.vocab"): os.remove(output_dir + "/" + f"{prefix}.vocab") shutil.move(src=f"{prefix}.vocab", dst=output_dir) else: tokenizer = ByteLevelBPETokenizer(lowercase=args.do_lower_case) tokenizer.train( files=train_files, vocab_size=args.vocab_size, min_frequency=args.min_frequency, special_tokens=list(args.special_tokens), ) if args.model_type not in ["bigbird", "xlmroberta"]: os.makedirs(output_dir, exist_ok=True) tokenizer.save_model(output_dir) log.info( " Training of {} tokenizer complete. Saved to {}.".format( tokenizer_name, output_dir ) ) # _, _, tokenizer_class = MODEL_CLASSES[args.model_type] # tokenizer = tokenizer_class.from_pretrained(output_dir) def train_spm( train_files, output_dir=None, train_args=None, **kwargs, ): import sentencepiece as spm import shutil os.makedirs(output_dir, exist_ok=True) files = ",".join(train_files) if args.model_type in ["xlmroberta"]: # </s>,<s>,<unk>,<pad> are built in -- leave as default # XLMRoberta uses sentencepiece.bpe as a vocab model prefix prefix = "sentencepiece.bpe" spm.SentencePieceTrainer.Train( f"--input={files} --user_defined_symbols='<mask>,<s>NOTUSED,</s>NOTUSED' --model_prefix={prefix} --vocab_size={args.vocab_size - 2}" ) else: # </s>,<s>,<unk>,<pad> are built in -- leave as default # BigBird uses spiece as a vocab model prefix prefix = "spiece" spm.SentencePieceTrainer.Train( f"--input={files} --user_defined_symbols='[SEP],[CLS],[MASK]' --model_prefix=spiece --vocab_size={args.vocab_size - 3}" ) # SentencePiece There is no option for output path https://github.com/google/sentencepiece/blob/master/doc/options.md if os.path.exists(output_dir + "/" + f"{prefix}.model"): os.remove(output_dir + "/" + f"{prefix}.model") shutil.move(src=f"{prefix}.model", dst=output_dir) if os.path.exists(output_dir + "/" + f"{prefix}.vocab"): os.remove(output_dir + "/" + f"{prefix}.vocab") shutil.move(src=f"{prefix}.vocab", dst=output_dir)
34.331658
148
0.645785
2f560c671d6d1bc64e20ec81b6f2361e10920c4a
5,078
py
Python
mewgram/settings.py
glasnt/mewgram
cd31df84d313c0edb452336a6b014428c110a2fc
[ "BSD-3-Clause" ]
null
null
null
mewgram/settings.py
glasnt/mewgram
cd31df84d313c0edb452336a6b014428c110a2fc
[ "BSD-3-Clause" ]
2
2020-06-28T04:12:52.000Z
2021-06-09T19:13:32.000Z
mewgram/settings.py
glasnt/mewgram
cd31df84d313c0edb452336a6b014428c110a2fc
[ "BSD-3-Clause" ]
2
2020-07-01T04:30:32.000Z
2021-05-14T12:09:46.000Z
import io import logging import os import sys from pathlib import Path import environ # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve(strict=True).parent.parent # Two modes: local dev, and prod. # Local dev: have a .env file, use local settings. # Prod: Google auth, use stored settings. # # You can interact with prod on your local machine by being # authenticated to gcloud and not having a local .env file. env_file = os.path.join(BASE_DIR, ".env") env = environ.Env() if os.path.isfile(".env"): env.read_env(env_file) logging.debug("Loaded env from local filesystem") LOCAL_DEVELOPMENT = True else: import google.auth try: _, project = google.auth.default() except google.auth.exceptions.DefaultCredentialsError as e: raise ImproperlyConfigured( "If you want to run in local development mode, define a .env file" ) # Load settings from Secret Manager from google.cloud import secretmanager as sm client = sm.SecretManagerServiceClient() settings_name = os.environ.get("SETTINGS_NAME", "django_settings") name = f"projects/{project}/secrets/{settings_name}/versions/latest" payload = client.access_secret_version(name=name).payload.data.decode("UTF-8") env.read_env(io.StringIO(payload)) logging.debug("Loaded env from Secret Manager") LOCAL_DEVELOPMENT = False SECRET_KEY = env("SECRET_KEY") DEBUG = env("DEBUG", default=False) LOGIN_REDIRECT_URL = "/" ALLOWED_HOSTS = ["*"] # Application definition INSTALLED_APPS = [ "gcloudc", "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", "django.contrib.humanize", "users", "purr", ] MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", ] ROOT_URLCONF = "mewgram.urls" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", ], }, }, ] WSGI_APPLICATION = "mewgram.wsgi.application" # Database # https://docs.djangoproject.com/en/dev/ref/settings/#databases if LOCAL_DEVELOPMENT: if "DATABASE_URL" in os.environ.keys(): DATABASES = {"default": env.db()} else: raise ImproperlyConfigured("DATABASE_URL is not defined in .env") else: DATABASES = { "default": { "ENGINE": "gcloudc.db.backends.datastore", "PROJECT": project, "INDEXES_FILE": "djangaeidx.yaml", "NAMESPACE": "mewgram", } } logging.debug(f"Using {DATABASES['default']['ENGINE']} as database engine") # Password validation # https://docs.djangoproject.com/en/dev/ref/settings/#auth-password-validators AUTH_USER_MODEL = "users.CustomUser" AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", }, { "NAME": "django.contrib.auth.password_validation.MinimumLengthValidator", }, { "NAME": "django.contrib.auth.password_validation.CommonPasswordValidator", }, { "NAME": "django.contrib.auth.password_validation.NumericPasswordValidator", }, ] # Internationalization # https://docs.djangoproject.com/en/dev/topics/i18n/ LANGUAGE_CODE = "en-us" TIME_ZONE = "UTC" USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/dev/howto/static-files/ STATICFILES_DIRS = ["purr/static"] STATIC_URL = "/static/" if LOCAL_DEVELOPMENT: DEFAULT_FILE_STORAGE = "django.core.files.storage.FileSystemStorage" STATIC_ROOT = os.path.join(BASE_DIR, "static/") STATIC_URL = STATIC_ROOT MEDIA_ROOT = "media/" # where files are stored on the local filesystem MEDIA_URL = "/media/" # what is prepended to the image URL else: GS_BUCKET_NAME = env("GS_BUCKET_NAME", default=None) if GS_BUCKET_NAME: DEFAULT_FILE_STORAGE = "storages.backends.gcloud.GoogleCloudStorage" STATICFILES_STORAGE = "storages.backends.gcloud.GoogleCloudStorage" GS_DEFAULT_ACL = "publicRead" INSTALLED_APPS += ["storages"] else: logging.error("No GS_BUCKET_NAME defined in settings") sys.exit(1) DEFAULT_AUTO_FIELD = "django.db.models.AutoField"
27.597826
91
0.687672
75ef17677c2d50afe7b66b96c5f056f973a3cbc5
11,203
py
Python
api_1.4/containerd/services/images/v1/images_pb2_grpc.py
englandbaron/pycontainerd
9e5fea6e182a80508ce8b5725f407e50beba3cfe
[ "Apache-2.0" ]
null
null
null
api_1.4/containerd/services/images/v1/images_pb2_grpc.py
englandbaron/pycontainerd
9e5fea6e182a80508ce8b5725f407e50beba3cfe
[ "Apache-2.0" ]
null
null
null
api_1.4/containerd/services/images/v1/images_pb2_grpc.py
englandbaron/pycontainerd
9e5fea6e182a80508ce8b5725f407e50beba3cfe
[ "Apache-2.0" ]
null
null
null
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc from containerd.services.images.v1 import images_pb2 as containerd_dot_services_dot_images_dot_v1_dot_images__pb2 from google.protobuf import empty_pb2 as google_dot_protobuf_dot_empty__pb2 class ImagesStub(object): """Images is a service that allows one to register images with containerd. In containerd, an image is merely the mapping of a name to a content root, described by a descriptor. The behavior and state of image is purely dictated by the type of the descriptor. From the perspective of this service, these references are mostly shallow, in that the existence of the required content won't be validated until required by consuming services. As such, this can really be considered a "metadata service". """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Get = channel.unary_unary( '/containerd.services.images.v1.Images/Get', request_serializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.GetImageRequest.SerializeToString, response_deserializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.GetImageResponse.FromString, ) self.List = channel.unary_unary( '/containerd.services.images.v1.Images/List', request_serializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.ListImagesRequest.SerializeToString, response_deserializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.ListImagesResponse.FromString, ) self.Create = channel.unary_unary( '/containerd.services.images.v1.Images/Create', request_serializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.CreateImageRequest.SerializeToString, response_deserializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.CreateImageResponse.FromString, ) self.Update = channel.unary_unary( '/containerd.services.images.v1.Images/Update', request_serializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.UpdateImageRequest.SerializeToString, response_deserializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.UpdateImageResponse.FromString, ) self.Delete = channel.unary_unary( '/containerd.services.images.v1.Images/Delete', request_serializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.DeleteImageRequest.SerializeToString, response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, ) class ImagesServicer(object): """Images is a service that allows one to register images with containerd. In containerd, an image is merely the mapping of a name to a content root, described by a descriptor. The behavior and state of image is purely dictated by the type of the descriptor. From the perspective of this service, these references are mostly shallow, in that the existence of the required content won't be validated until required by consuming services. As such, this can really be considered a "metadata service". """ def Get(self, request, context): """Get returns an image by name. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def List(self, request, context): """List returns a list of all images known to containerd. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Create(self, request, context): """Create an image record in the metadata store. The name of the image must be unique. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Update(self, request, context): """Update assigns the name to a given target image based on the provided image. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Delete(self, request, context): """Delete deletes the image by name. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_ImagesServicer_to_server(servicer, server): rpc_method_handlers = { 'Get': grpc.unary_unary_rpc_method_handler( servicer.Get, request_deserializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.GetImageRequest.FromString, response_serializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.GetImageResponse.SerializeToString, ), 'List': grpc.unary_unary_rpc_method_handler( servicer.List, request_deserializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.ListImagesRequest.FromString, response_serializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.ListImagesResponse.SerializeToString, ), 'Create': grpc.unary_unary_rpc_method_handler( servicer.Create, request_deserializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.CreateImageRequest.FromString, response_serializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.CreateImageResponse.SerializeToString, ), 'Update': grpc.unary_unary_rpc_method_handler( servicer.Update, request_deserializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.UpdateImageRequest.FromString, response_serializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.UpdateImageResponse.SerializeToString, ), 'Delete': grpc.unary_unary_rpc_method_handler( servicer.Delete, request_deserializer=containerd_dot_services_dot_images_dot_v1_dot_images__pb2.DeleteImageRequest.FromString, response_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'containerd.services.images.v1.Images', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class Images(object): """Images is a service that allows one to register images with containerd. In containerd, an image is merely the mapping of a name to a content root, described by a descriptor. The behavior and state of image is purely dictated by the type of the descriptor. From the perspective of this service, these references are mostly shallow, in that the existence of the required content won't be validated until required by consuming services. As such, this can really be considered a "metadata service". """ @staticmethod def Get(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/containerd.services.images.v1.Images/Get', containerd_dot_services_dot_images_dot_v1_dot_images__pb2.GetImageRequest.SerializeToString, containerd_dot_services_dot_images_dot_v1_dot_images__pb2.GetImageResponse.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def List(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/containerd.services.images.v1.Images/List', containerd_dot_services_dot_images_dot_v1_dot_images__pb2.ListImagesRequest.SerializeToString, containerd_dot_services_dot_images_dot_v1_dot_images__pb2.ListImagesResponse.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Create(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/containerd.services.images.v1.Images/Create', containerd_dot_services_dot_images_dot_v1_dot_images__pb2.CreateImageRequest.SerializeToString, containerd_dot_services_dot_images_dot_v1_dot_images__pb2.CreateImageResponse.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Update(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/containerd.services.images.v1.Images/Update', containerd_dot_services_dot_images_dot_v1_dot_images__pb2.UpdateImageRequest.SerializeToString, containerd_dot_services_dot_images_dot_v1_dot_images__pb2.UpdateImageResponse.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Delete(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/containerd.services.images.v1.Images/Delete', containerd_dot_services_dot_images_dot_v1_dot_images__pb2.DeleteImageRequest.SerializeToString, google_dot_protobuf_dot_empty__pb2.Empty.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata)
47.470339
136
0.701241
3309d468eaa83324b274f4269e5a43fe04d84794
8,824
py
Python
singa_auto/container/docker_swarm.py
pinpom/singa-auto
e5b80c4728ee65fd0bd7ab15d59ab5621ccc50b1
[ "Apache-2.0" ]
1
2020-10-26T11:37:26.000Z
2020-10-26T11:37:26.000Z
singa_auto/container/docker_swarm.py
pinpom/singa-auto
e5b80c4728ee65fd0bd7ab15d59ab5621ccc50b1
[ "Apache-2.0" ]
null
null
null
singa_auto/container/docker_swarm.py
pinpom/singa-auto
e5b80c4728ee65fd0bd7ab15d59ab5621ccc50b1
[ "Apache-2.0" ]
null
null
null
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import os import time import docker import logging import traceback from collections import namedtuple from functools import wraps from .container_manager import ContainerManager, InvalidServiceRequestError, ContainerService LABEL_AVAILBLE_GPUS = 'available_gpus' LABEL_NUM_SERVICES = 'num_services' RETRY_WAIT_SECS = 2 RETRY_TIMES = 5 logger = logging.getLogger(__name__) _Node = namedtuple('_Node', ['id', 'available_gpus', 'num_services']) _Deployment = namedtuple('_Deployment', ['node_id', 'gpu_nos']) class DockerSwarmContainerManager(ContainerManager): def __init__( self, network=os.environ.get('DOCKER_NETWORK', 'singa_auto'), label_num_services=os.environ.get('DOCKER_NODE_LABEL_NUM_SERVICES', 'num_services'), label_available_gpus=os.environ.get('DOCKER_NODE_LABEL_AVAILABLE_GPUS', 'available_gpus')): self._network = network self._client = docker.from_env() self._label_num_services = label_num_services self._label_available_gpus = label_available_gpus def create_service(self, service_name, docker_image, replicas, args, environment_vars, mounts={}, publish_port=None, gpus=0) -> ContainerService: deployment = self._get_deployment(gpus) (service_id, hostname, port) \ = self._create_service(deployment, service_name, docker_image, replicas, args, environment_vars, mounts, publish_port) info = { 'node_id': deployment.node_id, 'gpu_nos': deployment.gpu_nos, 'service_name': service_name, 'replicas': replicas } service = ContainerService(service_id, hostname, port, info) self._mark_deployment(deployment) logger.info('Created service of ID "{}" with info {}'.format( service.id, service.info)) return service def destroy_service(self, service: ContainerService): self._destroy_sevice(service.id) node_id = service.info['node_id'] gpu_nos = service.info['gpu_nos'] deployment = _Deployment(node_id, gpu_nos) self._unmark_deployment(deployment) logger.info('Deleted service of ID "{}"'.format(service.id)) def _get_deployment(self, gpus) -> _Deployment: nodes = self._get_nodes() # Filter nodes with GPU if required if gpus > 0: nodes = [x for x in nodes if len(x.available_gpus) >= gpus] if len(nodes) == 0: raise InvalidServiceRequestError( 'Insufficient GPUs to deploy service') # Choose the node with fewest services (_, node) = sorted([(x.num_services, x) for x in nodes])[0] # Assign GPUs gpu_nos = node.available_gpus[:gpus] deployment = _Deployment(node.id, gpu_nos) return deployment def _mark_deployment(self, deployment): node_id = deployment.node_id # Update num services and GPUs available for node node = self._get_node(node_id) num_services = node.num_services + 1 available_gpus = [ x for x in node.available_gpus if x not in deployment.gpu_nos ] self._update_node(node_id, num_services, available_gpus) def _unmark_deployment(self, deployment): node_id = deployment.node_id # Update num services and GPUs available for node node = self._get_node(node_id) num_services = max(0, node.num_services - 1) available_gpus = list(set(node.available_gpus + deployment.gpu_nos)) self._update_node(node_id, num_services, available_gpus) def _destroy_sevice(self, service_id): service = self._client.services.get(service_id) _retry(service.remove)() def _create_service(self, deployment, service_name, docker_image, replicas, args, environment_vars, mounts, publish_port): env = ['{}={}'.format(k, v) for (k, v) in environment_vars.items()] mounts_list = ['{}:{}:rw'.format(k, v) for (k, v) in mounts.items()] constraints = [] ports_list = [] container_port = None published_port = None hostname = service_name if publish_port is not None: # Host of Docker Swarm service = service's name at the container port published_port = int(publish_port[0]) container_port = int(publish_port[1]) ports_list = [{ 'PublishedPort': published_port, 'TargetPort': container_port }] # Modify service based on deployment info constraints.append('node.id=={}'.format( deployment.node_id)) # Add node constraint if len(deployment.gpu_nos) > 0: env.append('CUDA_VISIBLE_DEVICES={}'.format(','.join( [str(x) for x in deployment.gpu_nos]))) # GPU nos else: env.append('CUDA_VISIBLE_DEVICES=-1') # No GPU docker_service = _retry(self._client.services.create)( image=docker_image, args=args, networks=[self._network], name=service_name, env=env, mounts=mounts_list, # Restart replicas when they exit with error restart_policy={ 'Condition': 'on-failure' }, constraints=constraints, endpoint_spec={ 'Ports': ports_list }, mode={ 'Replicated': { 'Replicas': replicas } }) # Host of Docker Swarm service = service's name at the container port return (docker_service.id, hostname, container_port) def _get_nodes(self): docker_nodes = self._client.nodes.list() nodes = [self._parse_node(x) for x in docker_nodes] return nodes def _get_node(self, node_id): docker_node = self._client.nodes.get(node_id) node = self._parse_node(docker_node) return node def _parse_node(self, docker_node): spec = docker_node.attrs.get('Spec', {}) spec_labels = spec.get('Labels', {}) available_gpus_str = spec_labels.get(self._label_available_gpus, '') available_gpus = [ int(x) for x in available_gpus_str.split(',') if len(x) > 0 ] num_services = int(spec_labels.get(self._label_num_services, 0)) return _Node(docker_node.id, available_gpus, num_services) def _update_node(self, node_id, num_services, available_gpus): docker_node = self._client.nodes.get(node_id) spec = docker_node.attrs.get('Spec', {}) spec_labels = spec.get('Labels', {}) _retry(docker_node.update)({ **spec, 'Labels': { **spec_labels, self._label_num_services: str(num_services), self._label_available_gpus: ','.join([str(x) for x in available_gpus]) } }) # Decorator that retries a method call a number of times def _retry(func): wait_secs = RETRY_WAIT_SECS @wraps(func) def retried_func(*args, **kwargs): for no in range(RETRY_TIMES + 1): try: return func(*args, **kwargs) except Exception as e: logger.error(f'Error when calling `{func}`:') logger.error(traceback.format_exc()) # Retried so many times but still errors - raise exception if no == RETRY_TIMES: logger.info(f'Giving up on `{func} call...') raise e logger.info(f'Retrying {func} after {wait_secs}s...') time.sleep(wait_secs) return retried_func
35.869919
93
0.608908
0b882adafd99179b25f0ff63d29baf0ead2ff130
835
py
Python
src/templates/gRPC-api/tests/test_server.py
pyansys/create-python-project
e289b5042fd95ca99c6d29e107e2114a5b9a7b15
[ "MIT" ]
4
2022-02-08T12:37:49.000Z
2022-03-29T04:45:10.000Z
src/templates/gRPC-api/tests/test_server.py
pyansys/create-python-project
e289b5042fd95ca99c6d29e107e2114a5b9a7b15
[ "MIT" ]
26
2022-02-08T12:48:52.000Z
2022-03-28T08:58:47.000Z
src/templates/gRPC-api/tests/test_server.py
pyansys/create-python-project
e289b5042fd95ca99c6d29e107e2114a5b9a7b15
[ "MIT" ]
1
2022-03-16T12:57:24.000Z
2022-03-16T12:57:24.000Z
# Copyright (c) 2022, Ansys Inc. Unauthorised use, distribution or duplication is prohibited from src.stubs.pingserver_pb2 import UserRequest, EmptyRequest class TestServer: def test_first_ping(self, grpc_stub): request = EmptyRequest() response = grpc_stub.PingServer(request) assert response.message == 'Hello, the server is healthy and it had been pinged 1 times!' def test_who_ping(self, grpc_stub): request = UserRequest(name='you') response = grpc_stub.WhoPing(request) assert response.message == f'Hello, the server is pinged by {request.name}!' def test_third_ping(self, grpc_stub): request = EmptyRequest() response = grpc_stub.PingServer(request) assert response.message == 'Hello, the server is healthy and it had been pinged 3 times!'
41.75
97
0.706587
5b824a5c29663b245ee53b29325811b5d2bf48ae
16,001
py
Python
fitbenchmarking/parsing/tests/test_parsers.py
fitbenchmarking/fitbenchmarking
ea398efa61f071dc64fe7c3b484d5bb4e1897856
[ "BSD-3-Clause" ]
6
2019-07-22T01:56:10.000Z
2021-12-10T05:29:30.000Z
fitbenchmarking/parsing/tests/test_parsers.py
fitbenchmarking/fitbenchmarking
ea398efa61f071dc64fe7c3b484d5bb4e1897856
[ "BSD-3-Clause" ]
677
2019-04-29T10:23:49.000Z
2022-03-22T12:01:30.000Z
fitbenchmarking/parsing/tests/test_parsers.py
fitbenchmarking/fitbenchmarking
ea398efa61f071dc64fe7c3b484d5bb4e1897856
[ "BSD-3-Clause" ]
8
2019-06-13T10:32:17.000Z
2020-12-09T15:08:40.000Z
""" This file contains tests for the parsers. """ from importlib import import_module from inspect import isclass, isabstract, getmembers from json import load import os from unittest import TestCase from pytest import test_type as TEST_TYPE # pylint: disable=no-name-in-module import numpy as np from fitbenchmarking.parsing.base_parser import Parser from fitbenchmarking.parsing.fitting_problem import FittingProblem from fitbenchmarking.parsing.parser_factory import \ ParserFactory, parse_problem_file from fitbenchmarking.utils import exceptions from fitbenchmarking.utils.options import Options OPTIONS = Options() JACOBIAN_ENABLED_PARSERS = ['cutest', 'nist'] HESSIAN_ENABLED_PARSERS = ['nist'] BOUNDS_ENABLED_PARSERS = ['cutest', 'fitbenchmark'] # pylint: disable=no-self-use def pytest_generate_tests(metafunc): """ Function used by pytest to parametrize tests. This will create a set of tests for each function in the class where the parameters are given in a 'params' dict in the class. """ # called once per each test function funcarglist = metafunc.cls.params[metafunc.function.__name__] argnames = sorted(funcarglist[0]) argvals = [[funcargs[name] for name in argnames] for funcargs in funcarglist] metafunc.parametrize(argnames, argvals) def generate_test_cases(): """ Utility function to create the params dict for parametrising the tests. :return: params dictionary with a function name as a key, and a list of parameter dictionaries for the value :rtype: dict """ params = {'test_parsers': [], 'test_factory': [], 'test_function_evaluation': [], 'test_jacobian_evaluation': [], 'test_hessian_evaluation': []} # get all parsers test_dir = os.path.dirname(__file__) if TEST_TYPE == "all": formats = ['cutest', 'nist', 'mantid', 'ivp', 'sasview'] elif TEST_TYPE == "default": formats = ['nist'] else: formats = ['nist'] # create list of test_cases expected_dir = os.listdir(os.path.join(test_dir, 'expected')) for file_format in formats: format_dir = os.listdir(os.path.join(test_dir, file_format)) for expected_file in expected_dir: expected_path = os.path.join(test_dir, 'expected', expected_file) test_name = os.path.splitext(expected_file)[0] test_name_with_ext = [f for f in format_dir if f.startswith(test_name)] if not test_name_with_ext: test_file = None elif len(test_name_with_ext) == 1: test_file = os.path.join(test_dir, file_format, test_name_with_ext[0]) else: raise RuntimeError( 'Too many "{}" files found for "{}" test'.format( file_format, test_name)) test_parsers = {} test_parsers['file_format'] = file_format test_parsers['test_file'] = test_file test_parsers['expected'] = load_expectation(expected_path) params['test_parsers'].append(test_parsers) test_factory = {} test_factory['file_format'] = file_format test_factory['test_file'] = test_file params['test_factory'].append(test_factory) func_eval = os.path.join(test_dir, file_format, 'function_evaluations.json') test_func_eval = {} test_func_eval['file_format'] = file_format test_func_eval['evaluations_file'] = func_eval params['test_function_evaluation'].append(test_func_eval) jac_eval = os.path.join(test_dir, file_format, 'jacobian_evaluations.json') test_jac_eval = {} test_jac_eval['file_format'] = file_format test_jac_eval['evaluations_file'] = jac_eval params['test_jacobian_evaluation'].append(test_jac_eval) hes_eval = os.path.join(test_dir, file_format, 'hessian_evaluations.json') test_hes_eval = {} test_hes_eval['file_format'] = file_format test_hes_eval['evaluations_file'] = hes_eval params['test_hessian_evaluation'].append(test_hes_eval) return params def load_expectation(filename): """ Load an expected fitting problem from a json file. :param filename: The path to the expectation file :type filename: string :return: A fitting problem to test against :rtype: fitbenchmarking.parsing.FittingProblem """ with open(filename, 'r') as f: expectation_dict = load(f) expectation = FittingProblem(OPTIONS) expectation.name = expectation_dict['name'] expectation.start_x = expectation_dict['start_x'] expectation.end_x = expectation_dict['end_x'] expectation.data_x = np.array(expectation_dict['data_x']) expectation.data_y = np.array(expectation_dict['data_y']) expectation.data_e = expectation_dict['data_e'] if expectation.data_e is not None: expectation.data_e = np.array(expectation.data_e) expectation.starting_values = expectation_dict['starting_values'] expectation.value_ranges = expectation_dict['value_ranges'] return expectation class TestParsers: """ A class to hold the tests for parametrized testing of parsers. """ params = generate_test_cases() def test_parsers(self, file_format, test_file, expected): """ Test that the parser correctly parses the specified input file. :param file_format: The name of the file format :type file_format: string :param test_file: The path to the test file :type test_file: string """ assert (test_file is not None), \ 'No test file for {}'.format(file_format) with open(test_file) as f: if f.readline() == 'NA': # Test File cannot be written return # Test import module = import_module(name='.{}_parser'.format(file_format), package='fitbenchmarking.parsing') parser = getmembers(module, lambda m: (isclass(m) and not isabstract(m) and issubclass(m, Parser) and m is not Parser and file_format.lower() in str(m.__name__.lower()) ))[0][1] # Test parse with parser(test_file, OPTIONS) as p: fitting_problem = p.parse() # Allow for problems not supporting certain test cases # (e.g. value_ranges) if fitting_problem.name == 'NA': return # Check against expected fitting_problem.verify() # functions and equation need to be done seperately as they can't be # generic across problem types. # similarly starting_values uses the param name so must be checked # separately for attr in ['name', 'data_x', 'data_y', 'data_e', 'start_x', 'end_x']: parsed_attr = getattr(fitting_problem, attr) expected_attr = getattr(expected, attr) equal = (parsed_attr == expected_attr) if isinstance(equal, np.ndarray): equal = equal.all() assert (equal), '{} was parsed incorrectly.'.format(attr) \ + '{} != {}'.format(parsed_attr, expected_attr) # Check starting_values for a, e in zip(fitting_problem.starting_values, expected.starting_values): loaded_as_set = set(a.values()) expected_as_set = set(e.values()) assert (loaded_as_set == expected_as_set), \ 'starting_values were parsed incorrectly.' # check value ranges if file_format in BOUNDS_ENABLED_PARSERS: if fitting_problem.value_ranges is not None: act_val = str(fitting_problem.value_ranges) else: act_val = fitting_problem.value_ranges assert (act_val == expected.value_ranges), \ 'value_ranges were parsed incorrectly.' # Check that the function is callable assert callable(fitting_problem.function) if file_format in JACOBIAN_ENABLED_PARSERS: # Check that the Jacobian is callable assert callable(fitting_problem.jacobian) if file_format in HESSIAN_ENABLED_PARSERS: # Check that the Jacobian is callable assert callable(fitting_problem.hessian) def test_function_evaluation(self, file_format, evaluations_file): """ Tests that the function evaluation is consistent with what would be expected by comparing to some precomputed values with fixed params and x values. :param file_format: The name of the file format :type file_format: string :param evaluations_file: Path to a json file containing tests and results in the following format: {"test_file1": [[x1, params1, results1], [x2, params2, results2], ...], "test_file2": ...} :type evaluations_file: string """ assert (evaluations_file is not None), \ 'No function evaluations provided to test against for {}'.format( file_format) with open(evaluations_file, 'r') as ef: results = load(ef) format_dir = os.path.dirname(evaluations_file) for f, tests in results.items(): f = os.path.join(format_dir, f) parser = ParserFactory.create_parser(f) with parser(f, OPTIONS) as p: fitting_problem = p.parse() for r in tests: x = np.array(r[0]) actual = fitting_problem.eval_model(x=x, params=r[1]) assert np.isclose(actual, r[2]).all() def test_jacobian_evaluation(self, file_format, evaluations_file): """ Tests that the Jacobian evaluation is consistent with what would be expected by comparing to some precomputed values with fixed params and x values. :param file_format: The name of the file format :type file_format: string :param evaluations_file: Path to a json file containing tests and results in the following format: {"test_file1": [[x1, params1, results1], [x2, params2, results2], ...], "test_file2": ...} :type evaluations_file: string """ # Note that this test is optional so will only run if the file_format # is added to the JACOBIAN_ENABLED_PARSERS list. if file_format in JACOBIAN_ENABLED_PARSERS: message = 'No function evaluations provided to test ' \ 'against for {}'.format(file_format) assert (evaluations_file is not None), message with open(evaluations_file, 'r') as ef: results = load(ef) format_dir = os.path.dirname(evaluations_file) for f, tests in results.items(): f = os.path.join(format_dir, f) parser = ParserFactory.create_parser(f) with parser(f, OPTIONS) as p: fitting_problem = p.parse() for r in tests: x = np.array(r[0]) actual = fitting_problem.jacobian(x, r[1]) assert np.isclose(actual, r[2]).all() def test_hessian_evaluation(self, file_format, evaluations_file): """ Tests that the Hessian evaluation is consistent with what would be expected by comparing to some precomputed values with fixed params and x values. :param file_format: The name of the file format :type file_format: string :param evaluations_file: Path to a json file containing tests and results in the following format: {"test_file1": [[x1, params1, results1], [x2, params2, results2], ...], "test_file2": ...} :type evaluations_file: string """ # Note that this test is optional so will only run if the file_format # is added to the HESSIAN_ENABLED_PARSERS list. if file_format in HESSIAN_ENABLED_PARSERS: message = 'No function evaluations provided to test ' \ 'against for {}'.format(file_format) assert (evaluations_file is not None), message with open(evaluations_file, 'r') as ef: results = load(ef) format_dir = os.path.dirname(evaluations_file) for f, tests in results.items(): f = os.path.join(format_dir, f) parser = ParserFactory.create_parser(f) with parser(f, OPTIONS) as p: fitting_problem = p.parse() for r in tests: x = np.array(r[0]) actual = fitting_problem.hessian(x, r[1]) assert np.isclose(actual, r[2]).all() def test_factory(self, file_format, test_file): """ Tests that the factory selects the correct parser :param file_format: The name of the file format :type file_format: string :param test_file: The path to the test file :type test_file: string """ with open(test_file) as f: if f.readline() == 'NA': # Skip the test files with no data return parser = ParserFactory.create_parser(test_file) assert (parser.__name__.lower().startswith(file_format.lower())), \ 'Factory failed to get associated parser for {0}: got {1},' \ 'required starting with {1}'.format(test_file, parser.__name__.lower()) class TestParserFactory(TestCase): """ A class to hold the tests for the parser factory. Note: testing that the parser factory works for all new parsers is left to the factory tests in TestParsers """ def test_unknown_parser(self): """ Tests that the parser factory raises a NoParserError when an erroneous parser is requested. """ filename = os.path.join(os.getcwd(), 'this_is_a_fake_parser.txt') with open(filename, 'w') as f: f.write('this_is_a_fake_parser') factory = ParserFactory() with self.assertRaises(exceptions.NoParserError): _ = factory.create_parser(filename) os.remove(filename) def test_parse_problem_file(self): """ Tests the parse_problem_file method """ filename = os.path.join(os.path.dirname(__file__), 'nist', 'basic.dat') fitting_problem = parse_problem_file(filename, OPTIONS) self.assertEqual(fitting_problem.name, 'basic')
38.743341
79
0.574277
d9ca2d113f84680a4c8893f5d1f0e67f3be2ef10
11,067
py
Python
galaxy/api/filters.py
smrutikanta/ansible-galaxy
2492e83a3551681a7b95bdfffb66d51a2a2f42ec
[ "Apache-2.0" ]
null
null
null
galaxy/api/filters.py
smrutikanta/ansible-galaxy
2492e83a3551681a7b95bdfffb66d51a2a2f42ec
[ "Apache-2.0" ]
null
null
null
galaxy/api/filters.py
smrutikanta/ansible-galaxy
2492e83a3551681a7b95bdfffb66d51a2a2f42ec
[ "Apache-2.0" ]
null
null
null
# (c) 2012-2018, Ansible by Red Hat # # This file is part of Ansible Galaxy # # Ansible Galaxy is free software: you can redistribute it and/or modify # it under the terms of the Apache License as published by # the Apache Software Foundation, either version 2 of the License, or # (at your option) any later version. # # Ansible Galaxy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Apache License for more details. # # You should have received a copy of the Apache License # along with Galaxy. If not, see <http://www.apache.org/licenses/>. import re # Django from django.core.exceptions import FieldError, ValidationError, ObjectDoesNotExist from django.contrib.auth import get_user_model from django.db import models from django.db.models import Q from django.db.models.fields import FieldDoesNotExist from django.db.models.fields.related import ForeignObjectRel # Django REST Framework from rest_framework.exceptions import ParseError from rest_framework.filters import BaseFilterBackend # drf-haystack from drf_haystack.filters import HaystackFilter # Galaxy from galaxy.main.models import UserAlias GalaxyUser = get_user_model() class ActiveOnlyBackend(BaseFilterBackend): ''' Filter to show only objects where is_active/active is True. ''' def filter_queryset(self, request, queryset, view): for field in queryset.model._meta.fields: if field.name == 'is_active': queryset = queryset.filter(is_active=True) elif field.name == 'active': queryset = queryset.filter(active=True) return queryset class FieldLookupBackend(BaseFilterBackend): ''' Filter using field lookups provided via query string parameters. ''' RESERVED_NAMES = ('page', 'page_size', 'format', 'order', 'order_by', 'search') SUPPORTED_LOOKUPS = ('exact', 'iexact', 'contains', 'icontains', 'startswith', 'istartswith', 'endswith', 'iendswith', 'regex', 'iregex', 'gt', 'gte', 'lt', 'lte', 'in', 'isnull') def get_field_from_lookup(self, model, lookup): field = None parts = lookup.split('__') if parts and parts[-1] not in self.SUPPORTED_LOOKUPS: parts.append('exact') # FIXME: Could build up a list of models used across relationships, use # those lookups combined with request.user.get_queryset(Model) to make # sure user cannot query using objects he could not view. for n, name in enumerate(parts[:-1]): if name == 'pk': field = model._meta.pk else: field = model._meta.get_field_by_name(name)[0] if n < (len(parts) - 2): if getattr(field, 'rel', None): model = field.rel.to else: model = field.model return field def to_python_boolean(self, value, allow_none=False): value = unicode(value) if value.lower() in ('true', '1'): return True elif value.lower() in ('false', '0'): return False elif allow_none and value.lower() in ('none', 'null'): return None else: raise ValueError(u'Unable to convert "%s" to boolean' % unicode(value)) def to_python_related(self, value): value = unicode(value) if value.lower() in ('none', 'null'): return None else: return int(value) def value_to_python_for_field(self, field, value): if isinstance(field, models.NullBooleanField): return self.to_python_boolean(value, allow_none=True) elif isinstance(field, models.BooleanField): return self.to_python_boolean(value) elif isinstance(field, ForeignObjectRel): return self.to_python_related(value) else: return field.to_python(value) def value_to_python(self, model, lookup, value): field = self.get_field_from_lookup(model, lookup) if lookup.endswith('__isnull'): value = self.to_python_boolean(value) elif lookup.endswith('__in'): items = [] for item in value.split(','): items.append(self.value_to_python_for_field(field, item)) value = items elif lookup.endswith('__regex') or lookup.endswith('__iregex'): try: re.compile(value) except re.error, e: raise ValueError(e.args[0]) return value else: value = self.value_to_python_for_field(field, value) return value def filter_queryset(self, request, queryset, view): # this is a hack to allow aliases on user names when # filtering on owner__username. QUERY_PARAMS is supposed # to be an alias for GET, however they appear to be distinct # objects internally, and since there is no setter for the # QUERY_PARAMS version we use GET instead directly if 'owner__username' in request.GET: try: # try and lookup the user first, to see if it exists GalaxyUser.objects.get(username=request.GET['owner__username']) except ObjectDoesNotExist, e: # if not, check to see if there's an alias for it try: alias_obj = UserAlias.objects.get(alias_name=request.GET['owner__username']) # and override that query parameter with the actual username qp = request.GET.copy() qp['owner__username'] = alias_obj.alias_of.username # Again, we use GET here because QUERY_PARAMS has no # setter function, so trying to do so here results in # an error. Furthermore, even when GET is set to the # new QueryDict object, QUERY_PARAMS remains unchanged, # meaning we have to use GET everywhere to ensure the # same object is being used with the overridden param. # This may be fixed in later DRF versions? request.GET = qp except Exception, e: # if not, we don't care, the later filtering # means an empty set will be returned for this pass try: # Apply filters specified via GET/QUERY_PARAMS. Each # entry in the lists below is (negate, field, value). and_filters = [] or_filters = [] chain_filters = [] for key, values in request.GET.lists(): if key in self.RESERVED_NAMES: continue # Custom __int filter suffix (internal use only). q_int = False if key.endswith('__int'): key = key[:-5] q_int = True # Custom chained filter q_chain = False if key.startswith('chain__'): key = key[7:] q_chain = True # Custom or__ filter prefix (or__ can precede not__). q_or = False if key.startswith('or__'): key = key[4:] q_or = True # Custom not__ filter prefix. q_not = False if key.startswith('not__'): key = key[5:] q_not = True # Convert value(s) to python and add to the appropriate list. for value in values: if q_int: value = int(value) value = self.value_to_python(queryset.model, key, value) if q_chain: chain_filters.append((q_not, key, value)) elif q_or: or_filters.append((q_not, key, value)) else: and_filters.append((q_not, key, value)) # Now build Q objects for database query filter. if and_filters or or_filters or chain_filters: args = [] for n, k, v in and_filters: if n: args.append(~Q(**{k: v})) else: args.append(Q(**{k: v})) if or_filters: q = Q() for n, k, v in or_filters: if n: q |= ~Q(**{k: v}) else: q |= Q(**{k: v}) args.append(q) queryset = queryset.filter(*args) for n, k, v in chain_filters: if n: q = ~Q(**{k: v}) else: q = Q(**{k: v}) queryset = queryset.filter(q) return queryset.distinct() except (FieldError, FieldDoesNotExist, ValueError), e: raise ParseError(e.args[0]) except ValidationError, e: raise ParseError(e.messages) class OrderByBackend(BaseFilterBackend): ''' Filter to apply ordering based on query string parameters. ''' def filter_queryset(self, request, queryset, view): try: order_by = None for key, value in request.GET.items(): if key in ('order', 'order_by'): if ',' in value: order_by = value.split(',') else: order_by = (value,) if order_by: queryset = queryset.order_by(*order_by) # Fetch the first result to run the query, otherwise we don't # always catch the FieldError for invalid field names. try: queryset[0] except IndexError: pass return queryset except FieldError, e: # Return a 400 for invalid field names. raise ParseError(*e.args) class HaystackFilter(HaystackFilter): def filter_queryset(self, request, queryset, view): qs = super(HaystackFilter, self).filter_queryset(request, queryset, view) try: order_by = None for key, value in request.GET.items(): if key in ('order', 'order_by'): if ',' in value: order_by = value.split(',') else: order_by = (value,) if order_by: qs = qs.order_by(*order_by) return qs except FieldError, e: # Return a 400 for invalid field names. raise ParseError(*e.args)
39.106007
96
0.542514
0a011139b947d9b233edbd38b9487dff9a677e03
2,313
py
Python
src/foxdot/release/what_there_is/the_ashes.vr_001.py
Neko250/aisthesis
1d4a2c3070d10596c28b25ea2170523583e7eff0
[ "Apache-2.0" ]
4
2018-06-29T18:39:34.000Z
2021-06-20T16:44:29.000Z
src/foxdot/release/what_there_is/the_ashes.vr_001.py
Neko250/aisthesis
1d4a2c3070d10596c28b25ea2170523583e7eff0
[ "Apache-2.0" ]
null
null
null
src/foxdot/release/what_there_is/the_ashes.vr_001.py
Neko250/aisthesis
1d4a2c3070d10596c28b25ea2170523583e7eff0
[ "Apache-2.0" ]
null
null
null
Scale.default = Scale.minor Root.default = 0 Clock.bpm = 80 chords = P[5,0,3,0] var.ch1 = var(chords,1) var.ch2 = var(chords,2) var.ch4 = var(chords,4) var.ch8 = var(chords,8) s1 >> charm(var.ch1, amp=.8, dur=PDur(3,8)*(1,2), chop=2, lpf=800, oct=4, formant=.25, room=1, mix=.25).spread() s2 >> ambi(chords, amp=.8, dur=4, oct=(3,4), room=1, mix=.5) s3 >> glass(chords, amp=.8, dur=4, oct=(2,3), room=1, mix=.5, lpf=1200) p1 >> play('(n-)---', amp=.2, dur=.25, room=1, sample=0, formant=linvar([-.25,-1],16)) p2 >> play('v', amp=.25, dur=PDur(3,16)*4, dist=.1, room=1, rate=.25) p1 >> play('(n-)---', amp=.2, dur=.25, room=1, sample=0, formant=linvar([-.25,-1],16)).often('stutter', 4, dur=3/2) s4 >> noise([0], amp=PWhite(0,.4), dur=1, room=1, mix=.5, chop=PRand([1,2,4])*2, oct=4) s4 >> noise(var.ch4, amp=PWhite(0,.4), dur=1, room=1, mix=.5, chop=PRand([1,2,3,4])*2, oct=4) p3 >> play('V', amp=.4, dur=1, rate=.5, room=linvar([0,1],16), mix=linvar([0,.5],12), lpf=800) s3.stop() # glass s2.stop() # ambi s1.every(4, 'degrade') Clock.future(16, s1.stop) # charm p3.stop() # kick s4.stop() # noise s5 >> bass(var.ch2, amp=.4, dur=PDur(3,8)*(1,2), dist=.05, oct=(4,5)) p1 >> play('(n-)---', amp=.5, dur=.25, room=1, sample=0, formant=linvar([-.25,-1],16), pan=PWhite(-1,1)).often('stutter', 4, dur=3/2) p3 >> play('V', amp=.4, dur=1, rate=.5, room=linvar([0,1],16), mix=linvar([0,.5],12), lpf=800) p4 >> play('i', amp=.4, dur=2, delay=1, sample=2, room=1, mix=[.1,.1,.1,.5], lpf=1500) s2 >> klank(chords, amp=.8, dur=4, oct=(3,4), room=1, mix=.5) s2 >> klank(chords, amp=.5, dur=4, oct=(3,4), room=1, mix=.5, formant=1) s3 >> glass(chords, amp=.8, dur=4, oct=(2,3), room=1, mix=.5, lpf=1200) s1 >> charm(var.ch1, amp=.8, dur=PDur(3,8)*(1,2), chop=2, lpf=800, oct=4, formant=.25, room=1, mix=.25).spread() s5 >> bass(var.ch2, amp=.4, dur=PDur(3,8)*(1,2), oct=(4,5)) s1 >> charm(var.ch1, amp=.8, dur=PDur(3,8)*(1,2), chop=2, lpf=800, oct=4, formant=.25, room=1, mix=.25).spread().penta(0) s5.stop() # bass p3.stop() # kick s2.stop() # klank p4 >> play('i', amp=.4, dur=4, delay=1, sample=2, room=1, mix=[.1,.5], lpf=1500) s1.every(4, 'degrade') Clock.future(16, s1.stop) # charm #### p1.stop() # hihat s3.stop() # glass p2.stop() # glitch p4.stop() # snare #### Clock.clear()
31.684932
133
0.573714
a09950f1cf1f8782d0a71cd639b762a87beb93a2
5,657
py
Python
qiskit/tools/jupyter/job_widgets.py
tareqdandachi/qiskit-terra
5221fe330adba5529bfa22dc25262ac8e6291aaf
[ "Apache-2.0" ]
3
2019-05-19T17:39:38.000Z
2020-01-28T19:59:18.000Z
qiskit/tools/jupyter/job_widgets.py
tareqdandachi/qiskit-terra
5221fe330adba5529bfa22dc25262ac8e6291aaf
[ "Apache-2.0" ]
4
2019-05-13T15:28:46.000Z
2019-12-19T20:47:02.000Z
qiskit/tools/jupyter/job_widgets.py
tareqdandachi/qiskit-terra
5221fe330adba5529bfa22dc25262ac8e6291aaf
[ "Apache-2.0" ]
1
2021-07-07T16:55:41.000Z
2021-07-07T16:55:41.000Z
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """A module of widgets for job tracking""" import ipywidgets as widgets from IPython.display import display, Javascript def make_clear_button(watcher): """Makes the clear button Args: watcher (widget): The watcher widget instance. Returns: widget: The clear button widget. """ clear = widgets.Button( description='Clear', button_style='primary', layout=widgets.Layout(width='70px', grid_area='right', padding="0px 0px 0px 0px")) def on_clear_button_clicked(_): watcher.clear_done() clear.on_click(on_clear_button_clicked) clear_button = widgets.GridBox(children=[clear], layout=widgets.Layout( width='100%', grid_template_columns='20% 20% 20% 20% 20%', grid_template_areas=''' ". . . . right " ''')) return clear_button def make_labels(): """Makes the labels widget. Returns: widget: The labels widget. """ labels0 = widgets.HTML(value="<h5>Job ID</h5>", layout=widgets.Layout(width='190px')) labels1 = widgets.HTML(value='<h5>Backend</h5>', layout=widgets.Layout(width='145px')) labels2 = widgets.HTML(value='<h5>Status</h5>', layout=widgets.Layout(width='95px')) labels3 = widgets.HTML(value='<h5>Queue</h5>', layout=widgets.Layout(width='70px')) labels4 = widgets.HTML(value='<h5>Message</h5>') labels = widgets.HBox(children=[labels0, labels1, labels2, labels3, labels4], layout=widgets.Layout(width='600px', margin='0px 0px 0px 35px')) return labels def create_job_widget(watcher, job, backend, status='', queue_pos=None, msg=''): """Creates a widget corresponding to a particular job instance. Args: watcher (widget): The job watcher instance. job (IBMQJob): The job. backend (str): The backend the job is running on. status (str): The job status. queue_pos (int): Queue position, if any. msg (str): Job message, if any. Returns: widget: The job widget """ job_id = job.job_id() id_label = widgets.HTML(value="{}".format(job_id), layout=widgets.Layout(width='190px')) backend_label = widgets.HTML(value="{}".format(backend), layout=widgets.Layout(width='145px')) status_label = widgets.HTML(value="{}".format(status), layout=widgets.Layout(width='95px')) if queue_pos is None: queue_pos = '-' else: queue_pos = str(queue_pos) queue_label = widgets.HTML(value="{}".format(queue_pos), layout=widgets.Layout(width='70px')) msg_label = widgets.HTML(value="<p style=white-space:nowrap;>{}</p>".format(msg), layout=widgets.Layout(overflow_x='scroll')) close_button = widgets.Button(button_style='', icon='close', layout=widgets.Layout(width='30px', margin="0px 5px 0px 0px")) close_button.style.button_color = 'white' def cancel_on_click(_): watcher.cancel_job(job_id) close_button.on_click(cancel_on_click) job_grid = widgets.HBox(children=[close_button, id_label, backend_label, status_label, queue_label, msg_label], layout=widgets.Layout(min_width='700px', max_width='700px')) job_grid.job_id = job_id job_grid.job = job return job_grid def build_job_viewer(): """Builds the job viewer widget Returns: widget: Job viewer. """ acc = widgets.Accordion(children=[widgets.VBox(layout=widgets.Layout(max_width='710px', min_width='710px'))], layout=widgets.Layout(width='auto', max_width='750px', max_height='500px', overflow_y='scroll', overflow_x='hidden')) acc.set_title(0, 'IBMQ Jobs') acc.selected_index = None acc.layout.visibility = 'hidden' display(acc) acc._dom_classes = ['job_widget'] display(Javascript("""$('div.job_widget') .detach() .appendTo($('#header')) .css({ 'z-index': 999, 'position': 'fixed', 'box-shadow': '5px 5px 5px -3px black', 'opacity': 0.95, 'float': 'left,' }) """)) acc.layout.visibility = 'visible' return acc
36.496774
94
0.53067
dab8ce1a09bdb9cdbbdaa2b76e15e41ad830863b
155
py
Python
delivery/tests/conftest.py
raiizoor/Python
9c1184cae21eb725a6ee2f0881e93527c888839a
[ "Unlicense" ]
1
2020-07-21T05:17:20.000Z
2020-07-21T05:17:20.000Z
delivery/tests/conftest.py
es99/curso-flask
03446ccc89894a2c4f2d1c14d0040e80d2226d9e
[ "Unlicense" ]
3
2021-02-11T02:31:31.000Z
2021-12-29T22:13:18.000Z
delivery/tests/conftest.py
es99/curso-flask
03446ccc89894a2c4f2d1c14d0040e80d2226d9e
[ "Unlicense" ]
1
2021-01-20T20:23:12.000Z
2021-01-20T20:23:12.000Z
import pytest from delivery.app import create_app @pytest.fixture(scope="module") def app(): """Instance of Main flask app""" return create_app()
19.375
36
0.716129
7fe4e9bb1eb8539840bd649bbc7be25b9b6c2ea5
44,094
py
Python
me2ushop/models.py
Dogechi/Me2U
0852600983dc1058ee347f4065ee801e16c1249e
[ "MIT" ]
null
null
null
me2ushop/models.py
Dogechi/Me2U
0852600983dc1058ee347f4065ee801e16c1249e
[ "MIT" ]
9
2020-06-06T01:16:25.000Z
2021-06-04T23:20:37.000Z
me2ushop/models.py
Dogechi/Me2U
0852600983dc1058ee347f4065ee801e16c1249e
[ "MIT" ]
null
null
null
import collections import decimal import itertools from ckeditor.fields import RichTextField from ckeditor_uploader.fields import RichTextUploadingField from django.conf import settings from django.core.cache import cache from django.core.validators import MinValueValidator from django.db import models from django.shortcuts import reverse from django.utils.text import slugify from django_countries.fields import CountryField from stdimage import StdImageField from tagging.registry import register from categories.models import Department from users.models import STATUSES, UNDER_REVIEW from utils.models import CreationModificationDateMixin from djangorave.models import DRPaymentTypeModel from django.utils.safestring import mark_safe CATEGORY_CHOICES = ( ('At', 'Arts, Crafts'), ('Bk', 'Books'), ('Bb', 'Baby Care'), ('Be', 'Beautiful 2'), ('Ca', 'Camera & Photo'), ('S', 'Shirt'), ('Sw', 'Sport wear'), ('Ow', 'Outwear'), ('Am', 'Automotive & Motorcycle'), ('Ca', 'Cell Phones & Accessories'), ('El', 'Electronics'), ('Fa', 'Fashion'), ('Fu', 'Furniture'), ('So', 'Sokoni'), ('Wo', 'Women Fashion') ) LABEL_CHOICES = ( ('P', 'primary'), ('S', 'secondary'), ('D', 'danger'), ) ADDRESS_CHOICES = ( ('B', 'Billing'), ('S', 'Shipping') ) PAYMENT_CHOICES = { ('M', "M-Pesa"), ('P', "Paypal"), ('S', "Stripe"), } SUBSCRIPTION_TYPE_CHOICE = ( ('Fr', 'Free'), ('St', 'Standard'), ('Bs', 'Basic'), ('Pr', 'Premium') ) BUSINESS_TYPE_CHOICE = ( ('Co', 'Company'), ('Sol', 'Sole Proprietorship/Personal') ) CONDITION_CHOICES = { ('N', "New"), ('R', "Refurbished"), ('U', "Used"), } SHIPPING_CAPABILITY = ( ('Cd', 'Can Ship Abroad and Deliver Locally'), ('Cl', 'Can Deliver Locally(Within your country)'), ('Co', 'Not Able to Deliver') ) from django_countries import Countries class AfrikanCountries(Countries): only = [ 'DZ', 'AO', 'BJ', 'BW', 'BF', 'BI', 'CM', 'CV', 'CF', 'TD', 'KM', 'CG', 'CD', 'CI', 'DJ', 'EG', 'GQ', 'ER', 'ET', 'GA', 'GM', 'GH', 'GN', 'GW', 'KE', 'LS', 'LR', 'LY', 'MG', 'ML', 'MW', 'MR', 'MU', 'YT', 'MA', 'MZ', 'NA', 'NE', 'NG', 'RE', 'RW', 'ST', 'SN', 'SC', 'SL', 'SO', 'ZA', 'SS', 'SD', 'SZ', 'TZ', 'TG', 'TN', 'UG', 'EH', 'ZM', 'ZW' ] class ContactSupplier(CreationModificationDateMixin): user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.SET_NULL, blank=True, null=True) brand = models.ForeignKey('Brand', on_delete=models.SET_NULL, blank=True, null=True) product = models.ForeignKey('Product', on_delete=models.SET_NULL, blank=True, null=True) message = models.TextField() def __str__(self): return self.user.username class ActiveBrandManager(models.Manager): def all(self): return super(ActiveBrandManager, self).all().filter(is_active=True) class Brand(CreationModificationDateMixin): profile = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, blank=True, null=True) slug = models.SlugField(default='', editable=False, blank=True, null=True, max_length=255) title = models.CharField(max_length=200, unique=True, help_text='Unique business title to identify Your store and ' 'your product line') website_link = models.CharField(max_length=255, blank=True, null=True, help_text='If you have a website by which buyers can find out more about your ' 'services.e.g. https://www.facebook.com') facebook = models.CharField(max_length=255, blank=True, null=True, help_text='Do you have a facebook page. Copy paste your page link here ' 'e.g..https://www.facebook.com/Me2UAfrika') instagram = models.CharField(max_length=255, blank=True, null=True, help_text='Do you have a instagram page. Copy paste your page link here ' 'eg..https://www.instagram.com/me2u_afrika/') twitter = models.CharField(max_length=255, blank=True, null=True, help_text='Do you have a Telegram Channel. Copy paste your page link here. ' 'e.g..https://t.me/me2uafrika') business_phone = models.CharField(max_length=20, blank=True, null=True, help_text='Business Phone Number . i.e +250785....') business_email = models.EmailField(blank=True, null=True, max_length=254, help_text='Business Phone Number . i.e +250785....') contact_person = models.CharField(max_length=255, blank=True, null=True, help_text="Contact person name who will receive inquiries") business_description = models.TextField(help_text="Tell us what you do and the kind of products you sell") business_type = models.CharField(choices=BUSINESS_TYPE_CHOICE, max_length=4) country = CountryField(multiple=False) address1 = models.CharField(max_length=100, blank=True, null=True) address2 = models.CharField(max_length=100, blank=True, null=True) zip_code = models.CharField(max_length=12, blank=True, null=True) subscription_plan = models.ForeignKey(DRPaymentTypeModel, blank=True, null=True, on_delete=models.SET_NULL, help_text='Select a monthly recurring subscription fees') # subscription_type = models.CharField(max_length=2, choices=SUBSCRIPTION_TYPE_CHOICE, # help_text='Select a monthly recurring subscription fees') subscription_reference = models.CharField(max_length=200, blank=True, null=True) subscription_status = models.BooleanField(default=True, blank=True, null=True) # shipping_status = models.CharField(choices=SHIPPING_CAPABILITY, max_length=2, default='Cd', blank=True, null=True, # help_text='Is Your company able to ship or deliver your products once they ' # 'buyers order online?') valid_payment_method = models.BooleanField(default=False, null=True, blank=True) is_active = models.BooleanField(editable=False, default=True) is_featured = models.BooleanField(default=False, blank=True, null=True) image = StdImageField(upload_to='images/brands/brand_background', blank=True, null=True, help_text='wallpaper for your store.Leave blank if you don\'t have one', default='images/brands/brand_background/default.jpg', variations={ 'large': (415, 470,), }, delete_orphans=True) logo = StdImageField(upload_to='images/brands/brand_logo', blank=True, null=True, help_text='logo for your store, Leave blank if you don\'t have one', variations={ 'medium': (150, 150, True), }, delete_orphans=True) application_status = models.IntegerField(choices=STATUSES, default=UNDER_REVIEW, blank=True, null=True) def __str__(self): return str(self.title) def get_absolute_url(self): return reverse('sellers:seller_home', kwargs={'slug': self.slug}) def get_backstore_url(self): return reverse('sellers:seller_home', kwargs={'slug': self.slug}) def get_frontstore_url(self): return reverse('me2ushop:seller_page', kwargs={'slug': self.slug}) def get_brandupdate_url(self): return reverse('me2ushop:brand_update', kwargs={'pk': self.pk}) def _generate_slug(self): value = self.title slug_original = slugify(value, allow_unicode=True) slug_candidate = '{}'.format(slug_original) return slug_candidate def save(self, *args, **kwargs): if not self.pk or self.slug == '': self.slug = self._generate_slug() if self.subscription_status and 10 < self.application_status < 40: self.is_active = True else: self.is_active = False if self.product_set.all(): for product in self.product_set.all(): product.save() cache.delete('brand-%s' % self.slug) super().save(*args, **kwargs) class ActiveProductManager(models.Manager): def all(self): return super(ActiveProductManager, self).all().filter(is_active=True, not_active=False).prefetch_related( 'productimage_set') class ProductManager(models.Manager): def get_by_natural_key(self, slug): return self.get(slug=slug) class Unitofmeasure(CreationModificationDateMixin): name = models.CharField(max_length=50) def __str__(self): return self.name class Product(CreationModificationDateMixin): title = models.CharField(max_length=300) slug = models.SlugField(unique=True, default='', editable=False, max_length=300 ) brand_name = models.ForeignKey('Brand', on_delete=models.SET_NULL, blank=True, null=True, help_text='Your store name') stock = models.IntegerField(default=1) unit_measure = models.ForeignKey(Unitofmeasure, blank=True, null=True, on_delete=models.SET_NULL) view_count = models.IntegerField(default=0, editable=False) sku = models.CharField(max_length=120, default='', editable=False, ) in_stock = models.BooleanField(default=True, editable=False) min_amount = models.IntegerField(default=1, blank=True, help_text="What is the minimum order units required for " "this item?") max_amount = models.IntegerField(blank=True, null=True, help_text="What is the maximum order units required for " "this item?") price = models.DecimalField(max_digits=9, decimal_places=2, default=0, help_text="What is the price of one piece of this item?" "Please note that the default currency is " "USD. Converty your product price to " "US dollar before listing.") discount_price = models.DecimalField(max_digits=9, decimal_places=2, validators=[MinValueValidator(1)], blank=True, null=True, help_text="Please note that the default currency is " "USD. Converty your product price to " "US Dollar before listing") is_active = models.BooleanField(default=True, editable=False) not_active = models.BooleanField(default=False) is_bestseller = models.BooleanField(default=False) is_featured = models.BooleanField(default=False) is_bestrated = models.BooleanField(default=False) description = RichTextField(max_length=400, config_name='Special') additional_information = RichTextUploadingField(blank=True, null=True, help_text='Provide additional information about ' 'your product. Buyers mostly buy from' ' well detailed products and ' 'specifications') shipping_status = models.CharField(choices=SHIPPING_CAPABILITY, max_length=2, default='Cd', blank=True, null=True, help_text='Is Your company able to ship or deliver this product once they ' 'buyers order online?') meta_keywords = models.CharField("Meta Keywords", max_length=100, help_text='Comma-delimited set of SEO keywords that summarize the type of ' 'product above max 4 words. This keywords will help buyers find your ' 'product easily. Read more https://ads.google.com/home/tools/keyword' '-planner/') meta_description = models.CharField("Meta Description", max_length=255, help_text='Give a simple short ' 'description on the information you have provided on the page this ' 'page. i.e This product is used ' 'for cleaning, cooking and it was recently released by it\'s ' 'manufacturer. Google uses this keywords and description to index ' 'your product for it to be found easily ' ) product_categories = models.ManyToManyField(Department, help_text='Check the box of the category where your product belongs. ' 'Please note that different categories attract different Ad ' 'charges. Be specific to one or two categories where your ' 'product ' 'belongs on the provided tree. Contact us for help') objects = ProductManager() active = ActiveProductManager() def __str__(self): return str(self.title) def natural_key(self): return (self.slug,) class Meta: db_table = 'Products' ordering = ['-modified'] verbose_name_plural = 'Products' def get_category(self): pass def sale_price(self): if self.discount_price: return self.discount_price else: return self.price def total_items_ordered(self): orders = self.orderitem_set.all() total = 0 for order_item in orders: if order_item.ordered: total += order_item.quantity return total def total_discount(self): # orders = self.orderitem_set.all() if self.discount_price and self.price > 0: diff = ((self.price - self.discount_price) / self.price) * 100 return round(diff) def get_absolute_url(self): return reverse('me2ushop:product', kwargs={'slug': self.slug}) def get_add_cart_url(self): return reverse('me2ushop:add_cart', kwargs={'slug': self.slug}) def get_images(self): return self.productimage_set.all() def get_image_in_display(self): image = self.productimage_set.filter(in_display=True) if image: return image[0] else: return self.get_images()[0] def image_tag(self): image = self.get_image_in_display() if image: return mark_safe('<img src="{}" height="50"/>'.format(image.image.thumbnail.url)) else: return "" def get_remove_cart_url(self): return reverse('me2ushop:remove_cart', kwargs={'slug': self.slug}) def get_order_summary_url(self): return reverse('me2ushop:order_summary') def cross_sells(self): orders = Order.objects.filter(items__item=self) order_items = OrderItem.objects.filter(order__in=orders).exclude(item=self) products = Product.active.filter(orderitem__in=order_items).filter().distinct() return products def cross_sells_user(self): from users.models import User users = User.objects.filter(order__items__item=self) items = OrderItem.objects.filter(order__user__in=users).exclude(item=self) products = Product.active.filter(orderitem__in=items).distinct() return def cross_sells_sellers(self): from search.search import _prepare_words from django.db.models import Q category = self.product_categories name = self.title # print('category:', category) # print('name:', name) # print('other sellers:', users) # print('self', self.slug) words = _prepare_words(self.title) # print('words:', words) for word in words: products = Product.active.filter( Q(title__icontains=self) | Q(title__startswith=self) | Q(title__icontains=word) | Q(title__startswith=word) | Q(title__endswith=self) | Q(title__endswith=word) ).exclude(slug=self.slug) # print('from sellers', products) return products def cross_sells_hybrid(self): from users.models import User from django.db.models import Q orders = Order.objects.filter(items__item=self) users = User.objects.filter(order__items__item=self) items = OrderItem.objects.filter(Q(order__user__in=users) | Q(order__in=orders) ).exclude(item=self) products = Product.active.filter(orderitem__in=items) matching = [] for product in products: matching.append(product) most_products = [] c = collections.Counter(matching) for product, count in c.most_common(3): most_products.append(product) return most_products def _generate_slug(self): value = self.title slug_candidate = slug_original = slugify(value, allow_unicode=True) for i in itertools.count(1): if not Product.objects.filter(slug=slug_candidate).exists(): break slug_candidate = '{}-{}'.format(slug_original, i) return slug_candidate def _generate_sku(self): brand = str(self.brand_name)[:3] title = str(self.title)[:3] created = str(self.created) sku = '{}-{}-{}'.format(brand, title, created) for i in itertools.count(1): if not Product.objects.filter(sku=sku).exists(): break sku = '{}-{}-{}-{}'.format(brand, title, created, i) return sku def save(self, *args, **kwargs): if not self.pk: self.slug = self._generate_slug() self.sku = self._generate_sku() if self.shipping_status == '': self.shipping_status = 'Cd' self.in_stock = True self.is_active = True if self.stock < self.min_amount: # print('we came to check stock') self.in_stock = False self.is_active = False if self.brand_name: if self.brand_name.is_active and self.in_stock: self.is_active = True else: self.is_active = False else: self.is_active = False image = self.productimage_set.filter(in_display=True) # print('image', image.exists()) if image.exists() and self.is_active: self.is_active = True else: self.is_active = False if self.not_active: self.is_active = False if self.discount_price and self.price < 1 or self.discount_price == self.price: self.price = self.discount_price self.discount_price = None if not self.is_active: if self.banner_set.all(): for banner in self.banner_set.all(): banner.save() cache.delete('product-%s' % self.slug) super().save(*args, **kwargs) # REGISTER PRODUCT MODEL AS A TAG register(Product) class ProductCustomizations(CreationModificationDateMixin): product = models.ForeignKey(Product, on_delete=models.CASCADE) name = models.CharField(max_length=255) min_order = models.IntegerField(default=1) max_order = models.IntegerField(blank=True, null=True) customization_price = models.DecimalField(max_digits=9, blank=True, null=True, decimal_places=2) customization_discount_price = models.DecimalField(max_digits=9, blank=True, null=True, decimal_places=2) def __str__(self): return self.name class DisplayImageManager(models.Manager): def get_query_set(self): return super(DisplayImageManager, self).get_query_set().filter(in_display=True) class ProductImage(CreationModificationDateMixin): item = models.ForeignKey(Product, on_delete=models.CASCADE) title = models.CharField(max_length=255, blank=True, null=True, help_text="Image title") image = StdImageField(upload_to='images/products', variations={ 'thumbnail': (150, 150), 'large': (585, 585), }, delete_orphans=True) in_display = models.BooleanField(default=True) objects = ProductManager() displayed = DisplayImageManager() class Meta: ordering = ('-in_display',) def __str__(self): if self.title: return str(self.title) return str(self.item) def natural_key(self): return (self.item.slug,) def get_absolute_url(self): return reverse('me2ushop:product_images', kwargs={'slug': self.item.slug}) def image_tag(self): if self.image: return mark_safe('<img src="%s" height="80"/>' % self.image.thumbnail.url) else: return "" # thumbnail_tag.short_description = "Thumbnail" def save(self, *args, **kwargs): cache.delete('productimage-%s' % self.pk) super().save(*args, **kwargs) # # class VariationsManager(models.Manager): # def all(self): # return super(VariationsManager, self).filter(is_active=True) # # def sizes(self): # return self.all().filter(variation_category='size') # # def colors(self): # return self.all().filter(variation_category='color') # # # VAR_CATEGORIES = ( # ('size', 'size'), # ('color', 'color'), # ('package', 'package'), # ) # # class VariationCategory(CreationModificationDateMixin): # variation_name = models.CharField(max_length=200, unique=True) # # def __str__(self): # return self.variation_name # # # class Variation(CreationModificationDateMixin): # product = models.ForeignKey(Product, on_delete=models.CASCADE, blank=True, null=True) # title = models.CharField(max_length=100, blank=True, null=True, # help_text="Title for this product variant") # variation_category = models.ForeignKey(VariationCategory, on_delete=models.CASCADE) # variation_value = models.CharField(max_length=200) # price = models.DecimalField(max_digits=9, null=True, blank=True, decimal_places=2, default=0, # help_text="Please note that the default currency is " # "USD. Converty your product price to " # "US dollar before listing") # # discount_price = models.DecimalField(max_digits=9, decimal_places=2, validators=[MinValueValidator(1)], # blank=True, null=True, # help_text="Please note that the default currency is " # "USD. Converty your product price to " # "US Dollar before listing") # image = models.ForeignKey(ProductImage, on_delete=models.SET_NULL, blank=True, null=True) # # is_active = models.BooleanField(default=True) # # stock = models.IntegerField(default=1, blank=True, null=True) # # objects = VariationsManager() # # class Meta: # unique_together = ( # ('variation_category', 'variation_value') # ) # # def __str__(self): # return u'%s - %s' % (self.variation_category, self.variation_value,) # # def get_absolute_url(self): # return reverse('me2ushop:product', kwargs={'slug': self.product.slug}) # # def image_tag(self): # if self.image: # return mark_safe('<img src="{}" height="50"/>'.format(self.image.image.thumbnail.url)) # else: # return "" class Color(CreationModificationDateMixin): name = models.CharField(max_length=20) code = models.CharField(max_length=10, blank=True, null=True) def __str__(self): return self.name class Size(CreationModificationDateMixin): name = models.CharField(max_length=20) code = models.CharField(max_length=10, blank=True, null=True) def __str__(self): return self.name class ProductVariationsManager(models.Manager): def all(self): return super(ProductVariationsManager, self).all() def active(self): return self.all().filter(is_active=True) class ProductVariationsQueryset(models.query.QuerySet): def active(self): return self.filter(is_active=True) class ActiveProductVariationsManager(models.Manager): def get_queryset(self): return ProductVariationsQueryset(self.model, using=self._db).active() class ProductVariations(CreationModificationDateMixin): """ The ``ProductDetail`` model represents information unique to a specific product. This is a generic design that can be used to extend the information contained in the ``Product`` model with specific, extra details. """ product = models.ForeignKey("Product", on_delete=models.CASCADE) slug = models.SlugField(unique=True, default='', blank=True, null=True, editable=False, max_length=300 ) title = models.CharField(max_length=100, blank=True, null=True, help_text="Title for this product variant") color = models.ForeignKey(Color, on_delete=models.CASCADE, blank=True, null=True, help_text="Add if your product comes in different colors") size = models.ForeignKey(Size, on_delete=models.CASCADE, blank=True, null=True, help_text="Add if your product comes in different colors") sku = models.CharField(max_length=120, default='', editable=False, ) in_stock = models.BooleanField(default=True, editable=False) min_amount = models.IntegerField(default=1, blank=True, help_text="What is the minimum order units required for " "this item?") max_amount = models.IntegerField(blank=True, null=True, help_text="What is the maximum order units required for " "this item?") price = models.DecimalField(max_digits=9, null=True, blank=True, decimal_places=2, default=0, help_text="If the above variables affect your original price, update price" "Note that the default currency is " "USD. Convert your product price to US dollar before listing") discount_price = models.DecimalField(max_digits=9, decimal_places=2, validators=[MinValueValidator(1)], blank=True, null=True, help_text="Note that the default currency is " "USD. Convert your product price to " "US Dollar before listing") image = models.ForeignKey(ProductImage, on_delete=models.SET_NULL, blank=True, null=True) stock = models.IntegerField(default=1, blank=True, null=True) is_active = models.BooleanField(default=True, editable=False) objects = ProductVariationsManager() active = ActiveProductVariationsManager() class Meta: unique_together = ('product', 'size', 'color') def __str__(self): return u'%s - %s - %s' % (self.product, self.color, self.size,) def get_absolute_url(self): return reverse('me2ushop:product', kwargs={'slug': self.product.slug}) # def get_remove_cart_url(self): # return reverse('me2ushop:remove_cart', kwargs={'slug': self.slug}) # def get_add_cart_url(self): # return reverse('me2ushop:add_cart', kwargs={'slug': self.slug}) def get_image(self): return self.image.image.thumbnail.url def image_tag(self): if self.image: return mark_safe('<img src="{}" height="50"/>'.format(self.image.image.thumbnail.url)) else: return "" def sale_price(self): if self.discount_price: return self.discount_price else: return self.price def _generate_sku(self): variant = None brand = str(self.product.brand_name)[:3] title = str(self.product.title)[:3] created = str(self.created) if self.size and self.color: variant = '{}-{}'.format(self.size, self.color) elif self.size: variant = '{}'.format(self.size) elif self.color: variant = '{}'.format(self.color) sku = '{}-{}-{}-{}'.format(brand, title, created, variant) for i in itertools.count(1): if not ProductVariations.objects.filter(sku=sku).exists(): break sku = '{}-{}-{}-{}'.format(brand, title, created, variant, i) return sku def _generate_slug(self): variant = self.product.title if self.size and self.color: variant = '{}-{}-{}'.format(self.product.title, self.size, self.color) elif self.size: variant = '{}-{}'.format(self.product.title, self.size) elif self.color: variant = '{}-{}'.format(self.product.title, self.color) value = variant slug_candidate = slug_original = slugify(value, allow_unicode=True) for i in itertools.count(1): if not Product.objects.filter(slug=slug_candidate).exists(): break slug_candidate = '{}-{}'.format(slug_original, i) return slug_candidate def save(self, *args, **kwargs): if not self.pk or self.sku or self.slug: self.sku = self._generate_sku() self.slug = self._generate_slug() self.in_stock = True if self.stock: if self.stock < self.min_amount: print('we came to check stock on product variant') self.in_stock = False self.is_active = False else: self.is_active = True if self.discount_price and self.price < 1 or self.discount_price == self.price: self.price = self.discount_price self.discount_price = None cache.delete('product-%s' % self.product.slug) super().save(*args, **kwargs) class ProductAttribute(CreationModificationDateMixin): """ The ``ProductAttribute`` model represents a class of feature found across a set of products. It does not store any data values related to the attribute, but only describes what kind of a product feature we are trying to capture. Possible attributes include things such 4 as materials, colors, sizes, and many, many more. """ name = models.CharField(max_length=300) description = models.TextField(blank=True) def __str__(self): return u'%s' % self.name class Rentals(CreationModificationDateMixin): product = models.ForeignKey(Product, on_delete=models.CASCADE) book_start = models.DateTimeField(auto_now_add=True, blank=True, null=True) book_end = models.DateTimeField(auto_now_add=True, blank=True, null=True) rental_price_day = models.DecimalField(max_digits=9, decimal_places=2) discount_per_week = models.IntegerField(blank=True, null=True) discount_per_month = models.IntegerField(blank=True, null=True) def __str__(self): return u'%s' % self.product class WishList(CreationModificationDateMixin): user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) product = models.ForeignKey(Product, on_delete=models.CASCADE) def __str__(self): return str(self.product.title) class StatusCode(CreationModificationDateMixin): """ The StatusCode model represents the status of an order in the system. """ NEW = 10 PAID = 20 PROCESSING = 30 SENT = 40 CANCELLED = 50 IN_TRANSIT = 60 DELIVERED = 70 STATUSES = ((NEW, "New"), (PAID, "Paid"), (PROCESSING, "Processing"), (SENT, "Sent"), (CANCELLED, "Cancelled"), (IN_TRANSIT, "in_transit"), (DELIVERED, "Delivered"), ) short_name = models.IntegerField(choices=STATUSES, default=NEW) name = models.CharField(max_length=300) description = models.TextField() def __str__(self): return str(self.short_name) class OrderItem(CreationModificationDateMixin): NEW = 10 ACCEPTED = 20 SENT = 30 CANCELLED = 40 IN_TRANSIT = 45 DELIVERED = 50 STATUSES = ((NEW, "New"), (ACCEPTED, "Accepted"), (SENT, "Sent"), (CANCELLED, "Cancelled"), (IN_TRANSIT, "in_transit"), (DELIVERED, "Delivered"), ) user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.SET_NULL, blank=True, null=True) customer_order = models.ForeignKey('Order', blank=True, null=True, on_delete=models.SET_NULL) cart_id = models.CharField(max_length=40, blank=True, null=True) date_added = models.DateTimeField(auto_now_add=True) date_ordered = models.DateTimeField(auto_now=True) status = models.IntegerField(choices=STATUSES, default=NEW) status_code = models.ForeignKey('StatusCode', on_delete=models.SET_NULL, blank=True, null=True) order_received = models.BooleanField(default=False) ordered = models.BooleanField(default=False) item = models.ForeignKey(Product, on_delete=models.PROTECT, unique=False, blank=True, null=True) variant = models.ForeignKey(ProductVariations, blank=True, null=True, on_delete=models.SET_NULL) quantity = models.PositiveIntegerField(default=1, validators=[MinValueValidator(1)]) comments = models.TextField(blank=True) delivered_by = models.ForeignKey(settings.AUTH_USER_MODEL, related_name='dispatcher', on_delete=models.SET_NULL, blank=True, null=True) class Meta: ordering = ['-date_added'] def __str__(self): return f"{self.quantity} of {self.item.title}" def get_absolute_url(self): return reverse('users:order-details', kwargs={'order_id': self.id}) def get_total_price(self): if self.variant: return self.quantity * self.variant.price else: return self.quantity * self.item.price def get_total_discount_price(self): if self.variant: return self.quantity * self.variant.discount_price else: return self.quantity * self.item.discount_price def get_total_saved(self): return self.get_total_price() - self.get_total_discount_price() def get_final_price(self): if self.variant: if self.variant.discount_price: return self.get_total_discount_price() else: return self.get_total_price() else: if self.item.discount_price: return self.get_total_discount_price() else: return self.get_total_price() def total_items_ordered(self): # total = self.orderitem_set.all().count() total = 0 for order_item in self.filter(ordered=True): total += order_item.quantity return total @property def mobile_thumb_url(self): products = [self.item] # print('products:', products) if products: img = products[0].productimage_set.first() if img: return img.image.thumbnail.url @property def summary(self): pieces = ['%s x %s' % (self.quantity, self.item.title)] return ",".join(pieces) class Order(CreationModificationDateMixin): NEW = 10 PAID = 20 DONE = 30 STATUSES = ((NEW, 'New'), (PAID, 'Paid'), (DONE, 'Done')) user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, blank=True, null=True, db_index=True) cart_id = models.CharField(max_length=40, blank=True, null=True) status = models.IntegerField(choices=STATUSES, default=NEW) status_code = models.ForeignKey('StatusCode', on_delete=models.SET_NULL, blank=True, null=True) items = models.ManyToManyField('OrderItem') ref_code = models.CharField(max_length=200) start_date = models.DateTimeField(auto_now_add=True) order_date = models.DateTimeField(auto_now=True) ordered = models.BooleanField(default=False) payment = models.CharField(max_length=2, blank=True, null=True) coupon = models.ForeignKey('Coupon', on_delete=models.SET_NULL, blank=True, null=True) being_delivered = models.BooleanField(default=False) received = models.BooleanField(default=False) refund_requested = models.BooleanField(blank=True, null=True) refund_granted = models.BooleanField(blank=True, null=True) email = models.EmailField(max_length=50, blank=True, null=True) phone = models.CharField(max_length=20, blank=True, null=True) name = models.CharField(max_length=60, blank=True, null=True) billing_address1 = models.CharField(max_length=60) billing_address2 = models.CharField(max_length=60, blank=True) billing_zip_code = models.CharField(max_length=12) billing_country = models.CharField(max_length=3) billing_city = models.CharField(max_length=12, blank=True, null=True) shipping_address1 = models.CharField(max_length=60) shipping_address2 = models.CharField(max_length=60, blank=True) shipping_zip_code = models.CharField(max_length=12) shipping_country = models.CharField(max_length=3) shipping_city = models.CharField(max_length=12, blank=True, null=True) comments = models.TextField(blank=True) last_spoken_to = models.ForeignKey(settings.AUTH_USER_MODEL, null=True, related_name="cs_chats", on_delete=models.SET_NULL) class Meta: ordering = ['-modified'] def __str__(self): return str(self.id) def get_absolute_url(self): return reverse('users:order-details', kwargs={'order_id': self.id}) def get_coupon_total(self): total = 0 for order_item in self.items.all(): total += order_item.get_final_price() total -= self.coupon.amount return total def get_total(self): total = 0 for order_item in self.items.all(): total += order_item.get_final_price() return total def total_items(self): # total = self.orderitem_set.all().count() total = 0 for order_item in self.items.all(): total += order_item.quantity return total def get_total_saved_coupon(self): return self.get_total() - self.get_coupon_total() @property def mobile_thumb_url(self): products = [i.item for i in self.items.all()] # print('products:', products) if products: img = products[0].productimage_set.first() if img: return img.image.thumbnail.url @property def summary(self): product_counts = self.items.values( 'quantity', 'item__title' ) pieces = [] for pc in product_counts: pieces.append( '%s x %s' % (pc['quantity'], pc['item__title']) ) return ",".join(pieces) class ActiveProductReviewManager(models.Manager): def all(self): return super(ActiveProductReviewManager, self) \ .all().filter(is_approved=True) class ProductReview(models.Model): RATINGS = ((5, 5), (4, 4), (3, 3), (2, 2), (1, 1)) product = models.ForeignKey(Product, on_delete=models.CASCADE) # ordered_by_user = models.ForeignKey(Order, ordered=True, on_delete=models.CASCADE) user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) title = models.CharField(max_length=50) date = models.DateTimeField(auto_now_add=True) rating = models.PositiveSmallIntegerField(default=5, choices=RATINGS) is_approved = models.BooleanField(default=True) content = models.TextField() country = CountryField(multiple=False, blank=True, null=True) objects = models.Manager() approved = ActiveProductReviewManager() def __str__(self): return str(self.user.username) def get_images(self): return self.product.productimage_set.all() class Address(models.Model): user = models.ForeignKey(settings.AUTH_USER_MODEL, blank=True, null=True, on_delete=models.CASCADE) cart_id = models.CharField(max_length=40, blank=True, null=True) street_address = models.CharField(max_length=100) apartment_address = models.CharField(max_length=100) country = CountryField(multiple=False) city = models.CharField(max_length=60) zip = models.CharField(max_length=10) address_type = models.CharField(max_length=1, choices=ADDRESS_CHOICES) payment_option = models.CharField(max_length=2, choices=PAYMENT_CHOICES) default = models.BooleanField(default=False) name = models.CharField(max_length=60, blank=True, null=True) email = models.EmailField(max_length=50, blank=True, null=True) phone = models.CharField(max_length=20, blank=True, null=True) date_updated = models.DateTimeField(auto_now_add=True) def __str__(self): return "%s, %s, %s, %s, %s" % (self.street_address, self.country, self.city, self.zip, self.phone) class Meta: verbose_name_plural = 'Addresses' ordering = ['-date_updated'] class StripePayment(models.Model): from stats.models import ProductView user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.SET_NULL, blank=True, null=True) cart_id = models.ForeignKey(ProductView, max_length=70, blank=True, null=True, on_delete=models.CASCADE) stripe_charge_id = models.CharField(max_length=50) amount = models.DecimalField(max_digits=9, decimal_places=2) timestamp = models.DateTimeField(auto_now_add=True) def __str__(self): return self.stripe_charge_id class Coupon(models.Model): code = models.CharField(max_length=10) amount = models.DecimalField(max_digits=9, decimal_places=2, default=20) valid = models.BooleanField(default=True) def __str__(self): return str(self.code) class RequestRefund(models.Model): order = models.ForeignKey(Order, on_delete=models.CASCADE) reason = models.TextField() accepted = models.BooleanField(blank=True, null=True) # email = models.EmailField() ref_code = models.CharField(max_length=20) def __str__(self): return f"{self.pk}"
38.209705
121
0.608654
94c267fd288a2997cca3b6eabf2961f55ecc3863
655
py
Python
catalog/bindings/gmd/abstract_curve_segment_type.py
NIVANorge/s-enda-playground
56ae0a8978f0ba8a5546330786c882c31e17757a
[ "Apache-2.0" ]
null
null
null
catalog/bindings/gmd/abstract_curve_segment_type.py
NIVANorge/s-enda-playground
56ae0a8978f0ba8a5546330786c882c31e17757a
[ "Apache-2.0" ]
null
null
null
catalog/bindings/gmd/abstract_curve_segment_type.py
NIVANorge/s-enda-playground
56ae0a8978f0ba8a5546330786c882c31e17757a
[ "Apache-2.0" ]
null
null
null
from dataclasses import dataclass, field __NAMESPACE__ = "http://www.opengis.net/gml" @dataclass class AbstractCurveSegmentType: num_derivatives_at_start: int = field( default=0, metadata={ "name": "numDerivativesAtStart", "type": "Attribute", }, ) num_derivatives_at_end: int = field( default=0, metadata={ "name": "numDerivativesAtEnd", "type": "Attribute", }, ) num_derivative_interior: int = field( default=0, metadata={ "name": "numDerivativeInterior", "type": "Attribute", }, )
22.586207
44
0.548092
9c527fa820d2c49bd2542b669b26abd377c7d033
1,512
py
Python
apps/monitor/views/newsblur_feeds.py
louis-pre/NewsBlur
b4e9a56041ff187ef77b38dfd0778daf41b53f4f
[ "MIT" ]
3,073
2015-01-01T07:20:18.000Z
2022-03-31T20:33:41.000Z
apps/monitor/views/newsblur_feeds.py
louis-pre/NewsBlur
b4e9a56041ff187ef77b38dfd0778daf41b53f4f
[ "MIT" ]
1,054
2015-01-02T13:32:35.000Z
2022-03-30T04:21:21.000Z
apps/monitor/views/newsblur_feeds.py
louis-pre/NewsBlur
b4e9a56041ff187ef77b38dfd0778daf41b53f4f
[ "MIT" ]
676
2015-01-03T16:40:29.000Z
2022-03-30T14:00:40.000Z
from django.views import View from django.shortcuts import render from apps.rss_feeds.models import Feed from apps.reader.models import UserSubscription from apps.social.models import MSocialProfile, MSocialSubscription from apps.statistics.models import MStatistics class Feeds(View): def get(self, request): feeds_count = MStatistics.get('munin:feeds_count') if not feeds_count: feeds_count = Feed.objects.all().count() MStatistics.set('munin:feeds_count', feeds_count, 60*60*12) subscriptions_count = MStatistics.get('munin:subscriptions_count') if not subscriptions_count: subscriptions_count = UserSubscription.objects.all().count() MStatistics.set('munin:subscriptions_count', subscriptions_count, 60*60*12) data = { 'feeds': feeds_count, 'subscriptions': subscriptions_count, 'profiles': MSocialProfile.objects._collection.count(), 'social_subscriptions': MSocialSubscription.objects._collection.count(), } chart_name = "feeds" chart_type = "counter" formatted_data = {} for k, v in data.items(): formatted_data[k] = f'{chart_name}{{category="{k}"}} {v}' context = { "data": formatted_data, "chart_name": chart_name, "chart_type": chart_type, } return render(request, 'monitor/prometheus_data.html', context, content_type="text/plain")
35.162791
98
0.651455
5ae2788d0eecd613e821cc8b8a91d6d65c92af05
155,951
py
Python
salt/states/file.py
lyft/salt
2715908423a412f736253d0e5d3cfe185a0179a2
[ "Apache-2.0" ]
3
2015-04-16T18:42:35.000Z
2017-10-30T16:57:49.000Z
salt/states/file.py
lyft/salt
2715908423a412f736253d0e5d3cfe185a0179a2
[ "Apache-2.0" ]
16
2015-11-18T00:44:03.000Z
2018-10-29T20:48:27.000Z
salt/states/file.py
lyft/salt
2715908423a412f736253d0e5d3cfe185a0179a2
[ "Apache-2.0" ]
1
2017-01-27T21:33:36.000Z
2017-01-27T21:33:36.000Z
# -*- coding: utf-8 -*- ''' Operations on regular files, special files, directories, and symlinks ===================================================================== Salt States can aggressively manipulate files on a system. There are a number of ways in which files can be managed. Regular files can be enforced with the :mod:`file.managed <salt.states.file.managed>` state. This state downloads files from the salt master and places them on the target system. Managed files can be rendered as a jinja, mako, or wempy template, adding a dynamic component to file management. An example of :mod:`file.managed <salt.states.file.managed>` which makes use of the jinja templating system would look like this: .. code-block:: yaml /etc/http/conf/http.conf: file.managed: - source: salt://apache/http.conf - user: root - group: root - mode: 644 - template: jinja - defaults: custom_var: "default value" other_var: 123 {% if grains['os'] == 'Ubuntu' %} - context: custom_var: "override" {% endif %} It is also possible to use the :mod:`py renderer <salt.renderers.py>` as a templating option. The template would be a Python script which would need to contain a function called ``run()``, which returns a string. All arguments to the state will be made available to the Python script as globals. The returned string will be the contents of the managed file. For example: .. code-block:: python def run(): lines = ['foo', 'bar', 'baz'] lines.extend([source, name, user, context]) # Arguments as globals return '\\n\\n'.join(lines) .. note:: The ``defaults`` and ``context`` arguments require extra indentation (four spaces instead of the normal two) in order to create a nested dictionary. :ref:`More information <nested-dict-indentation>`. If using a template, any user-defined template variables in the file defined in ``source`` must be passed in using the ``defaults`` and/or ``context`` arguments. The general best practice is to place default values in ``defaults``, with conditional overrides going into ``context``, as seen above. The template will receive a variable ``custom_var``, which would be accessed in the template using ``{{ custom_var }}``. If the operating system is Ubuntu, the value of the variable ``custom_var`` would be *override*, otherwise it is the default *default value* The ``source`` parameter can be specified as a list. If this is done, then the first file to be matched will be the one that is used. This allows you to have a default file on which to fall back if the desired file does not exist on the salt fileserver. Here's an example: .. code-block:: yaml /etc/foo.conf: file.managed: - source: - salt://foo.conf.{{ grains['fqdn'] }} - salt://foo.conf.fallback - user: foo - group: users - mode: 644 - backup: minion .. note:: Salt supports backing up managed files via the backup option. For more details on this functionality please review the :doc:`backup_mode documentation </ref/states/backup_mode>`. The ``source`` parameter can also specify a file in another Salt environment. In this example ``foo.conf`` in the ``dev`` environment will be used instead. .. code-block:: yaml /etc/foo.conf: file.managed: - source: - salt://foo.conf?saltenv=dev - user: foo - group: users - mode: '0644' .. warning:: When using a mode that includes a leading zero you must wrap the value in single quotes. If the value is not wrapped in quotes it will be read by YAML as an integer and evaluated as an octal. Special files can be managed via the ``mknod`` function. This function will create and enforce the permissions on a special file. The function supports the creation of character devices, block devices, and fifo pipes. The function will create the directory structure up to the special file if it is needed on the minion. The function will not overwrite or operate on (change major/minor numbers) existing special files with the exception of user, group, and permissions. In most cases the creation of some special files require root permisisons on the minion. This would require that the minion to be run as the root user. Here is an example of a character device: .. code-block:: yaml /var/named/chroot/dev/random: file.mknod: - ntype: c - major: 1 - minor: 8 - user: named - group: named - mode: 660 Here is an example of a block device: .. code-block:: yaml /var/named/chroot/dev/loop0: file.mknod: - ntype: b - major: 7 - minor: 0 - user: named - group: named - mode: 660 Here is an example of a fifo pipe: .. code-block:: yaml /var/named/chroot/var/log/logfifo: file.mknod: - ntype: p - user: named - group: named - mode: 660 Directories can be managed via the ``directory`` function. This function can create and enforce the permissions on a directory. A directory statement will look like this: .. code-block:: yaml /srv/stuff/substuf: file.directory: - user: fred - group: users - mode: 755 - makedirs: True If you need to enforce user and/or group ownership or permissions recursively on the directory's contents, you can do so by adding a ``recurse`` directive: .. code-block:: yaml /srv/stuff/substuf: file.directory: - user: fred - group: users - mode: 755 - makedirs: True - recurse: - user - group - mode As a default, ``mode`` will resolve to ``dir_mode`` and ``file_mode``, to specify both directory and file permissions, use this form: .. code-block:: yaml /srv/stuff/substuf: file.directory: - user: fred - group: users - file_mode: 744 - dir_mode: 755 - makedirs: True - recurse: - user - group - mode Symlinks can be easily created; the symlink function is very simple and only takes a few arguments: .. code-block:: yaml /etc/grub.conf: file.symlink: - target: /boot/grub/grub.conf Recursive directory management can also be set via the ``recurse`` function. Recursive directory management allows for a directory on the salt master to be recursively copied down to the minion. This is a great tool for deploying large code and configuration systems. A state using ``recurse`` would look something like this: .. code-block:: yaml /opt/code/flask: file.recurse: - source: salt://code/flask - include_empty: True A more complex ``recurse`` example: .. code-block:: yaml {% set site_user = 'testuser' %} {% set site_name = 'test_site' %} {% set project_name = 'test_proj' %} {% set sites_dir = 'test_dir' %} django-project: file.recurse: - name: {{ sites_dir }}/{{ site_name }}/{{ project_name }} - user: {{ site_user }} - dir_mode: 2775 - file_mode: '0644' - template: jinja - source: salt://project/templates_dir - include_empty: True ''' # Import python libs from __future__ import absolute_import import difflib import itertools import json import logging import os import pprint import shutil import traceback import yaml from collections import Iterable, Mapping # Import salt libs import salt.payload import salt.utils import salt.utils.templates import salt.utils.url from salt.exceptions import CommandExecutionError from salt.serializers import yaml as yaml_serializer from salt.serializers import json as json_serializer # Import 3rd-party libs import salt.ext.six as six from salt.ext.six.moves import zip_longest log = logging.getLogger(__name__) COMMENT_REGEX = r'^([[:space:]]*){0}[[:space:]]?' def _get_accumulator_filepath(): ''' Return accumulator data path. ''' return os.path.join(salt.utils.get_accumulator_dir(__opts__['cachedir']), __instance_id__) def _load_accumulators(): def _deserialize(path): serial = salt.payload.Serial(__opts__) ret = {'accumulators': {}, 'accumulators_deps': {}} try: with salt.utils.fopen(path, 'rb') as f: loaded = serial.load(f) return loaded if loaded else ret except (IOError, NameError): # NameError is a msgpack error from salt-ssh return ret loaded = _deserialize(_get_accumulator_filepath()) return loaded['accumulators'], loaded['accumulators_deps'] def _persist_accummulators(accumulators, accumulators_deps): accumm_data = {'accumulators': accumulators, 'accumulators_deps': accumulators_deps} serial = salt.payload.Serial(__opts__) try: with salt.utils.fopen(_get_accumulator_filepath(), 'w+b') as f: serial.dump(accumm_data, f) except NameError: # msgpack error from salt-ssh pass def _check_user(user, group): ''' Checks if the named user and group are present on the minion ''' err = '' if user: uid = __salt__['file.user_to_uid'](user) if uid == '': err += 'User {0} is not available '.format(user) if group: gid = __salt__['file.group_to_gid'](group) if gid == '': err += 'Group {0} is not available'.format(group) return err def _gen_keep_files(name, require, walk_d=None): ''' Generate the list of files that need to be kept when a dir based function like directory or recurse has a clean. ''' def _is_child(path, directory): ''' Check whether ``path`` is child of ``directory`` ''' path = os.path.abspath(path) directory = os.path.abspath(directory) relative = os.path.relpath(path, directory) return not relative.startswith(os.pardir) def _add_current_path(path): _ret = set() if os.path.isdir(path): dirs, files = walk_d.get(path, ((), ())) _ret.add(path) for _name in files: _ret.add(os.path.join(path, _name)) for _name in dirs: _ret.add(os.path.join(path, _name)) return _ret def _process_by_walk_d(name, ret): if os.path.isdir(name): walk_ret.update(_add_current_path(name)) dirs, _ = walk_d.get(name, ((), ())) for _d in dirs: p = os.path.join(name, _d) walk_ret.update(_add_current_path(p)) _process_by_walk_d(p, ret) def _process(name): ret = set() if os.path.isdir(name): for root, dirs, files in os.walk(name): ret.add(name) for name in files: ret.add(os.path.join(root, name)) for name in dirs: ret.add(os.path.join(root, name)) return ret keep = set() if isinstance(require, list): required_files = [comp for comp in require if 'file' in comp] for comp in required_files: for low in __lowstate__: if low['name'] == comp['file']: fn = low['name'] if os.path.isdir(comp['file']): if _is_child(comp['file'], name): if walk_d: walk_ret = set() _process_by_walk_d(fn, walk_ret) keep.update(walk_ret) else: keep.update(_process(fn)) else: keep.add(fn) return list(keep) def _check_file(name): ret = True msg = '' if not os.path.isabs(name): ret = False msg = 'Specified file {0} is not an absolute path'.format(name) elif not os.path.exists(name): ret = False msg = '{0}: file not found'.format(name) return ret, msg def _clean_dir(root, keep, exclude_pat): ''' Clean out all of the files and directories in a directory (root) while preserving the files in a list (keep) and part of exclude_pat ''' removed = set() real_keep = set() real_keep.add(root) if isinstance(keep, list): for fn_ in keep: if not os.path.isabs(fn_): continue real_keep.add(fn_) while True: fn_ = os.path.dirname(fn_) real_keep.add(fn_) if fn_ in ['/', ''.join([os.path.splitdrive(fn_)[0], '\\'])]: break def _delete_not_kept(nfn): if nfn not in real_keep: # -- check if this is a part of exclude_pat(only). No need to # check include_pat if not salt.utils.check_include_exclude( os.path.relpath(nfn, root), None, exclude_pat): return removed.add(nfn) if not __opts__['test']: try: os.remove(nfn) except OSError: shutil.rmtree(nfn) for roots, dirs, files in os.walk(root): for name in itertools.chain(dirs, files): _delete_not_kept(os.path.join(roots, name)) return list(removed) def _error(ret, err_msg): ret['result'] = False ret['comment'] = err_msg return ret def _check_directory(name, user, group, recurse, mode, clean, require, exclude_pat): ''' Check what changes need to be made on a directory ''' changes = {} if recurse or clean: walk_l = list(os.walk(name)) # walk path only once and store the result # root: (dirs, files) structure, compatible for python2.6 walk_d = {} for i in walk_l: walk_d[i[0]] = (i[1], i[2]) if recurse: if not set(['user', 'group', 'mode']) >= set(recurse): return False, 'Types for "recurse" limited to "user", ' \ '"group" and "mode"' if 'user' not in recurse: user = None if 'group' not in recurse: group = None if 'mode' not in recurse: mode = None for root, dirs, files in walk_l: for fname in files: fchange = {} path = os.path.join(root, fname) stats = __salt__['file.stats']( path, None, follow_symlinks=False ) if user is not None and user != stats.get('user'): fchange['user'] = user if group is not None and group != stats.get('group'): fchange['group'] = group if fchange: changes[path] = fchange for name_ in dirs: path = os.path.join(root, name_) fchange = _check_dir_meta(path, user, group, mode) if fchange: changes[path] = fchange else: fchange = _check_dir_meta(name, user, group, mode) if fchange: changes[name] = fchange if clean: keep = _gen_keep_files(name, require, walk_d) def _check_changes(fname): path = os.path.join(root, fname) if path in keep: return {} else: if not salt.utils.check_include_exclude( os.path.relpath(path, name), None, exclude_pat): return {} else: return {path: {'removed': 'Removed due to clean'}} for root, dirs, files in walk_l: for fname in files: changes.update(_check_changes(fname)) for name_ in dirs: changes.update(_check_changes(name_)) if not os.path.isdir(name): changes[name] = {'directory': 'new'} if changes: comments = ['The following files will be changed:\n'] for fn_ in changes: for key, val in six.iteritems(changes[fn_]): comments.append('{0}: {1} - {2}\n'.format(fn_, key, val)) return None, ''.join(comments) return True, 'The directory {0} is in the correct state'.format(name) def _check_dir_meta(name, user, group, mode): ''' Check the changes in directory metadata ''' stats = __salt__['file.stats'](name, follow_symlinks=False) changes = {} if not stats: changes['directory'] = 'new' return changes if user is not None and user != stats['user']: changes['user'] = user if group is not None and group != stats['group']: changes['group'] = group # Normalize the dir mode smode = __salt__['config.manage_mode'](stats['mode']) mode = __salt__['config.manage_mode'](mode) if mode is not None and mode != smode: changes['mode'] = mode return changes def _check_touch(name, atime, mtime): ''' Check to see if a file needs to be updated or created ''' if not os.path.exists(name): return None, 'File {0} is set to be created'.format(name) stats = __salt__['file.stats'](name, follow_symlinks=False) if atime is not None: if str(atime) != str(stats['atime']): return None, 'Times set to be updated on file {0}'.format(name) if mtime is not None: if str(mtime) != str(stats['mtime']): return None, 'Times set to be updated on file {0}'.format(name) return True, 'File {0} exists and has the correct times'.format(name) def _get_symlink_ownership(path): return ( __salt__['file.get_user'](path, follow_symlinks=False), __salt__['file.get_group'](path, follow_symlinks=False) ) def _check_symlink_ownership(path, user, group): ''' Check if the symlink ownership matches the specified user and group ''' cur_user, cur_group = _get_symlink_ownership(path) return (cur_user == user) and (cur_group == group) def _set_symlink_ownership(path, user, group): ''' Set the ownership of a symlink and return a boolean indicating success/failure ''' try: __salt__['file.lchown'](path, user, group) except OSError: pass return _check_symlink_ownership(path, user, group) def _symlink_check(name, target, force, user, group): ''' Check the symlink function ''' if not os.path.exists(name) and not __salt__['file.is_link'](name): return None, 'Symlink {0} to {1} is set for creation'.format( name, target ) if __salt__['file.is_link'](name): if __salt__['file.readlink'](name) != target: return None, 'Link {0} target is set to be changed to {1}'.format( name, target ) else: result = True msg = 'The symlink {0} is present'.format(name) if not _check_symlink_ownership(name, user, group): result = None msg += ( ', but the ownership of the symlink would be changed ' 'from {2}:{3} to {0}:{1}' ).format(user, group, *_get_symlink_ownership(name)) return result, msg else: if force: return None, ('The file or directory {0} is set for removal to ' 'make way for a new symlink targeting {1}' .format(name, target)) return False, ('File or directory exists where the symlink {0} ' 'should be. Did you mean to use force?'.format(name)) def _test_owner(kwargs, user=None): ''' Convert owner to user, since other config management tools use owner, no need to punish people coming from other systems. PLEASE DO NOT DOCUMENT THIS! WE USE USER, NOT OWNER!!!! ''' if user: return user if 'owner' in kwargs: log.warning( 'Use of argument owner found, "owner" is invalid, please ' 'use "user"' ) return kwargs['owner'] return user def _unify_sources_and_hashes(source=None, source_hash=None, sources=None, source_hashes=None): ''' Silly little function to give us a standard tuple list for sources and source_hashes ''' if sources is None: sources = [] if source_hashes is None: source_hashes = [] if source and sources: return (False, "source and sources are mutually exclusive", []) if source_hash and source_hashes: return (False, "source_hash and source_hashes are mutually exclusive", []) if source: return (True, '', [(source, source_hash)]) # Make a nice neat list of tuples exactly len(sources) long.. return True, '', list(zip_longest(sources, source_hashes[:len(sources)])) def _get_template_texts(source_list=None, template='jinja', defaults=None, context=None, **kwargs): ''' Iterate a list of sources and process them as templates. Returns a list of 'chunks' containing the rendered templates. ''' ret = {'name': '_get_template_texts', 'changes': {}, 'result': True, 'comment': '', 'data': []} if source_list is None: return _error(ret, '_get_template_texts called with empty source_list') txtl = [] for (source, source_hash) in source_list: tmpctx = defaults if defaults else {} if context: tmpctx.update(context) rndrd_templ_fn = __salt__['cp.get_template']( source, '', template=template, saltenv=__env__, context=tmpctx, **kwargs ) msg = 'cp.get_template returned {0} (Called with: {1})' log.debug(msg.format(rndrd_templ_fn, source)) if rndrd_templ_fn: tmplines = None with salt.utils.fopen(rndrd_templ_fn, 'rb') as fp_: tmplines = fp_.readlines() if not tmplines: msg = 'Failed to read rendered template file {0} ({1})' log.debug(msg.format(rndrd_templ_fn, source)) ret['name'] = source return _error(ret, msg.format(rndrd_templ_fn, source)) txtl.append(''.join(tmplines)) else: msg = 'Failed to load template file {0}'.format(source) log.debug(msg) ret['name'] = source return _error(ret, msg) ret['data'] = txtl return ret def _validate_str_list(arg): ''' ensure ``arg`` is a list of strings ''' if isinstance(arg, six.string_types): return [arg] elif isinstance(arg, Iterable) and not isinstance(arg, Mapping): return [str(item) for item in arg] else: return [str(arg)] def symlink( name, target, force=False, backupname=None, makedirs=False, user=None, group=None, mode=None, **kwargs): ''' Create a symlink If the file already exists and is a symlink pointing to any location other than the specified target, the symlink will be replaced. If the symlink is a regular file or directory then the state will return False. If the regular file or directory is desired to be replaced with a symlink pass force: True, if it is to be renamed, pass a backupname. name The location of the symlink to create target The location that the symlink points to force If the name of the symlink exists and is not a symlink and force is set to False, the state will fail. If force is set to True, the file or directory in the way of the symlink file will be deleted to make room for the symlink, unless backupname is set, when it will be renamed backupname If the name of the symlink exists and is not a symlink, it will be renamed to the backupname. If the backupname already exists and force is False, the state will fail. Otherwise, the backupname will be removed first. makedirs If the location of the symlink does not already have a parent directory then the state will fail, setting makedirs to True will allow Salt to create the parent directory user The user to own the file, this defaults to the user salt is running as on the minion group The group ownership set for the file, this defaults to the group salt is running as on the minion. On Windows, this is ignored mode The permissions to set on this file, aka 644, 0775, 4664. Not supported on Windows ''' name = os.path.expanduser(name) # Make sure that leading zeros stripped by YAML loader are added back mode = __salt__['config.manage_mode'](mode) user = _test_owner(kwargs, user=user) ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.symlink') if user is None: user = __opts__['user'] if salt.utils.is_windows(): # Make sure the user exists in Windows # Salt default is 'root' if not __salt__['user.info'](user): # User not found, use the account salt is running under # If username not found, use System user = __salt__['user.current']() if not user: user = 'SYSTEM' if group is not None: log.warning( 'The group argument for {0} has been ignored as this ' 'is a Windows system.'.format(name) ) group = user if group is None: group = __salt__['file.gid_to_group']( __salt__['user.info'](user).get('gid', 0) ) preflight_errors = [] uid = __salt__['file.user_to_uid'](user) gid = __salt__['file.group_to_gid'](group) if uid == '': preflight_errors.append('User {0} does not exist'.format(user)) if gid == '': preflight_errors.append('Group {0} does not exist'.format(group)) if not os.path.isabs(name): preflight_errors.append( 'Specified file {0} is not an absolute path'.format(name) ) if preflight_errors: msg = '. '.join(preflight_errors) if len(preflight_errors) > 1: msg += '.' return _error(ret, msg) if __opts__['test']: ret['result'], ret['comment'] = _symlink_check(name, target, force, user, group) return ret if not os.path.isdir(os.path.dirname(name)): if makedirs: __salt__['file.makedirs']( name, user=user, group=group, mode=mode) else: return _error( ret, 'Directory {0} for symlink is not present'.format( os.path.dirname(name) ) ) if __salt__['file.is_link'](name): # The link exists, verify that it matches the target if __salt__['file.readlink'](name) != target: # The target is wrong, delete the link os.remove(name) else: if _check_symlink_ownership(name, user, group): # The link looks good! ret['comment'] = ('Symlink {0} is present and owned by ' '{1}:{2}'.format(name, user, group)) else: if _set_symlink_ownership(name, user, group): ret['comment'] = ('Set ownership of symlink {0} to ' '{1}:{2}'.format(name, user, group)) ret['changes']['ownership'] = '{0}:{1}'.format(user, group) else: ret['result'] = False ret['comment'] += ( 'Failed to set ownership of symlink {0} to ' '{1}:{2}'.format(name, user, group) ) return ret elif os.path.isfile(name) or os.path.isdir(name): # It is not a link, but a file or dir if backupname is not None: # Make a backup first if os.path.lexists(backupname): if not force: return _error(ret, (( 'File exists where the backup target {0} should go' ).format(backupname))) elif os.path.isfile(backupname): os.remove(backupname) elif os.path.isdir(backupname): shutil.rmtree(backupname) else: return _error(ret, (( 'Something exists where the backup target {0}' 'should go' ).format(backupname))) os.rename(name, backupname) elif force: # Remove whatever is in the way if os.path.isfile(name): os.remove(name) ret['changes']['forced'] = 'Symlink was forcibly replaced' else: shutil.rmtree(name) else: # Otherwise throw an error if os.path.isfile(name): return _error(ret, ('File exists where the symlink {0} should be' .format(name))) else: return _error(ret, (( 'Directory exists where the symlink {0} should be' ).format(name))) if not os.path.exists(name): # The link is not present, make it try: __salt__['file.symlink'](target, name) except OSError as exc: ret['result'] = False ret['comment'] = ('Unable to create new symlink {0} -> ' '{1}: {2}'.format(name, target, exc)) return ret else: ret['comment'] = ('Created new symlink {0} -> ' '{1}'.format(name, target)) ret['changes']['new'] = name if not _check_symlink_ownership(name, user, group): if not _set_symlink_ownership(name, user, group): ret['result'] = False ret['comment'] += (', but was unable to set ownership to ' '{0}:{1}'.format(user, group)) return ret def absent(name): ''' Make sure that the named file or directory is absent. If it exists, it will be deleted. This will work to reverse any of the functions in the file state module. name The path which should be deleted ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.absent') if not os.path.isabs(name): return _error( ret, 'Specified file {0} is not an absolute path'.format(name) ) if name == '/': return _error(ret, 'Refusing to make "/" absent') if os.path.isfile(name) or os.path.islink(name): if __opts__['test']: ret['result'] = None ret['comment'] = 'File {0} is set for removal'.format(name) return ret try: __salt__['file.remove'](name) ret['comment'] = 'Removed file {0}'.format(name) ret['changes']['removed'] = name return ret except CommandExecutionError as exc: return _error(ret, '{0}'.format(exc)) elif os.path.isdir(name): if __opts__['test']: ret['result'] = None ret['comment'] = 'Directory {0} is set for removal'.format(name) return ret try: shutil.rmtree(name) ret['comment'] = 'Removed directory {0}'.format(name) ret['changes']['removed'] = name return ret except (OSError, IOError): return _error(ret, 'Failed to remove directory {0}'.format(name)) ret['comment'] = 'File {0} is not present'.format(name) return ret def exists(name): ''' Verify that the named file or directory is present or exists. Ensures pre-requisites outside of Salt's purview (e.g., keytabs, private keys, etc.) have been previously satisfied before deployment. name Absolute path which must exist ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.exists') if not os.path.exists(name): return _error(ret, 'Specified path {0} does not exist'.format(name)) ret['comment'] = 'Path {0} exists'.format(name) return ret def missing(name): ''' Verify that the named file or directory is missing, this returns True only if the named file is missing but does not remove the file if it is present. name Absolute path which must NOT exist ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.missing') if os.path.exists(name): return _error(ret, 'Specified path {0} exists'.format(name)) ret['comment'] = 'Path {0} is missing'.format(name) return ret def managed(name, source=None, source_hash='', user=None, group=None, mode=None, template=None, makedirs=False, dir_mode=None, context=None, replace=True, defaults=None, env=None, backup='', show_diff=True, create=True, contents=None, contents_pillar=None, contents_grains=None, contents_newline=True, follow_symlinks=True, check_cmd=None, **kwargs): ''' Manage a given file, this function allows for a file to be downloaded from the salt master and potentially run through a templating system. name The location of the file to manage source The source file to download to the minion, this source file can be hosted on either the salt master server, or on an HTTP or FTP server. Both HTTPS and HTTP are supported as well as downloading directly from Amazon S3 compatible URLs with both pre-configured and automatic IAM credentials. (see s3.get state documentation) File retrieval from Openstack Swift object storage is supported via swift://container/object_path URLs, see swift.get documentation. For files hosted on the salt file server, if the file is located on the master in the directory named spam, and is called eggs, the source string is salt://spam/eggs. If source is left blank or None (use ~ in YAML), the file will be created as an empty file and the content will not be managed If the file is hosted on a HTTP or FTP server then the source_hash argument is also required A list of sources can also be passed in to provide a default source and a set of fallbacks. The first source in the list that is found to exist will be used and subsequent entries in the list will be ignored. Source list functionality only supports local files and remote files hosted on the salt master server or retrievable via HTTP, HTTPS, or FTP. .. code-block:: yaml file_override_example: file.managed: - source: - salt://file_that_does_not_exist - salt://file_that_exists source_hash This can be one of the following: 1. a source hash string 2. the URI of a file that contains source hash strings The function accepts the first encountered long unbroken alphanumeric string of correct length as a valid hash, in order from most secure to least secure: .. code-block:: text Type Length ====== ====== sha512 128 sha384 96 sha256 64 sha224 56 sha1 40 md5 32 **Using a Source Hash File** The file can contain several checksums for several files. Each line must contain both the file name and the hash. If no file name is matched, the first hash encountered will be used, otherwise the most secure hash with the correct source file name will be used. When using a source hash file the source_hash argument needs to be a url, the standard download urls are supported, ftp, http, salt etc: Example: .. code-block:: yaml tomdroid-src-0.7.3.tar.gz: file.managed: - name: /tmp/tomdroid-src-0.7.3.tar.gz - source: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz - source_hash: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.hash The following is an example of the supported source_hash format: .. code-block:: text /etc/rc.conf ef6e82e4006dee563d98ada2a2a80a27 sha254c8525aee419eb649f0233be91c151178b30f0dff8ebbdcc8de71b1d5c8bcc06a /etc/resolv.conf ead48423703509d37c4a90e6a0d53e143b6fc268 Debian file type ``*.dsc`` files are also supported. **Inserting the Source Hash in the sls Data** Examples: .. code-block:: yaml tomdroid-src-0.7.3.tar.gz: file.managed: - name: /tmp/tomdroid-src-0.7.3.tar.gz - source: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz - source_hash: md5=79eef25f9b0b2c642c62b7f737d4f53f Known issues: If the remote server URL has the hash file as an apparent sub-directory of the source file, the module will discover that it has already cached a directory where a file should be cached. For example: .. code-block:: yaml tomdroid-src-0.7.3.tar.gz: file.managed: - name: /tmp/tomdroid-src-0.7.3.tar.gz - source: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz - source_hash: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz/+md5 user The user to own the file, this defaults to the user salt is running as on the minion group The group ownership set for the file, this defaults to the group salt is running as on the minion On Windows, this is ignored mode The permissions to set on this file, aka 644, 0775, 4664. Not supported on Windows template If this setting is applied then the named templating engine will be used to render the downloaded file, currently jinja, mako, and wempy are supported makedirs If the file is located in a path without a parent directory, then the state will fail. If makedirs is set to True, then the parent directories will be created to facilitate the creation of the named file. dir_mode If directories are to be created, passing this option specifies the permissions for those directories. If this is not set, directories will be assigned permissions from the 'mode' argument. replace If this file should be replaced. If false, this command will not overwrite file contents but will enforce permissions if the file exists already. Default is True. context Overrides default context variables passed to the template. defaults Default context passed to the template. backup Overrides the default backup mode for this specific file. show_diff If set to False, the diff will not be shown. create Default is True, if create is set to False then the file will only be managed if the file already exists on the system. contents Default is None. If specified, will use the given string as the contents of the file. Should not be used in conjunction with a source file of any kind. Ignores hashes and does not use a templating engine. contents_pillar .. versionadded:: 0.17.0 Operates like ``contents``, but draws from a value stored in pillar, using the pillar path syntax used in :mod:`pillar.get <salt.modules.pillar.get>`. This is useful when the pillar value contains newlines, as referencing a pillar variable using a jinja/mako template can result in YAML formatting issues due to the newlines causing indentation mismatches. For example, the following could be used to deploy an SSH private key: .. code-block:: yaml /home/deployer/.ssh/id_rsa: file.managed: - user: deployer - group: deployer - mode: 600 - contents_pillar: userdata:deployer:id_rsa This would populate ``/home/deployer/.ssh/id_rsa`` with the contents of ``pillar['userdata']['deployer']['id_rsa']``. An example of this pillar setup would be like so: .. code-block:: yaml userdata: deployer: id_rsa: | -----BEGIN RSA PRIVATE KEY----- MIIEowIBAAKCAQEAoQiwO3JhBquPAalQF9qP1lLZNXVjYMIswrMe2HcWUVBgh+vY U7sCwx/dH6+VvNwmCoqmNnP+8gTPKGl1vgAObJAnMT623dMXjVKwnEagZPRJIxDy B/HaAre9euNiY3LvIzBTWRSeMfT+rWvIKVBpvwlgGrfgz70m0pqxu+UyFbAGLin+ GpxzZAMaFpZw4sSbIlRuissXZj/sHpQb8p9M5IeO4Z3rjkCP1cxI -----END RSA PRIVATE KEY----- .. note:: The private key above is shortened to keep the example brief, but shows how to do multiline string in YAML. The key is followed by a pipe character, and the mutliline string is indented two more spaces. contents_grains .. versionadded:: 2014.7.0 Same as contents_pillar, but with grains contents_newline .. versionadded:: 2014.7.0 When using contents, contents_pillar, or contents_grains, this option ensures the file will have a newline at the end. When loading some data this newline is better left off. Setting contents_newline to False will omit this final newline. follow_symlinks : True .. versionadded:: 2014.7.0 If the desired path is a symlink follow it and make changes to the file to which the symlink points. check_cmd .. versionadded:: 2014.7.0 The specified command will be run with the managed file as an argument. If the command exits with a nonzero exit code, the command will not be run. ''' name = os.path.expanduser(name) ret = {'changes': {}, 'comment': '', 'name': name, 'result': True} # If no source is specified, set replace to False, as there is nothing # to replace the file with. src_defined = source or contents or contents_pillar or contents_grains if not src_defined and replace: replace = False log.warning( 'Neither \'source\' nor \'contents\' nor \'contents_pillar\' nor \'contents_grains\' ' 'was defined, yet \'replace\' was set to \'True\'. As there is ' 'no source to replace the file with, \'replace\' has been set ' 'to \'False\' to avoid reading the file unnecessarily' ) if len([_f for _f in [contents, contents_pillar, contents_grains] if _f]) > 1: return _error( ret, 'Only one of contents, contents_pillar, and contents_grains is permitted') if contents_pillar: contents = __salt__['pillar.get'](contents_pillar) if contents_grains: contents = __salt__['grains.get'](contents_grains) # ensure contents is a string if contents: validated_contents = _validate_str_list(contents) if not validated_contents: return _error(ret, '"contents" is not a string or list of strings') if isinstance(validated_contents, list): contents = os.linesep.join(validated_contents) if contents_newline: # Make sure file ends in newline if contents and not contents.endswith(os.linesep): contents += os.linesep # Make sure that leading zeros stripped by YAML loader are added back mode = __salt__['config.manage_mode'](mode) if not name: return _error(ret, 'Must provide name to file.exists') user = _test_owner(kwargs, user=user) if salt.utils.is_windows(): if group is not None: log.warning( 'The group argument for {0} has been ignored as this ' 'is a Windows system.'.format(name) ) group = user if not create: if not os.path.isfile(name): # Don't create a file that is not already present ret['comment'] = ('File {0} is not present and is not set for ' 'creation').format(name) return ret u_check = _check_user(user, group) if u_check: # The specified user or group do not exist return _error(ret, u_check) if not os.path.isabs(name): return _error( ret, 'Specified file {0} is not an absolute path'.format(name)) if isinstance(env, six.string_types): msg = ( 'Passing a salt environment should be done using \'saltenv\' not ' '\'env\'. This warning will go away in Salt Boron and this ' 'will be the default and expected behavior. Please update your ' 'state files.' ) salt.utils.warn_until('Boron', msg) ret.setdefault('warnings', []).append(msg) # No need to set __env__ = env since that's done in the state machinery if os.path.isdir(name): ret['comment'] = 'Specified target {0} is a directory'.format(name) ret['result'] = False return ret if context is None: context = {} elif not isinstance(context, dict): return _error( ret, 'Context must be formed as a dict') if defaults and not isinstance(defaults, dict): return _error( ret, 'Defaults must be formed as a dict') if not replace and os.path.exists(name): # Check and set the permissions if necessary ret, _ = __salt__['file.check_perms'](name, ret, user, group, mode, follow_symlinks) if __opts__['test']: ret['comment'] = 'File {0} not updated'.format(name) elif not ret['changes'] and ret['result']: ret['comment'] = ('File {0} exists with proper permissions. ' 'No changes made.'.format(name)) return ret accum_data, _ = _load_accumulators() if name in accum_data: if not context: context = {} context['accumulator'] = accum_data[name] try: if __opts__['test']: ret['changes'] = __salt__['file.check_managed_changes']( name, source, source_hash, user, group, mode, template, context, defaults, __env__, contents, **kwargs ) if ret['changes']: ret['result'] = None ret['comment'] = 'The file {0} is set to be changed'.format(name) if not show_diff: ret['changes']['diff'] = '<show_diff=False>' else: ret['result'] = True ret['comment'] = 'The file {0} is in the correct state'.format(name) return ret # If the source is a list then find which file exists source, source_hash = __salt__['file.source_list']( source, source_hash, __env__ ) except CommandExecutionError as exc: ret['result'] = False ret['comment'] = 'Unable to manage file: {0}'.format(exc) return ret # Gather the source file from the server try: sfn, source_sum, comment_ = __salt__['file.get_managed']( name, template, source, source_hash, user, group, mode, __env__, context, defaults, **kwargs ) except Exception as exc: ret['changes'] = {} log.debug(traceback.format_exc()) return _error(ret, 'Unable to manage file: {0}'.format(exc)) tmp_filename = None if check_cmd: tmp_filename = salt.utils.mkstemp() # if exists copy existing file to tmp to compare if __salt__['file.file_exists'](name): try: __salt__['file.copy'](name, tmp_filename) except Exception as exc: return _error(ret, 'Unable to copy file {0} to {1}: {2}'.format(name, tmp_filename, exc)) try: ret = __salt__['file.manage_file']( tmp_filename, sfn, ret, source, source_sum, user, group, mode, __env__, backup, makedirs, template, show_diff, contents, dir_mode, follow_symlinks) except Exception as exc: ret['changes'] = {} log.debug(traceback.format_exc()) if os.path.isfile(tmp_filename): os.remove(tmp_filename) return _error(ret, 'Unable to check_cmd file: {0}'.format(exc)) # file being updated to verify using check_cmd if ret['changes']: # Reset ret ret = {'changes': {}, 'comment': '', 'name': name, 'result': True} check_cmd_opts = {} if 'shell' in __grains__: check_cmd_opts['shell'] = __grains__['shell'] cret = mod_run_check_cmd(check_cmd, tmp_filename, **check_cmd_opts) if isinstance(cret, dict): ret.update(cret) if os.path.isfile(tmp_filename): os.remove(tmp_filename) return ret # Since we generated a new tempfile and we are not returning here # lets change the original sfn to the new tempfile or else we will # get file not found sfn = tmp_filename else: ret = {'changes': {}, 'comment': '', 'name': name, 'result': True} if comment_ and contents is None: return _error(ret, comment_) else: try: return __salt__['file.manage_file']( name, sfn, ret, source, source_sum, user, group, mode, __env__, backup, makedirs, template, show_diff, contents, dir_mode, follow_symlinks) except Exception as exc: ret['changes'] = {} log.debug(traceback.format_exc()) return _error(ret, 'Unable to manage file: {0}'.format(exc)) finally: if tmp_filename and os.path.isfile(tmp_filename): os.remove(tmp_filename) def directory(name, user=None, group=None, recurse=None, dir_mode=None, file_mode=None, makedirs=False, clean=False, require=None, exclude_pat=None, follow_symlinks=False, force=False, backupname=None, allow_symlink=True, **kwargs): ''' Ensure that a named directory is present and has the right perms name The location to create or manage a directory user The user to own the directory; this defaults to the user salt is running as on the minion group The group ownership set for the directory; this defaults to the group salt is running as on the minion. On Windows, this is ignored recurse Enforce user/group ownership and mode of directory recursively. Accepts a list of strings representing what you would like to recurse. If ``mode`` is defined, will recurse on both ``file_mode`` and ``dir_mode`` if they are defined. If ``ignore_files`` or ``ignore_dirs`` is included, files or directories will be left unchanged respectively. Example: .. code-block:: yaml /var/log/httpd: file.directory: - user: root - group: root - dir_mode: 755 - file_mode: 644 - recurse: - user - group - mode Leave files or directories unchanged: .. code-block:: yaml /var/log/httpd: file.directory: - user: root - group: root - dir_mode: 755 - file_mode: 644 - recurse: - user - group - mode - ignore_files /var/log/httpd: file.directory: - user: root - group: root - dir_mode: 755 - file_mode: 644 - recurse: - user - group - mode - ignore_dirs .. versionadded:: 2015.5.0 dir_mode / mode The permissions mode to set any directories created. Not supported on Windows file_mode The permissions mode to set any files created if 'mode' is run in 'recurse'. This defaults to dir_mode. Not supported on Windows makedirs If the directory is located in a path without a parent directory, then the state will fail. If makedirs is set to True, then the parent directories will be created to facilitate the creation of the named file. clean Make sure that only files that are set up by salt and required by this function are kept. If this option is set then everything in this directory will be deleted unless it is required. require Require other resources such as packages or files exclude_pat When 'clean' is set to True, exclude this pattern from removal list and preserve in the destination. follow_symlinks : False If the desired path is a symlink (or ``recurse`` is defined and a symlink is encountered while recursing), follow it and check the permissions of the directory/file to which the symlink points. .. versionadded:: 2014.1.4 force If the name of the directory exists and is not a directory and force is set to False, the state will fail. If force is set to True, the file in the way of the directory will be deleted to make room for the directory, unless backupname is set, then it will be renamed. .. versionadded:: 2014.7.0 backupname If the name of the directory exists and is not a directory, it will be renamed to the backupname. If the backupname already exists and force is False, the state will fail. Otherwise, the backupname will be removed first. .. versionadded:: 2014.7.0 allow_symlink : True If allow_symlink is True and the specified path is a symlink, it will be allowed to remain if it points to a directory. If allow_symlink is False then the state will fail, unless force is also set to True, in which case it will be removed or renamed, depending on the value of the backupname argument. .. versionadded:: 2014.7.0 ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.directory') # Remove trailing slash, if present if name[-1] == '/': name = name[:-1] user = _test_owner(kwargs, user=user) if salt.utils.is_windows(): if group is not None: log.warning( 'The group argument for {0} has been ignored as this is ' 'a Windows system.'.format(name) ) group = user if 'mode' in kwargs and not dir_mode: dir_mode = kwargs.get('mode', []) if not file_mode: file_mode = dir_mode # Make sure that leading zeros stripped by YAML loader are added back dir_mode = __salt__['config.manage_mode'](dir_mode) file_mode = __salt__['config.manage_mode'](file_mode) u_check = _check_user(user, group) if u_check: # The specified user or group do not exist return _error(ret, u_check) if not os.path.isabs(name): return _error( ret, 'Specified file {0} is not an absolute path'.format(name)) if os.path.isfile(name) or (not allow_symlink and os.path.islink(name)): if backupname is not None: # Make a backup first if os.path.lexists(backupname): if not force: return _error(ret, (( 'File exists where the backup target {0} should go' ).format(backupname))) elif os.path.isfile(backupname): os.remove(backupname) elif os.path.islink(backupname): os.remove(backupname) elif os.path.isdir(backupname): shutil.rmtree(backupname) else: return _error(ret, (( 'Something exists where the backup target {0}' 'should go' ).format(backupname))) os.rename(name, backupname) elif force: # Remove whatever is in the way if os.path.isfile(name): os.remove(name) ret['changes']['forced'] = 'File was forcibly replaced' elif os.path.islink(name): os.remove(name) ret['changes']['forced'] = 'Symlink was forcibly replaced' else: shutil.rmtree(name) else: if os.path.isfile(name): return _error( ret, 'Specified location {0} exists and is a file'.format(name)) elif os.path.islink(name): return _error( ret, 'Specified location {0} exists and is a symlink'.format(name)) if __opts__['test']: ret['result'], ret['comment'] = _check_directory( name, user, group, recurse or [], dir_mode, clean, require, exclude_pat) return ret if not os.path.isdir(name): # The dir does not exist, make it if not os.path.isdir(os.path.dirname(name)): # The parent directory does not exist, create them if makedirs: # Make sure the drive is mapped before trying to create the # path in windows if salt.utils.is_windows(): drive, path = os.path.splitdrive(name) if not os.path.isdir(drive): return _error( ret, 'Drive {0} is not mapped'.format(drive)) # Everything's good, create the path __salt__['file.makedirs']( name, user=user, group=group, mode=dir_mode ) else: return _error( ret, 'No directory to create {0} in'.format(name)) __salt__['file.mkdir']( name, user=user, group=group, mode=dir_mode ) ret['changes'][name] = 'New Dir' if not os.path.isdir(name): return _error(ret, 'Failed to create directory {0}'.format(name)) # Check permissions ret, perms = __salt__['file.check_perms'](name, ret, user, group, dir_mode, follow_symlinks) if recurse or clean: walk_l = list(os.walk(name)) # walk path only once and store the result # root: (dirs, files) structure, compatible for python2.6 walk_d = {} for i in walk_l: walk_d[i[0]] = (i[1], i[2]) if recurse: if not isinstance(recurse, list): ret['result'] = False ret['comment'] = '"recurse" must be formed as a list of strings' elif not set(['user', 'group', 'mode', 'ignore_files', 'ignore_dirs']) >= set(recurse): ret['result'] = False ret['comment'] = 'Types for "recurse" limited to "user", ' \ '"group", "mode", "ignore_files, and "ignore_dirs"' else: if 'ignore_files' in recurse and 'ignore_dirs' in recurse: ret['result'] = False ret['comment'] = 'Can not specify "recurse" options "ignore_files" ' \ 'and "ignore_dirs" at the same time.' return ret if 'user' in recurse: if user: uid = __salt__['file.user_to_uid'](user) # file.user_to_uid returns '' if user does not exist. Above # check for user is not fatal, so we need to be sure user # exists. if isinstance(uid, six.string_types): ret['result'] = False ret['comment'] = 'Failed to enforce ownership for ' \ 'user {0} (user does not ' \ 'exist)'.format(user) else: ret['result'] = False ret['comment'] = 'user not specified, but configured as ' \ 'a target for recursive ownership ' \ 'management' else: user = None if 'group' in recurse: if group: gid = __salt__['file.group_to_gid'](group) # As above with user, we need to make sure group exists. if isinstance(gid, six.string_types): ret['result'] = False ret['comment'] = 'Failed to enforce group ownership ' \ 'for group {0}'.format(group) else: ret['result'] = False ret['comment'] = 'group not specified, but configured ' \ 'as a target for recursive ownership ' \ 'management' else: group = None if 'mode' not in recurse: file_mode = None dir_mode = None if 'ignore_files' in recurse: ignore_files = True else: ignore_files = False if 'ignore_dirs' in recurse: ignore_dirs = True else: ignore_dirs = False for root, dirs, files in walk_l: if not ignore_files: for fn_ in files: full = os.path.join(root, fn_) ret, perms = __salt__['file.check_perms']( full, ret, user, group, file_mode, follow_symlinks) if not ignore_dirs: for dir_ in dirs: full = os.path.join(root, dir_) ret, perms = __salt__['file.check_perms']( full, ret, user, group, dir_mode, follow_symlinks) if clean: keep = _gen_keep_files(name, require, walk_d) log.debug('List of kept files when use file.directory with clean: %s', keep) removed = _clean_dir(name, list(keep), exclude_pat) if removed: ret['changes']['removed'] = removed ret['comment'] = 'Files cleaned from directory {0}'.format(name) if not ret['comment']: ret['comment'] = 'Directory {0} updated'.format(name) if __opts__['test']: ret['comment'] = 'Directory {0} not updated'.format(name) elif not ret['changes'] and ret['result']: ret['comment'] = 'Directory {0} is in the correct state'.format(name) return ret def recurse(name, source, clean=False, require=None, user=None, group=None, dir_mode=None, file_mode=None, sym_mode=None, template=None, context=None, defaults=None, env=None, include_empty=False, backup='', include_pat=None, exclude_pat=None, maxdepth=None, keep_symlinks=False, force_symlinks=False, **kwargs): ''' Recurse through a subdirectory on the master and copy said subdirectory over to the specified path. name The directory to set the recursion in source The source directory, this directory is located on the salt master file server and is specified with the salt:// protocol. If the directory is located on the master in the directory named spam, and is called eggs, the source string is salt://spam/eggs clean Make sure that only files that are set up by salt and required by this function are kept. If this option is set then everything in this directory will be deleted unless it is required. require Require other resources such as packages or files user The user to own the directory. This defaults to the user salt is running as on the minion group The group ownership set for the directory. This defaults to the group salt is running as on the minion. On Windows, this is ignored dir_mode The permissions mode to set on any directories created. Not supported on Windows file_mode The permissions mode to set on any files created. Not supported on Windows sym_mode The permissions mode to set on any symlink created. Not supported on Windows template If this setting is applied then the named templating engine will be used to render the downloaded file. Supported templates are: `jinja`, `mako` and `wempy`. .. note:: The template option is required when recursively applying templates. context Overrides default context variables passed to the template. defaults Default context passed to the template. include_empty Set this to True if empty directories should also be created (default is False) include_pat When copying, include only this pattern from the source. Default is glob match; if prefixed with 'E@', then regexp match. Example: .. code-block:: yaml - include_pat: hello* :: glob matches 'hello01', 'hello02' ... but not 'otherhello' - include_pat: E@hello :: regexp matches 'otherhello', 'hello01' ... exclude_pat Exclude this pattern from the source when copying. If both `include_pat` and `exclude_pat` are supplied, then it will apply conditions cumulatively. i.e. first select based on include_pat, and then within that result apply exclude_pat. Also, when 'clean=True', exclude this pattern from the removal list and preserve in the destination. Example: .. code-block:: yaml - exclude_pat: APPDATA* :: glob matches APPDATA.01, APPDATA.02,.. for exclusion - exclude_pat: E@(APPDATA)|(TEMPDATA) :: regexp matches APPDATA or TEMPDATA for exclusion maxdepth When copying, only copy paths which are of depth `maxdepth` from the source path. Example: .. code-block:: yaml - maxdepth: 0 :: Only include files located in the source directory - maxdepth: 1 :: Only include files located in the source or immediate subdirectories keep_symlinks Keep symlinks when copying from the source. This option will cause the copy operation to terminate at the symlink. If desire behavior similar to rsync, then set this to True. force_symlinks Force symlink creation. This option will force the symlink creation. If a file or directory is obstructing symlink creation it will be recursively removed so that symlink creation can proceed. This option is usually not needed except in special circumstances. ''' name = os.path.expanduser(name) user = _test_owner(kwargs, user=user) if salt.utils.is_windows(): if group is not None: log.warning( 'The group argument for {0} has been ignored as this ' 'is a Windows system.'.format(name) ) group = user ret = { 'name': name, 'changes': {}, 'result': True, 'comment': {} # { path: [comment, ...] } } if 'mode' in kwargs: ret['result'] = False ret['comment'] = ( '\'mode\' is not allowed in \'file.recurse\'. Please use ' '\'file_mode\' and \'dir_mode\'.' ) return ret # Make sure that leading zeros stripped by YAML loader are added back dir_mode = __salt__['config.manage_mode'](dir_mode) file_mode = __salt__['config.manage_mode'](file_mode) u_check = _check_user(user, group) if u_check: # The specified user or group do not exist return _error(ret, u_check) if not os.path.isabs(name): return _error( ret, 'Specified file {0} is not an absolute path'.format(name)) if isinstance(env, six.string_types): msg = ( 'Passing a salt environment should be done using \'saltenv\' not ' '\'env\'. This warning will go away in Salt Boron and this ' 'will be the default and expected behavior. Please update your ' 'state files.' ) salt.utils.warn_until('Boron', msg) ret.setdefault('warnings', []).append(msg) # No need to set __env__ = env since that's done in the state machinery # expand source into source_list source_list = _validate_str_list(source) for idx, val in enumerate(source_list): source_list[idx] = val.rstrip('/') for precheck in source_list: if not precheck.startswith('salt://'): return _error(ret, ('Invalid source {0!r} ' '(must be a salt:// URI)'.format(precheck))) # Select the first source in source_list that exists try: source, source_hash = __salt__['file.source_list'](source_list, '', __env__) except CommandExecutionError as exc: ret['result'] = False ret['comment'] = 'Recurse failed: {0}'.format(exc) return ret # Check source path relative to fileserver root, make sure it is a # directory source_rel = source.partition('://')[2] master_dirs = __salt__['cp.list_master_dirs'](__env__) if source_rel not in master_dirs \ and not any((x for x in master_dirs if x.startswith(source_rel + '/'))): ret['result'] = False ret['comment'] = ( 'The directory {0!r} does not exist on the salt fileserver ' 'in saltenv {1!r}'.format(source, __env__) ) return ret # Verify the target directory if not os.path.isdir(name): if os.path.exists(name): # it is not a dir, but it exists - fail out return _error( ret, 'The path {0} exists and is not a directory'.format(name)) if not __opts__['test']: __salt__['file.makedirs_perms']( name, user, group, int(str(dir_mode), 8) if dir_mode else None) def add_comment(path, comment): comments = ret['comment'].setdefault(path, []) if isinstance(comment, six.string_types): comments.append(comment) else: comments.extend(comment) def merge_ret(path, _ret): # Use the most "negative" result code (out of True, None, False) if _ret['result'] is False or ret['result'] is True: ret['result'] = _ret['result'] # Only include comments about files that changed if _ret['result'] is not True and _ret['comment']: add_comment(path, _ret['comment']) if _ret['changes']: ret['changes'][path] = _ret['changes'] def manage_file(path, source): source = salt.utils.url.escape(source) if clean and os.path.exists(path) and os.path.isdir(path): _ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} if __opts__['test']: _ret['comment'] = 'Replacing directory {0} with a ' \ 'file'.format(path) _ret['result'] = None merge_ret(path, _ret) return else: shutil.rmtree(path) _ret['changes'] = {'diff': 'Replaced directory with a ' 'new file'} merge_ret(path, _ret) # Conflicts can occur if some kwargs are passed in here pass_kwargs = {} faults = ['mode', 'makedirs'] for key in kwargs: if key not in faults: pass_kwargs[key] = kwargs[key] _ret = managed( path, source=source, user=user, group=group, mode=file_mode, template=template, makedirs=True, context=context, defaults=defaults, backup=backup, **pass_kwargs) merge_ret(path, _ret) def manage_directory(path): if os.path.basename(path) == '..': return if clean and os.path.exists(path) and not os.path.isdir(path): _ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} if __opts__['test']: _ret['comment'] = 'Replacing {0} with a directory'.format(path) _ret['result'] = None merge_ret(path, _ret) return else: os.remove(path) _ret['changes'] = {'diff': 'Replaced file with a directory'} merge_ret(path, _ret) _ret = directory( path, user=user, group=group, recurse=[], dir_mode=dir_mode, file_mode=None, makedirs=True, clean=False, require=None) merge_ret(path, _ret) # Process symlinks and return the updated filenames list def process_symlinks(filenames, symlinks): for lname, ltarget in six.iteritems(symlinks): if not salt.utils.check_include_exclude( os.path.relpath(lname, srcpath), include_pat, exclude_pat): continue srelpath = os.path.relpath(lname, srcpath) # Check for max depth if maxdepth is not None: srelpieces = srelpath.split('/') if not srelpieces[-1]: srelpieces = srelpieces[:-1] if len(srelpieces) > maxdepth + 1: continue # Check for all paths that begin with the symlink # and axe it leaving only the dirs/files below it. # This needs to use list() otherwise they reference # the same list. _filenames = list(filenames) for filename in _filenames: if filename.startswith(lname): log.debug('** skipping file ** {0}, it intersects a ' 'symlink'.format(filename)) filenames.remove(filename) # Create the symlink along with the necessary dirs. # The dir perms/ownership will be adjusted later # if needed _ret = symlink(os.path.join(name, srelpath), ltarget, makedirs=True, force=force_symlinks, user=user, group=group, mode=sym_mode) if not _ret: continue merge_ret(os.path.join(name, srelpath), _ret) # Add the path to the keep set in case clean is set to True keep.add(os.path.join(name, srelpath)) vdir.update(keep) return filenames keep = set() vdir = set() srcpath = salt.utils.url.parse(source)[0] if not srcpath.endswith('/'): # we're searching for things that start with this *directory*. # use '/' since #master only runs on POSIX srcpath = srcpath + '/' fns_ = __salt__['cp.list_master'](__env__, srcpath) # If we are instructed to keep symlinks, then process them. if keep_symlinks: # Make this global so that emptydirs can use it if needed. symlinks = __salt__['cp.list_master_symlinks'](__env__, srcpath) fns_ = process_symlinks(fns_, symlinks) for fn_ in fns_: if not fn_.strip(): continue # fn_ here is the absolute (from file_roots) source path of # the file to copy from; it is either a normal file or an # empty dir(if include_empty==true). relname = os.path.relpath(fn_, srcpath) if relname.startswith('..'): continue # Check for maxdepth of the relative path if maxdepth is not None: # Since paths are all master, just use POSIX separator relpieces = relname.split('/') # Handle empty directories (include_empty==true) by removing the # the last piece if it is an empty string if not relpieces[-1]: relpieces = relpieces[:-1] if len(relpieces) > maxdepth + 1: continue # Check if it is to be excluded. Match only part of the path # relative to the target directory if not salt.utils.check_include_exclude( relname, include_pat, exclude_pat): continue dest = os.path.join(name, relname) dirname = os.path.dirname(dest) keep.add(dest) if dirname not in vdir: # verify the directory perms if they are set manage_directory(dirname) vdir.add(dirname) src = salt.utils.url.create(fn_) manage_file(dest, src) if include_empty: mdirs = __salt__['cp.list_master_dirs'](__env__, srcpath) for mdir in mdirs: if not salt.utils.check_include_exclude( os.path.relpath(mdir, srcpath), include_pat, exclude_pat): continue mdest = os.path.join(name, os.path.relpath(mdir, srcpath)) # Check for symlinks that happen to point to an empty dir. if keep_symlinks: islink = False for link in symlinks: if mdir.startswith(link, 0): log.debug('** skipping empty dir ** {0}, it intersects' ' a symlink'.format(mdir)) islink = True break if islink: continue manage_directory(mdest) keep.add(mdest) keep = list(keep) if clean: # TODO: Use directory(clean=True) instead keep += _gen_keep_files(name, require) removed = _clean_dir(name, list(keep), exclude_pat) if removed: if __opts__['test']: if ret['result']: ret['result'] = None add_comment('removed', removed) else: ret['changes']['removed'] = removed # Flatten comments until salt command line client learns # to display structured comments in a readable fashion ret['comment'] = '\n'.join(u'\n#### {0} ####\n{1}'.format( k, v if isinstance(v, six.string_types) else '\n'.join(v) ) for (k, v) in six.iteritems(ret['comment'])).strip() if not ret['comment']: ret['comment'] = 'Recursively updated {0}'.format(name) if not ret['changes'] and ret['result']: ret['comment'] = 'The directory {0} is in the correct state'.format( name ) return ret def line(name, content, match=None, mode=None, location=None, before=None, after=None, show_changes=True, backup=False, quiet=False, indent=True): ''' Line-based editing of a file. .. versionadded:: 2015.8.0 Params are identical to the remote execution function :mod:`file.line <salt.modules.file.line>`. .. code-block: yaml /etc/myconfig.conf file.line: - mode: ensure - content: my key = my value - before: somekey.*? ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.line') check_res, check_msg = _check_file(name) if not check_res: return _error(ret, check_msg) changes = __salt__['file.line'](name, content, match=match, mode=mode, location=location, before=before, after=after, show_changes=show_changes, backup=backup, quiet=quiet, indent=indent) if changes: if __opts__['test']: ret['result'] = None ret['comment'] = 'Changes would have been made:\ndiff:\n{0}'.format(changes) else: ret['result'] = True ret['comment'] = 'Changes were made' ret['changes'] = {'diff': changes} else: ret['result'] = True ret['comment'] = 'No changes needed to be made' return ret def replace(name, pattern, repl, count=0, flags=0, bufsize=1, append_if_not_found=False, prepend_if_not_found=False, not_found_content=None, backup='.bak', show_changes=True): r''' Maintain an edit in a file. .. versionadded:: 0.17.0 name Filesystem path to the file to be edited. pattern Python's `regular expression search <https://docs.python.org/2/library/re.html>`_. repl The replacement text. count Maximum number of pattern occurrences to be replaced. flags A list of flags defined in the :ref:`re module documentation <contents-of-module-re>`. Each list item should be a string that will correlate to the human-friendly flag name. E.g., ``['IGNORECASE', 'MULTILINE']``. Note: multiline searches must specify ``file`` as the ``bufsize`` argument below. Defaults to 0 and can be a list or an int. bufsize How much of the file to buffer into memory at once. The default value ``1`` processes one line at a time. The special value ``file`` may be specified which will read the entire file into memory before processing. Note: multiline searches must specify ``file`` buffering. Can be an int or a str. append_if_not_found If pattern is not found and set to ``True`` then, the content will be appended to the file. .. versionadded:: 2014.7.0 prepend_if_not_found If pattern is not found and set to ``True`` then, the content will be prepended to the file. .. versionadded:: 2014.7.0 not_found_content Content to use for append/prepend if not found. If ``None`` (default), uses ``repl``. Useful when ``repl`` uses references to group in pattern. .. versionadded:: 2014.7.0 backup The file extension to use for a backup of the file before editing. Set to ``False`` to skip making a backup. show_changes Output a unified diff of the old file and the new file. If ``False`` return a boolean if any changes were made. Returns a boolean or a string. .. note: Using this option will store two copies of the file in-memory (the original version and the edited version) in order to generate the diff. For complex regex patterns it can be useful to avoid the need for complex quoting and escape sequences by making use of YAML's multiline string syntax. .. code-block:: yaml complex_search_and_replace: file.replace: # <...snip...> - pattern: | CentOS \(2.6.32[^\n]+\n\s+root[^\n]+\n\)+ .. note:: When using YAML multiline string syntax in ``pattern:``, make sure to also use that syntax in the ``repl:`` part, or you might loose line feeds. ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.replace') check_res, check_msg = _check_file(name) if not check_res: return _error(ret, check_msg) changes = __salt__['file.replace'](name, pattern, repl, count=count, flags=flags, bufsize=bufsize, append_if_not_found=append_if_not_found, prepend_if_not_found=prepend_if_not_found, not_found_content=not_found_content, backup=backup, dry_run=__opts__['test'], show_changes=show_changes) if changes: if __opts__['test']: ret['result'] = None ret['comment'] = 'Changes would have been made:\ndiff:\n{0}'.format(changes) else: ret['result'] = True ret['comment'] = 'Changes were made' ret['changes'] = {'diff': changes} else: ret['result'] = True ret['comment'] = 'No changes needed to be made' return ret def blockreplace( name, marker_start='#-- start managed zone --', marker_end='#-- end managed zone --', source=None, source_hash=None, template='jinja', sources=None, source_hashes=None, defaults=None, context=None, content='', append_if_not_found=False, prepend_if_not_found=False, backup='.bak', show_changes=True): ''' Maintain an edit in a file in a zone delimited by two line markers .. versionadded:: 2014.1.0 A block of content delimited by comments can help you manage several lines entries without worrying about old entries removal. This can help you maintaining an un-managed file containing manual edits. Note: this function will store two copies of the file in-memory (the original version and the edited version) in order to detect changes and only edit the targeted file if necessary. name Filesystem path to the file to be edited marker_start The line content identifying a line as the start of the content block. Note that the whole line containing this marker will be considered, so whitespace or extra content before or after the marker is included in final output marker_end The line content identifying a line as the end of the content block. Note that the whole line containing this marker will be considered, so whitespace or extra content before or after the marker is included in final output. Note: you can use file.accumulated and target this state. All accumulated data dictionaries content will be added as new lines in the content content The content to be used between the two lines identified by ``marker_start`` and ``marker_end`` source The source file to download to the minion, this source file can be hosted on either the salt master server, or on an HTTP or FTP server. Both HTTPS and HTTP are supported as well as downloading directly from Amazon S3 compatible URLs with both pre-configured and automatic IAM credentials. (see s3.get state documentation) File retrieval from Openstack Swift object storage is supported via swift://container/object_path URLs, see swift.get documentation. For files hosted on the salt file server, if the file is located on the master in the directory named spam, and is called eggs, the source string is salt://spam/eggs. If source is left blank or None (use ~ in YAML), the file will be created as an empty file and the content will not be managed If the file is hosted on a HTTP or FTP server then the source_hash argument is also required A list of sources can also be passed in to provide a default source and a set of fallbacks. The first source in the list that is found to exist will be used and subsequent entries in the list will be ignored. .. code-block:: yaml file_override_example: file.managed: - source: - salt://file_that_does_not_exist - salt://file_that_exists source_hash This can be one of the following: 1. a source hash string 2. the URI of a file that contains source hash strings The function accepts the first encountered long unbroken alphanumeric string of correct length as a valid hash, in order from most secure to least secure: .. code-block:: text Type Length ====== ====== sha512 128 sha384 96 sha256 64 sha224 56 sha1 40 md5 32 **Using a Source Hash File** The file can contain several checksums for several files. Each line must contain both the file name and the hash. If no file name is matched, the first hash encountered will be used, otherwise the most secure hash with the correct source file name will be used. When using a source hash file the source_hash argument needs to be a url, the standard download urls are supported, ftp, http, salt etc: Example: .. code-block:: yaml tomdroid-src-0.7.3.tar.gz: file.managed: - name: /tmp/tomdroid-src-0.7.3.tar.gz - source: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz - source_hash: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.hash The following is an example of the supported source_hash format: .. code-block:: text /etc/rc.conf ef6e82e4006dee563d98ada2a2a80a27 sha254c8525aee419eb649f0233be91c151178b30f0dff8ebbdcc8de71b1d5c8bcc06a /etc/resolv.conf ead48423703509d37c4a90e6a0d53e143b6fc268 Debian file type ``*.dsc`` files are also supported. **Inserting the Source Hash in the sls Data** Examples: .. code-block:: yaml tomdroid-src-0.7.3.tar.gz: file.managed: - name: /tmp/tomdroid-src-0.7.3.tar.gz - source: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz - source_hash: md5=79eef25f9b0b2c642c62b7f737d4f53f template If this setting is applied then the named templating engine will be used to render the downloaded file, currently jinja, mako, and wempy are supported context Overrides default context variables passed to the template. defaults Default context passed to the template. append_if_not_found If markers are not found and set to True then the markers and content will be appended to the file. Default is ``False`` prepend_if_not_found If markers are not found and set to True then the markers and content will be prepended to the file. Default is ``False`` backup The file extension to use for a backup of the file if any edit is made. Set this to ``False`` to skip making a backup. dry_run Don't make any edits to the file show_changes Output a unified diff of the old file and the new file. If ``False`` return a boolean if any changes were made Example of usage with an accumulator and with a variable: .. code-block:: yaml {% set myvar = 42 %} hosts-config-block-{{ myvar }}: file.blockreplace: - name: /etc/hosts - marker_start: "# START managed zone {{ myvar }} -DO-NOT-EDIT-" - marker_end: "# END managed zone {{ myvar }} --" - content: 'First line of content' - append_if_not_found: True - backup: '.bak' - show_changes: True hosts-config-block-{{ myvar }}-accumulated1: file.accumulated: - filename: /etc/hosts - name: my-accumulator-{{ myvar }} - text: "text 2" - require_in: - file: hosts-config-block-{{ myvar }} hosts-config-block-{{ myvar }}-accumulated2: file.accumulated: - filename: /etc/hosts - name: my-accumulator-{{ myvar }} - text: | text 3 text 4 - require_in: - file: hosts-config-block-{{ myvar }} will generate and maintain a block of content in ``/etc/hosts``: .. code-block:: text # START managed zone 42 -DO-NOT-EDIT- First line of content text 2 text 3 text 4 # END managed zone 42 -- ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'result': False, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.blockreplace') if sources is None: sources = [] if source_hashes is None: source_hashes = [] (ok_, err, sl_) = _unify_sources_and_hashes(source=source, source_hash=source_hash, sources=sources, source_hashes=source_hashes) if not ok_: return _error(ret, err) check_res, check_msg = _check_file(name) if not check_res: return _error(ret, check_msg) accum_data, accum_deps = _load_accumulators() if name in accum_data: accumulator = accum_data[name] # if we have multiple accumulators for a file, only apply the one # required at a time deps = accum_deps.get(name, []) filtered = [a for a in deps if __low__['__id__'] in deps[a] and a in accumulator] if not filtered: filtered = [a for a in accumulator] for acc in filtered: acc_content = accumulator[acc] for line in acc_content: if content == '': content = line else: content += "\n" + line if sl_: tmpret = _get_template_texts(source_list=sl_, template=template, defaults=defaults, context=context) if not tmpret['result']: return tmpret text = tmpret['data'] for index, item in enumerate(text): content += str(item) changes = __salt__['file.blockreplace']( name, marker_start, marker_end, content=content, append_if_not_found=append_if_not_found, prepend_if_not_found=prepend_if_not_found, backup=backup, dry_run=__opts__['test'], show_changes=show_changes ) if changes: ret['changes'] = {'diff': changes} if __opts__['test']: ret['result'] = None ret['comment'] = 'Changes would be made' else: ret['result'] = True ret['comment'] = 'Changes were made' else: ret['result'] = True ret['comment'] = 'No changes needed to be made' return ret def comment(name, regex, char='#', backup='.bak'): ''' Comment out specified lines in a file. name The full path to the file to be edited regex A regular expression used to find the lines that are to be commented; this pattern will be wrapped in parenthesis and will move any preceding/trailing ``^`` or ``$`` characters outside the parenthesis (e.g., the pattern ``^foo$`` will be rewritten as ``^(foo)$``) Note that you _need_ the leading ^, otherwise each time you run highstate, another comment char will be inserted. char : ``#`` The character to be inserted at the beginning of a line in order to comment it out backup : ``.bak`` The file will be backed up before edit with this file extension .. warning:: This backup will be overwritten each time ``sed`` / ``comment`` / ``uncomment`` is called. Meaning the backup will only be useful after the first invocation. Usage: .. code-block:: yaml /etc/fstab: file.comment: - regex: ^bind 127.0.0.1 .. versionadded:: 0.9.5 ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'result': False, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.comment') check_res, check_msg = _check_file(name) if not check_res: return _error(ret, check_msg) unanchor_regex = regex.lstrip('^').rstrip('$') # Make sure the pattern appears in the file before continuing if not __salt__['file.search'](name, regex, multiline=True): if __salt__['file.search'](name, unanchor_regex, multiline=True): ret['comment'] = 'Pattern already commented' ret['result'] = True return ret else: return _error(ret, '{0}: Pattern not found'.format(unanchor_regex)) if __opts__['test']: ret['comment'] = 'File {0} is set to be updated'.format(name) ret['result'] = None return ret with salt.utils.fopen(name, 'rb') as fp_: slines = fp_.readlines() # Perform the edit __salt__['file.comment_line'](name, regex, char, True, backup) with salt.utils.fopen(name, 'rb') as fp_: nlines = fp_.readlines() # Check the result ret['result'] = __salt__['file.search'](name, unanchor_regex, multiline=True) if slines != nlines: if not salt.utils.istextfile(name): ret['changes']['diff'] = 'Replace binary file' else: # Changes happened, add them ret['changes']['diff'] = ( ''.join(difflib.unified_diff(slines, nlines)) ) if ret['result']: ret['comment'] = 'Commented lines successfully' else: ret['comment'] = 'Expected commented lines not found' return ret def uncomment(name, regex, char='#', backup='.bak'): ''' Uncomment specified commented lines in a file name The full path to the file to be edited regex A regular expression used to find the lines that are to be uncommented. This regex should not include the comment character. A leading ``^`` character will be stripped for convenience (for easily switching between comment() and uncomment()). The regex will be searched for from the beginning of the line, ignoring leading spaces (we prepend '^[ \\t]*') char : ``#`` The character to remove in order to uncomment a line backup : ``.bak`` The file will be backed up before edit with this file extension; .. warning:: This backup will be overwritten each time ``sed`` / ``comment`` / ``uncomment`` is called. Meaning the backup will only be useful after the first invocation. Usage: .. code-block:: yaml /etc/adduser.conf: file.uncomment: - regex: EXTRA_GROUPS .. versionadded:: 0.9.5 ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'result': False, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.uncomment') check_res, check_msg = _check_file(name) if not check_res: return _error(ret, check_msg) # Make sure the pattern appears in the file if __salt__['file.search']( name, '^[ \t]*{0}'.format(regex.lstrip('^')), multiline=True): ret['comment'] = 'Pattern already uncommented' ret['result'] = True return ret elif __salt__['file.search']( name, '{0}[ \t]*{1}'.format(char, regex.lstrip('^')), multiline=True): # Line exists and is commented pass else: return _error(ret, '{0}: Pattern not found'.format(regex)) if __opts__['test']: ret['comment'] = 'File {0} is set to be updated'.format(name) ret['result'] = None return ret with salt.utils.fopen(name, 'rb') as fp_: slines = fp_.readlines() # Perform the edit __salt__['file.comment_line'](name, regex, char, False, backup) with salt.utils.fopen(name, 'rb') as fp_: nlines = fp_.readlines() # Check the result ret['result'] = __salt__['file.search']( name, '^[ \t]*{0}'.format(regex.lstrip('^')), multiline=True ) if slines != nlines: if not salt.utils.istextfile(name): ret['changes']['diff'] = 'Replace binary file' else: # Changes happened, add them ret['changes']['diff'] = ( ''.join(difflib.unified_diff(slines, nlines)) ) if ret['result']: ret['comment'] = 'Uncommented lines successfully' else: ret['comment'] = 'Expected uncommented lines not found' return ret def append(name, text=None, makedirs=False, source=None, source_hash=None, template='jinja', sources=None, source_hashes=None, defaults=None, context=None): ''' Ensure that some text appears at the end of a file. The text will not be appended if it already exists in the file. A single string of text or a list of strings may be appended. name The location of the file to append to. text The text to be appended, which can be a single string or a list of strings. makedirs If the file is located in a path without a parent directory, then the state will fail. If makedirs is set to True, then the parent directories will be created to facilitate the creation of the named file. Defaults to False. source A single source file to append. This source file can be hosted on either the salt master server, or on an HTTP or FTP server. Both HTTPS and HTTP are supported as well as downloading directly from Amazon S3 compatible URLs with both pre-configured and automatic IAM credentials (see s3.get state documentation). File retrieval from Openstack Swift object storage is supported via swift://container/object_path URLs (see swift.get documentation). For files hosted on the salt file server, if the file is located on the master in the directory named spam, and is called eggs, the source string is salt://spam/eggs. If the file is hosted on an HTTP or FTP server, the source_hash argument is also required. source_hash This can be one of the following: 1. a source hash string 2. the URI of a file that contains source hash strings The function accepts the first encountered long unbroken alphanumeric string of correct length as a valid hash, in order from most secure to least secure: .. code-block:: text Type Length ====== ====== sha512 128 sha384 96 sha256 64 sha224 56 sha1 40 md5 32 The file can contain several checksums for several files. Each line must contain both the file name and the hash. If no file name is matched, the first hash encountered will be used, otherwise the most secure hash with the correct source file name will be used. Debian file type ``*.dsc`` is supported. Examples: .. code-block:: text /etc/rc.conf ef6e82e4006dee563d98ada2a2a80a27 sha254c8525aee419eb649f0233be91c151178b30f0dff8ebbdcc8de71b1d5c8bcc06a /etc/resolv.conf ead48423703509d37c4a90e6a0d53e143b6fc268 Known issues: If the remote server URL has the hash file as an apparent sub-directory of the source file, the module will discover that it has already cached a directory where a file should be cached. For example: .. code-block:: yaml tomdroid-src-0.7.3.tar.gz: file.managed: - name: /tmp/tomdroid-src-0.7.3.tar.gz - source: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz - source_hash: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz/+md5 template : ``jinja`` The named templating engine will be used to render the appended-to file. Defaults to jinja. sources A list of source files to append. If the files are hosted on an HTTP or FTP server, the source_hashes argument is also required. source_hashes A list of source_hashes corresponding to the sources list specified in the sources argument. defaults Default context passed to the template. context Overrides default context variables passed to the template. Multi-line example: .. code-block:: yaml /etc/motd: file.append: - text: | Thou hadst better eat salt with the Philosophers of Greece, than sugar with the Courtiers of Italy. - Benjamin Franklin Multiple lines of text: .. code-block:: yaml /etc/motd: file.append: - text: - Trust no one unless you have eaten much salt with him. - "Salt is born of the purest of parents: the sun and the sea." Gather text from multiple template files: .. code-block:: yaml /etc/motd: file: - append - template: jinja - sources: - salt://motd/devops-messages.tmpl - salt://motd/hr-messages.tmpl - salt://motd/general-messages.tmpl .. versionadded:: 0.9.5 ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'result': False, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.append') if sources is None: sources = [] if source_hashes is None: source_hashes = [] # Add sources and source_hashes with template support # NOTE: FIX 'text' and any 'source' are mutually exclusive as 'text' # is re-assigned in the original code. (ok_, err, sl_) = _unify_sources_and_hashes(source=source, source_hash=source_hash, sources=sources, source_hashes=source_hashes) if not ok_: return _error(ret, err) if makedirs is True: dirname = os.path.dirname(name) if not __salt__['file.directory_exists'](dirname): __salt__['file.makedirs'](name) check_res, check_msg = _check_directory( dirname, None, None, False, None, False, False, None ) if not check_res: return _error(ret, check_msg) # Make sure that we have a file __salt__['file.touch'](name) check_res, check_msg = _check_file(name) if not check_res: touch(name, makedirs=makedirs) retry_res, retry_msg = _check_file(name) if not retry_res: return _error(ret, check_msg) # Follow the original logic and re-assign 'text' if using source(s)... if sl_: tmpret = _get_template_texts(source_list=sl_, template=template, defaults=defaults, context=context) if not tmpret['result']: return tmpret text = tmpret['data'] text = _validate_str_list(text) with salt.utils.fopen(name, 'rb') as fp_: slines = fp_.readlines() count = 0 test_lines = [] try: for chunk in text: if __salt__['file.search']( name, salt.utils.build_whitespace_split_regex(chunk), multiline=True): continue lines = chunk.splitlines() for line in lines: if __opts__['test']: ret['comment'] = 'File {0} is set to be updated'.format(name) ret['result'] = None test_lines.append('{0}\n'.format(line)) else: __salt__['file.append'](name, line) count += 1 except TypeError: return _error(ret, 'No text found to append. Nothing appended') if __opts__['test']: nlines = slines + test_lines ret['result'] = None if slines != nlines: if not salt.utils.istextfile(name): ret['changes']['diff'] = 'Replace binary file' else: # Changes happened, add them ret['changes']['diff'] = ( ''.join(difflib.unified_diff(slines, nlines)) ) else: ret['comment'] = 'File {0} is in correct state'.format(name) ret['result'] = True return ret with salt.utils.fopen(name, 'rb') as fp_: nlines = fp_.readlines() if slines != nlines: if not salt.utils.istextfile(name): ret['changes']['diff'] = 'Replace binary file' else: # Changes happened, add them ret['changes']['diff'] = ( ''.join(difflib.unified_diff(slines, nlines)) ) if count: ret['comment'] = 'Appended {0} lines'.format(count) else: ret['comment'] = 'File {0} is in correct state'.format(name) ret['result'] = True return ret def prepend(name, text=None, makedirs=False, source=None, source_hash=None, template='jinja', sources=None, source_hashes=None, defaults=None, context=None): ''' Ensure that some text appears at the beginning of a file The text will not be prepended again if it already exists in the file. You may specify a single line of text or a list of lines to append. Multi-line example: .. code-block:: yaml /etc/motd: file.prepend: - text: | Thou hadst better eat salt with the Philosophers of Greece, than sugar with the Courtiers of Italy. - Benjamin Franklin Multiple lines of text: .. code-block:: yaml /etc/motd: file.prepend: - text: - Trust no one unless you have eaten much salt with him. - "Salt is born of the purest of parents: the sun and the sea." Gather text from multiple template files: .. code-block:: yaml /etc/motd: file: - prepend - template: jinja - sources: - salt://motd/devops-messages.tmpl - salt://motd/hr-messages.tmpl - salt://motd/general-messages.tmpl .. versionadded:: 2014.7.0 ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'result': False, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.prepend') if sources is None: sources = [] if source_hashes is None: source_hashes = [] # Add sources and source_hashes with template support # NOTE: FIX 'text' and any 'source' are mutually exclusive as 'text' # is re-assigned in the original code. (ok_, err, sl_) = _unify_sources_and_hashes(source=source, source_hash=source_hash, sources=sources, source_hashes=source_hashes) if not ok_: return _error(ret, err) if makedirs is True: dirname = os.path.dirname(name) if not __salt__['file.directory_exists'](dirname): __salt__['file.makedirs'](name) check_res, check_msg = _check_directory( dirname, None, None, False, None, False, False, None ) if not check_res: return _error(ret, check_msg) # Make sure that we have a file __salt__['file.touch'](name) check_res, check_msg = _check_file(name) if not check_res: return _error(ret, check_msg) # Follow the original logic and re-assign 'text' if using source(s)... if sl_: tmpret = _get_template_texts(source_list=sl_, template=template, defaults=defaults, context=context) if not tmpret['result']: return tmpret text = tmpret['data'] text = _validate_str_list(text) with salt.utils.fopen(name, 'rb') as fp_: slines = fp_.readlines() count = 0 test_lines = [] preface = [] for chunk in text: if __salt__['file.search']( name, salt.utils.build_whitespace_split_regex(chunk), multiline=True): continue lines = chunk.splitlines() for line in lines: if __opts__['test']: ret['comment'] = 'File {0} is set to be updated'.format(name) ret['result'] = None test_lines.append('{0}\n'.format(line)) else: preface.append(line) count += 1 if __opts__['test']: nlines = test_lines + slines if slines != nlines: if not salt.utils.istextfile(name): ret['changes']['diff'] = 'Replace binary file' else: # Changes happened, add them ret['changes']['diff'] = ( ''.join(difflib.unified_diff(slines, nlines)) ) ret['result'] = None else: ret['comment'] = 'File {0} is in correct state'.format(name) ret['result'] = True return ret __salt__['file.prepend'](name, *preface) with salt.utils.fopen(name, 'rb') as fp_: nlines = fp_.readlines() if slines != nlines: if not salt.utils.istextfile(name): ret['changes']['diff'] = 'Replace binary file' else: # Changes happened, add them ret['changes']['diff'] = ( ''.join(difflib.unified_diff(slines, nlines)) ) if count: ret['comment'] = 'Prepended {0} lines'.format(count) else: ret['comment'] = 'File {0} is in correct state'.format(name) ret['result'] = True return ret def patch(name, source=None, hash=None, options='', dry_run_first=True, env=None, **kwargs): ''' Apply a patch to a file. .. note:: A suitable ``patch`` executable must be available on the minion when using this state function. name The file to with the patch will be applied. source The source patch to download to the minion, this source file must be hosted on the salt master server. If the file is located in the directory named spam, and is called eggs, the source string is salt://spam/eggs. A source is required. hash Hash of the patched file. If the hash of the target file matches this value then the patch is assumed to have been applied. The hash string is the hash algorithm followed by the hash of the file: md5=e138491e9d5b97023cea823fe17bac22 options Extra options to pass to patch. dry_run_first : ``True`` Run patch with ``--dry-run`` first to check if it will apply cleanly. env Specify the environment from which to retrieve the patch file indicated by the ``source`` parameter. If not provided, this defaults to the environment from which the state is being executed. Usage: .. code-block:: yaml # Equivalent to ``patch --forward /opt/file.txt file.patch`` /opt/file.txt: file.patch: - source: salt://file.patch - hash: md5=e138491e9d5b97023cea823fe17bac22 ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'result': False, 'comment': ''} if not name: return _error(ret, 'Must provide name to file.patch') check_res, check_msg = _check_file(name) if not check_res: return _error(ret, check_msg) if not source: return _error(ret, 'Source is required') if hash is None: return _error(ret, 'Hash is required') if __salt__['file.check_hash'](name, hash): ret.update(result=True, comment='Patch is already applied') return ret if isinstance(env, six.string_types): msg = ( 'Passing a salt environment should be done using \'saltenv\' not ' '\'env\'. This warning will go away in Salt Boron and this ' 'will be the default and expected behavior. Please update your ' 'state files.' ) salt.utils.warn_until('Boron', msg) ret.setdefault('warnings', []).append(msg) # No need to set __env__ = env since that's done in the state machinery # get cached file or copy it to cache cached_source_path = __salt__['cp.cache_file'](source, __env__) if not cached_source_path: ret['comment'] = ('Unable to cache {0} from saltenv {1!r}' .format(source, __env__)) return ret log.debug( 'State patch.applied cached source {0} -> {1}'.format( source, cached_source_path ) ) if dry_run_first or __opts__['test']: ret['changes'] = __salt__['file.patch']( name, cached_source_path, options=options, dry_run=True ) if __opts__['test']: ret['comment'] = 'File {0} will be patched'.format(name) ret['result'] = None return ret if ret['changes']['retcode']: return ret ret['changes'] = __salt__['file.patch']( name, cached_source_path, options=options ) ret['result'] = not ret['changes']['retcode'] if ret['result'] and not __salt__['file.check_hash'](name, hash): ret.update( result=False, comment='File {0} hash mismatch after patch was applied'.format( name ) ) return ret def touch(name, atime=None, mtime=None, makedirs=False): ''' Replicate the 'nix "touch" command to create a new empty file or update the atime and mtime of an existing file. Note that if you just want to create a file and don't care about atime or mtime, you should use ``file.managed`` instead, as it is more feature-complete. (Just leave out the ``source``/``template``/``contents`` arguments, and it will just create the file and/or check its permissions, without messing with contents) name name of the file atime atime of the file mtime mtime of the file makedirs whether we should create the parent directory/directories in order to touch the file Usage: .. code-block:: yaml /var/log/httpd/logrotate.empty: file.touch .. versionadded:: 0.9.5 ''' name = os.path.expanduser(name) ret = { 'name': name, 'changes': {}, } if not name: return _error(ret, 'Must provide name to file.touch') if not os.path.isabs(name): return _error( ret, 'Specified file {0} is not an absolute path'.format(name) ) if __opts__['test']: ret['result'], ret['comment'] = _check_touch(name, atime, mtime) return ret if makedirs: __salt__['file.makedirs'](name) if not os.path.isdir(os.path.dirname(name)): return _error( ret, 'Directory not present to touch file {0}'.format(name) ) extant = os.path.exists(name) ret['result'] = __salt__['file.touch'](name, atime, mtime) if not extant and ret['result']: ret['comment'] = 'Created empty file {0}'.format(name) ret['changes']['new'] = name elif extant and ret['result']: ret['comment'] = 'Updated times on {0} {1}'.format( 'directory' if os.path.isdir(name) else 'file', name ) ret['changes']['touched'] = name return ret def copy( name, source, force=False, makedirs=False, preserve=False, user=None, group=None, mode=None, subdir=False, **kwargs): ''' If the source file exists on the system, copy it to the named file. The named file will not be overwritten if it already exists unless the force option is set to True. name The location of the file to copy to source The location of the file to copy to the location specified with name force If the target location is present then the file will not be moved, specify "force: True" to overwrite the target file makedirs If the target subdirectories don't exist create them preserve .. versionadded:: 2015.5.0 Set ``preserve: True`` to preserve user/group ownership and mode after copying. Default is ``False``. If ``preseve`` is set to ``True``, then user/group/mode attributes will be ignored. user .. versionadded:: 2015.5.0 The user to own the copied file, this defaults to the user salt is running as on the minion. If ``preserve`` is set to ``True``, then this will be ignored group .. versionadded:: 2015.5.0 The group to own the copied file, this defaults to the group salt is running as on the minion. If ``preserve`` is set to ``True`` or on Windows this will be ignored mode .. versionadded:: 2015.5.0 The permissions to set on the copied file, aka 644, '0775', '4664'. If ``preserve`` is set to ``True``, then this will be ignored. Not supported on Windows subdir .. versionadded:: 2015.5.0 If the name is a directory then place the file inside the named directory ''' name = os.path.expanduser(name) source = os.path.expanduser(source) ret = { 'name': name, 'changes': {}, 'comment': 'Copied "{0}" to "{1}"'.format(source, name), 'result': True} if not name: return _error(ret, 'Must provide name to file.comment') changed = True if not os.path.isabs(name): return _error( ret, 'Specified file {0} is not an absolute path'.format(name)) if not os.path.exists(source): return _error(ret, 'Source file "{0}" is not present'.format(source)) if preserve: user = __salt__['file.get_user'](source) group = __salt__['file.get_group'](source) mode = __salt__['file.get_mode'](source) else: user = _test_owner(kwargs, user=user) if user is None: user = __opts__['user'] if salt.utils.is_windows(): if group is not None: log.warning( 'The group argument for {0} has been ignored as this is ' 'a Windows system.'.format(name) ) group = user if group is None: group = __salt__['file.gid_to_group']( __salt__['user.info'](user).get('gid', 0) ) u_check = _check_user(user, group) if u_check: # The specified user or group do not exist return _error(ret, u_check) if mode is None: mode = __salt__['file.get_mode'](source) if os.path.isdir(name) and subdir: # If the target is a dir, and overwrite_dir is False, copy into the dir name = os.path.join(name, os.path.basename(source)) if os.path.lexists(source) and os.path.lexists(name): # if this is a file which did not change, do not update if force and os.path.isfile(name): hash1 = salt.utils.get_hash(name) hash2 = salt.utils.get_hash(source) if hash1 == hash2: changed = False if not force: changed = False elif not __opts__['test'] and changed: # Remove the destination to prevent problems later try: if os.path.islink(name): os.unlink(name) elif os.path.isfile(name): os.remove(name) else: shutil.rmtree(name) except (IOError, OSError): return _error( ret, 'Failed to delete "{0}" in preparation for ' 'forced move'.format(name) ) if __opts__['test']: if changed: ret['comment'] = 'File "{0}" is set to be copied to "{1}"'.format( source, name ) ret['result'] = None else: ret['comment'] = ('The target file "{0}" exists and will not be ' 'overwritten'.format(name)) ret['result'] = True return ret if not changed: ret['comment'] = ('The target file "{0}" exists and will not be ' 'overwritten'.format(name)) ret['result'] = True return ret # Run makedirs dname = os.path.dirname(name) if not os.path.isdir(dname): if makedirs: __salt__['file.makedirs'](name) else: return _error( ret, 'The target directory {0} is not present'.format(dname)) # All tests pass, move the file into place try: shutil.copy(source, name) ret['changes'] = {name: source} # Preserve really means just keep the behavior of the cp command. If # the filesystem we're copying to is squashed or doesn't support chown # then we shouldn't be checking anything. if not preserve: __salt__['file.check_perms'](name, ret, user, group, mode) except (IOError, OSError): return _error( ret, 'Failed to copy "{0}" to "{1}"'.format(source, name)) return ret def rename(name, source, force=False, makedirs=False): ''' If the source file exists on the system, rename it to the named file. The named file will not be overwritten if it already exists unless the force option is set to True. name The location of the file to rename to source The location of the file to move to the location specified with name force If the target location is present then the file will not be moved, specify "force: True" to overwrite the target file makedirs If the target subdirectories don't exist create them ''' name = os.path.expanduser(name) source = os.path.expanduser(source) ret = { 'name': name, 'changes': {}, 'comment': '', 'result': True} if not name: return _error(ret, 'Must provide name to file.rename') if not os.path.isabs(name): return _error( ret, 'Specified file {0} is not an absolute path'.format(name)) if not os.path.lexists(source): ret['comment'] = ('Source file "{0}" has already been moved out of ' 'place').format(source) return ret if os.path.lexists(source) and os.path.lexists(name): if not force: ret['comment'] = ('The target file "{0}" exists and will not be ' 'overwritten'.format(name)) ret['result'] = False return ret elif not __opts__['test']: # Remove the destination to prevent problems later try: if os.path.islink(name): os.unlink(name) elif os.path.isfile(name): os.remove(name) else: shutil.rmtree(name) except (IOError, OSError): return _error( ret, 'Failed to delete "{0}" in preparation for ' 'forced move'.format(name) ) if __opts__['test']: ret['comment'] = 'File "{0}" is set to be moved to "{1}"'.format( source, name ) ret['result'] = None return ret # Run makedirs dname = os.path.dirname(name) if not os.path.isdir(dname): if makedirs: __salt__['file.makedirs'](name) else: return _error( ret, 'The target directory {0} is not present'.format(dname)) # All tests pass, move the file into place try: if os.path.islink(source): linkto = os.readlink(source) os.symlink(linkto, name) os.unlink(source) else: shutil.move(source, name) except (IOError, OSError): return _error( ret, 'Failed to move "{0}" to "{1}"'.format(source, name)) ret['comment'] = 'Moved "{0}" to "{1}"'.format(source, name) ret['changes'] = {name: source} return ret def accumulated(name, filename, text, **kwargs): ''' Prepare accumulator which can be used in template in file.managed state. Accumulator dictionary becomes available in template. It can also be used in file.blockreplace. name Accumulator name filename Filename which would receive this accumulator (see file.managed state documentation about ``name``) text String or list for adding in accumulator require_in / watch_in One of them required for sure we fill up accumulator before we manage the file. Probably the same as filename Example: Given the following: .. code-block:: yaml animals_doing_things: file.accumulated: - filename: /tmp/animal_file.txt - text: ' jumps over the lazy dog.' - require_in: - file: animal_file animal_file: file.managed: - name: /tmp/animal_file.txt - source: salt://animal_file.txt - template: jinja One might write a template for ``animal_file.txt`` like the following: .. code-block:: jinja The quick brown fox{% for animal in accumulator['animals_doing_things'] %}{{ animal }}{% endfor %} Collectively, the above states and template file will produce: .. code-block:: text The quick brown fox jumps over the lazy dog. Multiple accumulators can be "chained" together. .. note:: The 'accumulator' data structure is a Python dictionary. Do not expect any loop over the keys in a deterministic order! ''' ret = { 'name': name, 'changes': {}, 'result': True, 'comment': '' } if not name: return _error(ret, 'Must provide name to file.accumulated') if text is None: ret['result'] = False ret['comment'] = 'No text supplied for accumulator' return ret require_in = __low__.get('require_in', []) watch_in = __low__.get('watch_in', []) deps = require_in + watch_in if not [x for x in deps if 'file' in x]: ret['result'] = False ret['comment'] = 'Orphaned accumulator {0} in {1}:{2}'.format( name, __low__['__sls__'], __low__['__id__'] ) return ret if isinstance(text, six.string_types): text = (text,) elif isinstance(text, dict): text = (text,) accum_data, accum_deps = _load_accumulators() if filename not in accum_data: accum_data[filename] = {} if filename not in accum_deps: accum_deps[filename] = {} if name not in accum_deps[filename]: accum_deps[filename][name] = [] for accumulator in deps: accum_deps[filename][name].extend(six.itervalues(accumulator)) if name not in accum_data[filename]: accum_data[filename][name] = [] for chunk in text: if chunk not in accum_data[filename][name]: accum_data[filename][name].append(chunk) ret['comment'] = ('Accumulator {0} for file {1} ' 'was charged by text'.format(name, filename)) _persist_accummulators(accum_data, accum_deps) return ret def _merge_dict(obj, k, v): changes = {} if k in obj: if isinstance(obj[k], list): if isinstance(v, list): for a in v: if a not in obj[k]: changes[k] = a obj[k].append(a) else: if obj[k] != v: changes[k] = v obj[k] = v elif isinstance(obj[k], dict): if isinstance(v, dict): for a, b in six.iteritems(v): if isinstance(b, dict) or isinstance(b, list): updates = _merge_dict(obj[k], a, b) for x, y in six.iteritems(updates): changes[k + "." + x] = y else: if obj[k][a] != b: changes[k + "." + a] = b obj[k][a] = b else: if obj[k] != v: changes[k] = v obj[k] = v else: if obj[k] != v: changes[k] = v obj[k] = v else: changes[k] = v obj[k] = v return changes def serialize(name, dataset=None, dataset_pillar=None, user=None, group=None, mode=None, env=None, backup='', makedirs=False, show_diff=True, create=True, merge_if_exists=False, **kwargs): ''' Serializes dataset and store it into managed file. Useful for sharing simple configuration files. name The location of the file to create dataset The dataset that will be serialized dataset_pillar Operates like ``dataset``, but draws from a value stored in pillar, using the pillar path syntax used in :mod:`pillar.get <salt.modules.pillar.get>`. This is useful when the pillar value contains newlines, as referencing a pillar variable using a jinja/mako template can result in YAML formatting issues due to the newlines causing indentation mismatches. .. versionadded:: FIXME formatter Write the data as this format. Supported output formats: * JSON * YAML * Python (via pprint.pformat) user The user to own the directory, this defaults to the user salt is running as on the minion group The group ownership set for the directory, this defaults to the group salt is running as on the minion mode The permissions to set on this file, aka 644, 0775, 4664 backup Overrides the default backup mode for this specific file. makedirs Create parent directories for destination file. .. versionadded:: 2014.1.3 show_diff If set to False, the diff will not be shown. create Default is True, if create is set to False then the file will only be managed if the file already exists on the system. merge_if_exists Default is False, if merge_if_exists is True then the existing file will be parsed and the dataset passed in will be merged with the existing content .. versionadded:: 2014.7.0 For example, this state: .. code-block:: yaml /etc/dummy/package.json: file.serialize: - dataset: name: naive description: A package using naive versioning author: A confused individual <iam@confused.com> dependencies: express: >= 1.2.0 optimist: >= 0.1.0 engine: node 0.4.1 - formatter: json will manage the file ``/etc/dummy/package.json``: .. code-block:: json { "author": "A confused individual <iam@confused.com>", "dependencies": { "express": ">= 1.2.0", "optimist": ">= 0.1.0" }, "description": "A package using naive versioning", "engine": "node 0.4.1", "name": "naive" } ''' name = os.path.expanduser(name) ret = {'changes': {}, 'comment': '', 'name': name, 'result': True} if not name: return _error(ret, 'Must provide name to file.serialize') if isinstance(env, six.string_types): msg = ( 'Passing a salt environment should be done using \'saltenv\' not ' '\'env\'. This warning will go away in Salt Boron and this ' 'will be the default and expected behavior. Please update your ' 'state files.' ) salt.utils.warn_until('Boron', msg) ret.setdefault('warnings', []).append(msg) # No need to set __env__ = env since that's done in the state machinery if not create: if not os.path.isfile(name): # Don't create a file that is not already present ret['comment'] = ('File {0} is not present and is not set for ' 'creation').format(name) return ret formatter = kwargs.pop('formatter', 'yaml').lower() if len([_f for _f in [dataset, dataset_pillar] if _f]) > 1: return _error( ret, 'Only one of \'dataset\' and \'dataset_pillar\' is permitted') if dataset_pillar: dataset = __salt__['pillar.get'](dataset_pillar) if dataset is None: return _error( ret, 'Neither \'dataset\' nor \'dataset_pillar\' was defined') if merge_if_exists: if os.path.isfile(name): if formatter == 'yaml': with salt.utils.fopen(name, 'r') as fhr: existing_data = yaml.safe_load(fhr) elif formatter == 'json': with salt.utils.fopen(name, 'r') as fhr: existing_data = json.load(fhr) else: return {'changes': {}, 'comment': ('{0} format is not supported for merging' .format(formatter.capitalize())), 'name': name, 'result': False} if existing_data is not None: for k, v in six.iteritems(dataset): if k in existing_data: ret['changes'].update(_merge_dict(existing_data, k, v)) else: ret['changes'][k] = v existing_data[k] = v dataset = existing_data if formatter == 'yaml': contents = yaml_serializer.serialize(dataset, default_flow_style=False) elif formatter == 'json': contents = json_serializer.serialize(dataset, indent=2, separators=(',', ': '), sort_keys=True) elif formatter == 'python': # round-trip this through JSON to avoid OrderedDict types # there's probably a more performant way to do this... # TODO remove json round-trip when all dataset will use # serializers contents = pprint.pformat( json.loads( json.dumps(dataset), object_hook=salt.utils.decode_dict ) ) else: return {'changes': {}, 'comment': '{0} format is not supported'.format( formatter.capitalize()), 'name': name, 'result': False } if __opts__['test']: ret['changes'] = __salt__['file.check_managed_changes']( name=name, source=None, source_hash={}, user=user, group=group, mode=mode, template=None, context=None, defaults=None, saltenv=__env__, contents=contents, **kwargs ) if ret['changes']: ret['result'] = None ret['comment'] = 'Dataset will be serialized and stored into {0}'.format( name) else: ret['result'] = True ret['comment'] = 'The file {0} is in the correct state'.format(name) return ret return __salt__['file.manage_file'](name=name, sfn='', ret=ret, source=None, source_sum={}, user=user, group=group, mode=mode, saltenv=__env__, backup=backup, makedirs=makedirs, template=None, show_diff=show_diff, contents=contents) def mknod(name, ntype, major=0, minor=0, user=None, group=None, mode='0600'): ''' Create a special file similar to the 'nix mknod command. The supported device types are ``p`` (fifo pipe), ``c`` (character device), and ``b`` (block device). Provide the major and minor numbers when specifying a character device or block device. A fifo pipe does not require this information. The command will create the necessary dirs if needed. If a file of the same name not of the same type/major/minor exists, it will not be overwritten or unlinked (deleted). This is logically in place as a safety measure because you can really shoot yourself in the foot here and it is the behavior of 'nix ``mknod``. It is also important to note that not just anyone can create special devices. Usually this is only done as root. If the state is executed as none other than root on a minion, you may receive a permission error. name name of the file ntype node type 'p' (fifo pipe), 'c' (character device), or 'b' (block device) major major number of the device does not apply to a fifo pipe minor minor number of the device does not apply to a fifo pipe user owning user of the device/pipe group owning group of the device/pipe mode permissions on the device/pipe Usage: .. code-block:: yaml /dev/chr: file.mknod: - ntype: c - major: 180 - minor: 31 - user: root - group: root - mode: 660 /dev/blk: file.mknod: - ntype: b - major: 8 - minor: 999 - user: root - group: root - mode: 660 /dev/fifo: file.mknod: - ntype: p - user: root - group: root - mode: 660 .. versionadded:: 0.17.0 ''' name = os.path.expanduser(name) ret = {'name': name, 'changes': {}, 'comment': '', 'result': False} if not name: return _error(ret, 'Must provide name to file.mknod') if ntype == 'c': # Check for file existence if __salt__['file.file_exists'](name): ret['comment'] = ( 'File exists and is not a character device {0}. Cowardly ' 'refusing to continue'.format(name) ) # Check if it is a character device elif not __salt__['file.is_chrdev'](name): if __opts__['test']: ret['comment'] = ( 'Character device {0} is set to be created' ).format(name) ret['result'] = None else: ret = __salt__['file.mknod'](name, ntype, major, minor, user, group, mode) # Check the major/minor else: devmaj, devmin = __salt__['file.get_devmm'](name) if (major, minor) != (devmaj, devmin): ret['comment'] = ( 'Character device {0} exists and has a different ' 'major/minor {1}/{2}. Cowardly refusing to continue' .format(name, devmaj, devmin) ) # Check the perms else: ret = __salt__['file.check_perms'](name, None, user, group, mode)[0] if not ret['changes']: ret['comment'] = ( 'Character device {0} is in the correct state'.format( name ) ) elif ntype == 'b': # Check for file existence if __salt__['file.file_exists'](name): ret['comment'] = ( 'File exists and is not a block device {0}. Cowardly ' 'refusing to continue'.format(name) ) # Check if it is a block device elif not __salt__['file.is_blkdev'](name): if __opts__['test']: ret['comment'] = ( 'Block device {0} is set to be created' ).format(name) ret['result'] = None else: ret = __salt__['file.mknod'](name, ntype, major, minor, user, group, mode) # Check the major/minor else: devmaj, devmin = __salt__['file.get_devmm'](name) if (major, minor) != (devmaj, devmin): ret['comment'] = ( 'Block device {0} exists and has a different major/minor ' '{1}/{2}. Cowardly refusing to continue'.format( name, devmaj, devmin ) ) # Check the perms else: ret = __salt__['file.check_perms'](name, None, user, group, mode)[0] if not ret['changes']: ret['comment'] = ( 'Block device {0} is in the correct state'.format(name) ) elif ntype == 'p': # Check for file existence if __salt__['file.file_exists'](name): ret['comment'] = ( 'File exists and is not a fifo pipe {0}. Cowardly refusing ' 'to continue'.format(name) ) # Check if it is a fifo elif not __salt__['file.is_fifo'](name): if __opts__['test']: ret['comment'] = 'Fifo pipe {0} is set to be created'.format( name ) ret['result'] = None else: ret = __salt__['file.mknod'](name, ntype, major, minor, user, group, mode) # Check the perms else: ret = __salt__['file.check_perms'](name, None, user, group, mode)[0] if not ret['changes']: ret['comment'] = ( 'Fifo pipe {0} is in the correct state'.format(name) ) else: ret['comment'] = ( 'Node type unavailable: {0!r}. Available node types are ' 'character (\'c\'), block (\'b\'), and pipe (\'p\')'.format(ntype) ) return ret def mod_run_check_cmd(cmd, filename, **check_cmd_opts): ''' Execute the check_cmd logic. Return a result dict if ``check_cmd`` succeeds (check_cmd == 0) otherwise return True ''' log.debug('running our check_cmd') _cmd = '{0} {1}'.format(cmd, filename) if __salt__['cmd.retcode'](_cmd, **check_cmd_opts) != 0: return {'comment': 'check_cmd execution failed', 'skip_watch': True, 'result': False} # No reason to stop, return True return True
34.028148
117
0.546447
118f9ee70742aa18dd6993c5f0f11ed4f9624adf
1,878
py
Python
doujin-eromanga-com/utils/make_buynum_tag_url.py
GINK03/itmedia-scraping
5afbe06dd0aa12db1694a2b387aa2eeafb20e981
[ "MIT" ]
16
2018-02-06T14:43:41.000Z
2021-01-23T05:07:33.000Z
doujin-eromanga-com/utils/make_buynum_tag_url.py
GINK03/itmedia-scraping
5afbe06dd0aa12db1694a2b387aa2eeafb20e981
[ "MIT" ]
null
null
null
doujin-eromanga-com/utils/make_buynum_tag_url.py
GINK03/itmedia-scraping
5afbe06dd0aa12db1694a2b387aa2eeafb20e981
[ "MIT" ]
4
2018-01-16T13:50:43.000Z
2019-12-16T19:45:54.000Z
import glob import re import json import MeCab import pandas as pd import sys tags = { tag for tag, hashs in json.load(open('tag_hashs.json')).items() } m = MeCab.Tagger('-Owakati') data = [] for fn in glob.glob('./data/*'): #print(fn) obj = json.load(open(fn)) #print(obj) star = re.search(r'(\d|,){1,}', obj['star']).group(0).replace(',', '') star = int(star) text = obj['h1'] + obj['detail'] words = set(m.parse(text).strip().split()) words = { word for word in words if word in tags } #print(star, words) data.append( (star, words) ) # make dense words_set = set() for datum in data: star, words = datum for word in words: words_set.add( word ) word_index = { word:index for index, word in enumerate(words_set) } print(word_index) if '--source' in sys.argv: datasource = {'_stars_':[]} for word in word_index.keys(): datasource[word] = [] for datum in data: star, words = datum datasource['_stars_'].append( star ) for word, index in word_index.items(): if word not in words: datasource[word].append( 0 ) else: datasource[word].append( 1 ) df = pd.DataFrame( datasource ) print( df.head() ) df.to_csv('source.csv', index=None) if '--target' in sys.argv: # test datatarget = { '_hashval_':[] } for word in word_index.keys(): datatarget[word] = [] for fn in sorted(glob.glob('../static_folder/*/*.json')): print(fn) hashval = fn.split('/')[2].replace('.json', '') print(hashval) datatarget['_hashval_'].append( hashval ) obj = json.load(open(fn)) _tags = set( obj['tags'] ) print(_tags) for word, index in word_index.items(): if word not in _tags: datatarget[word].append( 0 ) else: datatarget[word].append( 1 ) dfT = pd.DataFrame( datatarget ) print( dfT.head() ) dfT.to_csv('target.csv', index=None)
26.828571
74
0.616613
8ff6eb20b1cffc94fc7c8c688ae611835c6de83e
6,037
py
Python
endorsement/dao/endorse.py
uw-it-aca/service-endorsement
a1ba3e4221bb3fe6c81c9f6947ad5e93f10a4a45
[ "Apache-2.0" ]
3
2017-10-16T17:19:32.000Z
2019-07-31T22:31:48.000Z
endorsement/dao/endorse.py
uw-it-aca/service-endorsement
a1ba3e4221bb3fe6c81c9f6947ad5e93f10a4a45
[ "Apache-2.0" ]
284
2016-06-17T18:21:31.000Z
2022-03-21T16:55:03.000Z
endorsement/dao/endorse.py
uw-it-aca/service-endorsement
a1ba3e4221bb3fe6c81c9f6947ad5e93f10a4a45
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 UW-IT, University of Washington # SPDX-License-Identifier: Apache-2.0 from django.utils import timezone from django.conf import settings from endorsement.dao.uwnetid_categories import ( set_active_category, set_former_category) from endorsement.dao.uwnetid_subscriptions import ( activate_subscriptions, active_subscriptions_for_netid) from endorsement.models import EndorsementRecord from endorsement.exceptions import NoEndorsementException from restclients_core.exceptions import DataFailureException import logging logger = logging.getLogger(__name__) def initiate_endorsement(endorser, endorsee, reason, category_code): logger.info('initiate category {0} for {1} because {2} by {3}'.format( category_code, endorsee.netid, reason, endorser.netid)) now = timezone.now() try: en = EndorsementRecord.objects.get( endorser=endorser, category_code=category_code, endorsee=endorsee) en.reason = reason en.datetime_emailed = None en.datetime_endorsed = None en.datetime_renewed = now if en.is_deleted else None en.datetime_expired = None en.is_deleted = None en.accept_id = None en.accept_salt = None en.save() except EndorsementRecord.DoesNotExist: en = EndorsementRecord.objects.create( endorser=endorser, category_code=category_code, reason=reason, endorsee=endorsee, datetime_created=now, datetime_emailed=None, datetime_endorsed=None, datetime_renewed=None, datetime_expired=None, is_deleted=None) return en def store_endorsement(endorser, endorsee, category_code, subscription_codes, acted_as, reason): """Return with endorsee category active and subscribed """ logger.info('activate category {0} for {1}{2} because {3} by {4}'.format( category_code, endorsee.netid, " (by {0})".format(acted_as if acted_as else ""), reason, endorser.netid)) set_active_category(endorsee.netid, category_code) activate_subscriptions( endorsee.netid, endorser.netid, subscription_codes) return _store_endorsement( endorser, endorsee, acted_as, reason, category_code) def _store_endorsement(endorser, endorsee, acted_as, reason, category_code): now = timezone.now() try: en = EndorsementRecord.objects.get( endorser=endorser, category_code=category_code, endorsee=endorsee) en.reason = reason en.datetime_endorsed = now en.acted_as = acted_as en.datetime_emailed = None en.datetime_notice_1_emailed = None en.datetime_notice_2_emailed = None en.datetime_notice_3_emailed = None en.datetime_notice_4_emailed = None en.datetime_renewed = now if en.is_deleted else None en.datetime_expired = None en.is_deleted = None en.save() except EndorsementRecord.DoesNotExist: en = EndorsementRecord.objects.create( endorser=endorser, category_code=category_code, endorsee=endorsee, reason=reason, datetime_endorsed=now, acted_as=acted_as, datetime_emailed=None, datetime_notice_1_emailed=None, datetime_notice_2_emailed=None, datetime_notice_3_emailed=None, datetime_notice_4_emailed=None, datetime_renewed=None, datetime_expired=None, is_deleted=None) return en def clear_endorsement(endorsement): if (endorsement.datetime_endorsed is not None and EndorsementRecord.objects.get_endorsements_for_endorsee( endorsement.endorsee, endorsement.category_code).count() <= 1): set_former_category( endorsement.endorsee.netid, endorsement.category_code) logger.info('former category {0} for {1} by {2}'.format( endorsement.category_code, endorsement.endorsee.netid, endorsement.endorser.netid)) logger.info('clearing record {0} for {1} by {2}'.format( endorsement.category_code, endorsement.endorsee.netid, endorsement.endorser.netid)) endorsement.revoke() return endorsement def get_endorsement(endorser, endorsee, category_code): try: return EndorsementRecord.objects.get_endorsement( endorser, endorsee, category_code) except EndorsementRecord.DoesNotExist: raise NoEndorsementException() def get_endorsements_by_endorser(endorser): return EndorsementRecord.objects.get_endorsements_for_endorser(endorser) def get_all_endorsements_by_endorser(endorser): return EndorsementRecord.objects.get_all_endorsements_for_endorser( endorser) def get_endorsements_for_endorsee(endorsee, category_code=None): return EndorsementRecord.objects.get_endorsements_for_endorsee( endorsee, category_code) def get_endorsements_for_endorsee_re(endorsee_regex): return EndorsementRecord.objects.get_endorsements_for_endorsee_re( endorsee_regex) def get_endorsement_records_for_endorsee_re(endorsee_regex): return EndorsementRecord.objects.get_all_endorsements_for_endorsee_re( endorsee_regex) def is_permitted(endorser, endorsee, subscription_codes): active = False try: active = active_subscriptions_for_netid( endorsee.netid, subscription_codes) except DataFailureException as ex: if ex.status == 404: active = False # weirdness for testing with mock data if getattr(settings, "RESTCLIENTS_DAO_CLASS", 'File') == 'File': e = EndorsementRecord.objects.filter(endorsee=endorsee, is_deleted__isnull=True) active = len(e) < 0 else: raise return active
34.301136
77
0.680305
b561aa1c468ec292302d9d1ffdeb0c6545179155
2,916
py
Python
src/data_visualization.py
alu13/GCP_Exploration
872d38b133e246c0e28be985c3138db75b84496d
[ "MIT" ]
null
null
null
src/data_visualization.py
alu13/GCP_Exploration
872d38b133e246c0e28be985c3138db75b84496d
[ "MIT" ]
null
null
null
src/data_visualization.py
alu13/GCP_Exploration
872d38b133e246c0e28be985c3138db75b84496d
[ "MIT" ]
null
null
null
from heapq import nlargest import json from matplotlib import pyplot as plt import os import statistics from collections import Counter import numpy as np print(os.getcwd()) # This function converts a JSON of typically model scores to a bar chart def json_to_bar(path, N): with open(path) as json_file: dic = json.load(json_file) n_largest = nlargest(N, dic, key = dic.get) keys = n_largest values = [dic[n] for n in n_largest] plt.bar(keys, values) plt.show() # This function converts a JSON of posts + associated subreddit into # subreddit counts def json_to_frequency(path): with open(path) as json_file: dic = json.load(json_file) counts = Counter(dic.values()) tuples = [(key, val) for key, val in counts.items()] sorted_tuples = sorted(tuples, key = lambda x:x[0], reverse = True) x, y = zip(*sorted_tuples) plt.yscale('log') plt.xscale('log') plt.plot(x, y) plt.ylabel("# of subreddits") plt.xlabel("subreddit size") plt.show() # This functions prints the mean/mean of a json file with keys + counts # This file was under on subreddit counts. def json_stats(path): with open(path) as json_file: dic = json.load(json_file) cleaned_dic = dic # cleaned_dic = {key:val for key, val in dic.items() if val >= 10} mean = sum(cleaned_dic.values()) / len(cleaned_dic) print(mean) median = statistics.median(cleaned_dic.values()) print(median) # This function plots takes in a json of temps x scores # It plots the avg SS/BLEU scores vs temp def model_avg_graphs(path): scores = None with open(path, 'r') as f: scores = json.load(f) start_temp = 0.8 y = scores x = (np.arange(len(y)) / 10) + start_temp plt.plot(x, y) plt.title("DialoGPT Temperature vs SS") plt.ylabel("Average SS score") plt.xlabel("Temperature") plt.show() # This function takes in a json of temps x scores # It plots the distribution of SS/BLEU scores in a specific temperature def model_distributions(path, outputs_path): scores = None volatile = [] temp = 0 with open(path, 'r') as f: scores = json.load(f) scores = scores[temp] for i in range(len(scores)): if scores[i] < 0.15: print(i) volatile.append(i) print(len(volatile)) with open(outputs_path, 'r') as output_f: outputs = json.load(output_f) for i in volatile: print(outputs[temp][i]) plt.hist(scores, bins = 50) plt.title("Dialogpt SS distribution, Temp = 0.3") plt.ylabel("# Samples") plt.xlabel("SS score") plt.show() if __name__ == "__main__": path = "../data/jsons/dialogpt_ss_pairwise_avgs.json" outputs_path = "../data/jsons/dialogpt_pairwise_outputs.json" model_distributions(path, outputs_path)
31.354839
75
0.640604
5da0df0e983e68993c5d59481715f7989823a5a5
1,446
py
Python
panda/examples/can_logger.py
Shorrts/raspberry-pilot
84bd2e7dc0c9142a420999ed527b8abbd14e0d34
[ "MIT" ]
114
2020-02-24T14:18:01.000Z
2022-03-19T03:42:00.000Z
panda/examples/can_logger.py
Shorrts/raspberry-pilot
84bd2e7dc0c9142a420999ed527b8abbd14e0d34
[ "MIT" ]
15
2020-02-25T03:37:44.000Z
2021-09-08T01:51:15.000Z
panda/examples/can_logger.py
Shorrts/raspberry-pilot
84bd2e7dc0c9142a420999ed527b8abbd14e0d34
[ "MIT" ]
55
2020-02-24T09:43:04.000Z
2022-02-15T04:52:00.000Z
#!/usr/bin/env python3 import binascii import csv import sys from panda import Panda def can_logger(): try: print("Trying to connect to Panda over USB...") p = Panda() except AssertionError: print("USB connection failed. Trying WiFi...") try: p = Panda("WIFI") except: print("WiFi connection timed out. Please make sure your Panda is connected and try again.") sys.exit(0) try: outputfile = open('output.csv', 'wb') csvwriter = csv.writer(outputfile) #Write Header csvwriter.writerow(['Bus', 'MessageID', 'Message', 'MessageLength']) print("Writing csv file output.csv. Press Ctrl-C to exit...\n") bus0_msg_cnt = 0 bus1_msg_cnt = 0 bus2_msg_cnt = 0 while True: can_recv = p.can_recv() for address, _, dat, src in can_recv: csvwriter.writerow([str(src), str(hex(address)), "0x" + binascii.hexlify(dat), len(dat)]) if src == 0: bus0_msg_cnt += 1 elif src == 1: bus1_msg_cnt += 1 elif src == 2: bus2_msg_cnt += 1 print("Message Counts... Bus 0: " + str(bus0_msg_cnt) + " Bus 1: " + str(bus1_msg_cnt) + " Bus 2: " + str(bus2_msg_cnt)) except KeyboardInterrupt: print("\nNow exiting. Final message Counts... Bus 0: " + str(bus0_msg_cnt) + " Bus 1: " + str(bus1_msg_cnt) + " Bus 2: " + str(bus2_msg_cnt)) outputfile.close() if __name__ == "__main__": can_logger()
26.290909
145
0.612033
7b4d159445da6fe08af1094b9c28349dee1318ca
1,285
py
Python
release/stubs.min/System/Windows/Forms/__init___parts/WindowsFormsSection.py
YKato521/ironpython-stubs
b1f7c580de48528490b3ee5791b04898be95a9ae
[ "MIT" ]
null
null
null
release/stubs.min/System/Windows/Forms/__init___parts/WindowsFormsSection.py
YKato521/ironpython-stubs
b1f7c580de48528490b3ee5791b04898be95a9ae
[ "MIT" ]
null
null
null
release/stubs.min/System/Windows/Forms/__init___parts/WindowsFormsSection.py
YKato521/ironpython-stubs
b1f7c580de48528490b3ee5791b04898be95a9ae
[ "MIT" ]
null
null
null
class WindowsFormsSection(ConfigurationSection): """ Defines a new System.Configuration.ConfigurationSection for parsing application settings. This class cannot be inherited. WindowsFormsSection() """ ElementProperty = property( lambda self: object(), lambda self, v: None, lambda self: None ) """Gets the System.Configuration.ConfigurationElementProperty object that represents the System.Configuration.ConfigurationElement object itself. """ EvaluationContext = property( lambda self: object(), lambda self, v: None, lambda self: None ) """Gets the System.Configuration.ContextInformation object for the System.Configuration.ConfigurationElement object. """ HasContext = property( lambda self: object(), lambda self, v: None, lambda self: None ) JitDebugging = property( lambda self: object(), lambda self, v: None, lambda self: None ) """Gets or sets a value indicating whether just-in-time (JIT) debugging is used. Get: JitDebugging(self: WindowsFormsSection) -> bool Set: JitDebugging(self: WindowsFormsSection)=value """ Properties = property( lambda self: object(), lambda self, v: None, lambda self: None )
25.7
150
0.678599
714e8f9f594f0c1633b1be64c4b4bd52c00f0ab9
431
py
Python
deepmerge/strategy/fallback.py
toumorokoshi/deepmerge
ee73250516228013b5aa6be9f8b1d908099fcd56
[ "MIT" ]
95
2017-02-04T21:14:03.000Z
2022-03-14T09:04:19.000Z
deepmerge/strategy/fallback.py
sthagen/deepmerge
4ac5ff666d06cb072ff200ff4255d86d950b71a4
[ "MIT" ]
14
2018-03-20T05:38:38.000Z
2022-02-15T06:24:30.000Z
deepmerge/strategy/fallback.py
sthagen/deepmerge
4ac5ff666d06cb072ff200ff4255d86d950b71a4
[ "MIT" ]
20
2017-02-03T08:29:59.000Z
2022-03-14T09:06:57.000Z
from .core import StrategyList class FallbackStrategies(StrategyList): """ The StrategyList containing fallback strategies. """ NAME = "fallback" @staticmethod def strategy_override(config, path, base, nxt): """use nxt, and ignore base.""" return nxt @staticmethod def strategy_use_existing(config, path, base, nxt): """use base, and ignore next.""" return base
21.55
55
0.640371
000888c62a546450a00b07c9c571e249ddedc0f2
1,031
py
Python
attalos/evaluation/densecap/scripts/pretty.py
millertime145/attalos
dbb7994928cfb5f3a338eb5faa4bd3c3fcda5e84
[ "Apache-2.0" ]
101
2016-06-03T00:15:52.000Z
2021-11-12T11:57:46.000Z
attalos/evaluation/densecap/scripts/pretty.py
millertime145/attalos
dbb7994928cfb5f3a338eb5faa4bd3c3fcda5e84
[ "Apache-2.0" ]
70
2016-05-27T21:05:33.000Z
2017-08-09T05:13:45.000Z
attalos/evaluation/densecap/scripts/pretty.py
millertime145/attalos
dbb7994928cfb5f3a338eb5faa4bd3c3fcda5e84
[ "Apache-2.0" ]
46
2016-05-27T16:19:20.000Z
2019-06-24T12:37:22.000Z
def print_list_to_columns(words, items_per_row=5): """function to print a list of words in column format Parameters ---------- words : list list of words or terms to print items_per_row : int number of words in a row """ row = [] width = max(map(len, words)) + 2 for idx, word in enumerate(words): if (idx + 1) % items_per_row == 0: print("".join(word.ljust(width) for word in row)) row = [] row.append(word) # append one last time just in case if len(row) > 0: print("".join(word.ljust(width) for word in row)) def sort_results(boxes): """Returns the top n boxes based on score given DenseCap results.json output Parameters ---------- boxes : dictionary output from load_output_json n : integer number of boxes to return Returns ------- sorted dictionary """ return sorted(results[k], key=lambda x : x['score'], reverse=True)
25.775
70
0.56741
2371488e67aed2ac2233713987949209739bae1a
1,506
py
Python
stellar_sdk/xdr/thresholds.py
Shaptic/py-stellar-base
f5fa47f4d96f215889d99249fb25c7be002f5cf3
[ "Apache-2.0" ]
null
null
null
stellar_sdk/xdr/thresholds.py
Shaptic/py-stellar-base
f5fa47f4d96f215889d99249fb25c7be002f5cf3
[ "Apache-2.0" ]
27
2022-01-12T10:55:38.000Z
2022-03-28T01:38:24.000Z
stellar_sdk/xdr/thresholds.py
Shaptic/py-stellar-base
f5fa47f4d96f215889d99249fb25c7be002f5cf3
[ "Apache-2.0" ]
2
2021-12-02T12:42:03.000Z
2021-12-07T20:53:10.000Z
# This is an automatically generated file. # DO NOT EDIT or your changes may be overwritten import base64 from xdrlib import Packer, Unpacker from ..type_checked import type_checked from .base import Opaque __all__ = ["Thresholds"] @type_checked class Thresholds: """ XDR Source Code:: typedef opaque Thresholds[4]; """ def __init__(self, thresholds: bytes) -> None: self.thresholds = thresholds def pack(self, packer: Packer) -> None: Opaque(self.thresholds, 4, True).pack(packer) @classmethod def unpack(cls, unpacker: Unpacker) -> "Thresholds": thresholds = Opaque.unpack(unpacker, 4, True) return cls(thresholds) def to_xdr_bytes(self) -> bytes: packer = Packer() self.pack(packer) return packer.get_buffer() @classmethod def from_xdr_bytes(cls, xdr: bytes) -> "Thresholds": unpacker = Unpacker(xdr) return cls.unpack(unpacker) def to_xdr(self) -> str: xdr_bytes = self.to_xdr_bytes() return base64.b64encode(xdr_bytes).decode() @classmethod def from_xdr(cls, xdr: str) -> "Thresholds": xdr_bytes = base64.b64decode(xdr.encode()) return cls.from_xdr_bytes(xdr_bytes) def __eq__(self, other: object): if not isinstance(other, self.__class__): return NotImplemented return self.thresholds == other.thresholds def __str__(self): return f"<Thresholds [thresholds={self.thresholds}]>"
26.421053
61
0.65405
3068d9910a23a6982b477cd1fde50f89cce082af
350
py
Python
script/fix_questionstyle.py
xziyue/PRML_Project
989580d9db2101ccc8b6b2652291a2d3546b55ff
[ "MIT" ]
1
2019-12-11T14:33:12.000Z
2019-12-11T14:33:12.000Z
script/fix_questionstyle.py
xziyue/PRML_Project
989580d9db2101ccc8b6b2652291a2d3546b55ff
[ "MIT" ]
null
null
null
script/fix_questionstyle.py
xziyue/PRML_Project
989580d9db2101ccc8b6b2652291a2d3546b55ff
[ "MIT" ]
null
null
null
from script.util import * import re # this substitution will be used when all solutions are finished root = os.path.split(os.getcwd())[0] toc = GetAnswerTOC(root) tex = toc['tex'] testString = r'123ji\prmlstyle{1.12} ' for key, val in tex.items(): text = None with open(val, 'r') as infile: text = infile.read() print('read')
20.588235
64
0.66
682e0763aca2faee9a492d5e25bfb7582da36f94
2,724
py
Python
huaweicloud-sdk-vpc/huaweicloudsdkvpc/v2/model/create_subnet_request_body.py
wuchen-huawei/huaweicloud-sdk-python-v3
3683d703f4320edb2b8516f36f16d485cff08fc2
[ "Apache-2.0" ]
1
2021-04-16T07:59:28.000Z
2021-04-16T07:59:28.000Z
huaweicloud-sdk-vpc/huaweicloudsdkvpc/v2/model/create_subnet_request_body.py
wuchen-huawei/huaweicloud-sdk-python-v3
3683d703f4320edb2b8516f36f16d485cff08fc2
[ "Apache-2.0" ]
null
null
null
huaweicloud-sdk-vpc/huaweicloudsdkvpc/v2/model/create_subnet_request_body.py
wuchen-huawei/huaweicloud-sdk-python-v3
3683d703f4320edb2b8516f36f16d485cff08fc2
[ "Apache-2.0" ]
1
2022-01-17T02:24:18.000Z
2022-01-17T02:24:18.000Z
# coding: utf-8 import pprint import re import six class CreateSubnetRequestBody: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'subnet': 'CreateSubnetOption' } attribute_map = { 'subnet': 'subnet' } def __init__(self, subnet=None): """CreateSubnetRequestBody - a model defined in huaweicloud sdk""" self._subnet = None self.discriminator = None self.subnet = subnet @property def subnet(self): """Gets the subnet of this CreateSubnetRequestBody. :return: The subnet of this CreateSubnetRequestBody. :rtype: CreateSubnetOption """ return self._subnet @subnet.setter def subnet(self, subnet): """Sets the subnet of this CreateSubnetRequestBody. :param subnet: The subnet of this CreateSubnetRequestBody. :type: CreateSubnetOption """ self._subnet = subnet def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CreateSubnetRequestBody): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
25.222222
74
0.541116
41924ce1b40bbf88a00ed3e139cec7909606c77f
1,149
py
Python
allauth/socialaccount/providers/stackexchange_provider/provider.py
Fuzzwah/django-allauth
071cbef1388bb61a563d3e41197bd5b7c26664d2
[ "MIT" ]
null
null
null
allauth/socialaccount/providers/stackexchange_provider/provider.py
Fuzzwah/django-allauth
071cbef1388bb61a563d3e41197bd5b7c26664d2
[ "MIT" ]
null
null
null
allauth/socialaccount/providers/stackexchange_provider/provider.py
Fuzzwah/django-allauth
071cbef1388bb61a563d3e41197bd5b7c26664d2
[ "MIT" ]
null
null
null
from allauth.socialaccount.providers.base import ProviderAccount from allauth.socialaccount.providers.oauth2_provider.provider import OAuth2Provider class StackExchangeAccount(ProviderAccount): def get_profile_url(self): return self.account.extra_data.get("html_url") def get_avatar_url(self): return self.account.extra_data.get("avatar_url") def to_str(self): dflt = super(StackExchangeAccount, self).to_str() return self.account.extra_data.get("name", dflt) class StackExchangeProvider(OAuth2Provider): id = "stackexchange" name = "Stack Exchange" account_class = StackExchangeAccount def get_site(self): settings = self.get_settings() return settings.get("SITE", "stackoverflow") def extract_uid(self, data): # `user_id` varies if you use the same account for # e.g. StackOverflow and ServerFault. Therefore, we pick # `account_id`. uid = str(data["account_id"]) return uid def extract_common_fields(self, data): return dict(username=data.get("display_name")) provider_classes = [StackExchangeProvider]
30.236842
83
0.706701
a91961e5831d289a7e9a6bb813845c0177c013fd
509
py
Python
csv__examples/writer_list_of_dict.py
DazEB2/SimplePyScripts
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
[ "CC-BY-4.0" ]
117
2015-12-18T07:18:27.000Z
2022-03-28T00:25:54.000Z
csv__examples/writer_list_of_dict.py
DazEB2/SimplePyScripts
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
[ "CC-BY-4.0" ]
8
2018-10-03T09:38:46.000Z
2021-12-13T19:51:09.000Z
csv__examples/writer_list_of_dict.py
DazEB2/SimplePyScripts
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
[ "CC-BY-4.0" ]
28
2016-08-02T17:43:47.000Z
2022-03-21T08:31:12.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # SOURCE: https://docs.python.org/3/library/csv.html#csv.DictWriter # SOURCE: https://stackoverflow.com/a/3087011/5909792 import csv items = [ {'name': 'bob', 'age': 25, 'weight': 200}, {'name': 'jim', 'age': 31, 'weight': 180} ] keys = items[0].keys() with open('people.csv', 'w', encoding='utf-8', newline='') as f: dict_writer = csv.DictWriter(f, keys) dict_writer.writeheader() dict_writer.writerows(items)
22.130435
67
0.636542
7bbf10f44d8d5ced3a55a8c59dcaf3d2ddcff8c7
570
py
Python
Dataset_cancer.py
Kiminwoo/Machine-Running-Exercises
eff025564a6895f3a060e278599129026f6204d5
[ "MIT" ]
1
2019-03-23T07:00:37.000Z
2019-03-23T07:00:37.000Z
Dataset_cancer.py
Kiminwoo/Machine-Running-Exercises
eff025564a6895f3a060e278599129026f6204d5
[ "MIT" ]
null
null
null
Dataset_cancer.py
Kiminwoo/Machine-Running-Exercises
eff025564a6895f3a060e278599129026f6204d5
[ "MIT" ]
1
2019-07-12T18:15:11.000Z
2019-07-12T18:15:11.000Z
# * cancer 데이터셋 : 위스콘신 유방암 데이터셋. 유방암 종양의 임상 데이터가 기록된 실제 데이터셋. # 569개의 데이터와 30개의 특성을 가진다. 그중 212개는 악성이고 357개는 양성이다. import scipy as sp import numpy as np import matplotlib.pyplot as plt import pandas as pd import mglearn from sklearn.datasets import load_breast_cancer cancer = load_breast_cancer() print("cancer.keys():\n{}".format(cancer.keys())) print("데이터의 형태: {}".format(cancer.data.shape)) print("클래스별 샘플 개수:\n{}".format( {n: v for n, v in zip(cancer.target_names, np.bincount(cancer.target))})) print("특성 이름:\n{}".format(cancer.feature_names))
35.625
78
0.710526
bfcfff5f7918c8215575dc91d82361cfea396ba3
4,008
py
Python
tests/test_serializer.py
mariocesar/quill-delta-py
06dda55bfa91d4bded0f904eb7e7bbc56aee072c
[ "MIT" ]
2
2018-02-14T19:04:23.000Z
2018-02-15T12:15:26.000Z
tests/test_serializer.py
mariocesar/quill-delta-py
06dda55bfa91d4bded0f904eb7e7bbc56aee072c
[ "MIT" ]
1
2018-12-12T13:10:01.000Z
2018-12-13T13:54:22.000Z
tests/test_serializer.py
mariocesar/quill-delta-py
06dda55bfa91d4bded0f904eb7e7bbc56aee072c
[ "MIT" ]
null
null
null
import unittest import pytest from quilldelta import Delete, Delta, Insert, Retain from quilldelta.types import load_operation class TestParser: def test_insert_from_dict(self): assert load_operation({'insert': 1}) == Insert(1, None) assert load_operation({'insert': 'foo'}) == Insert('foo', None) assert load_operation({ 'insert': 'foo', 'attributes': {'bold': True} }) == Insert('foo', {'bold': True}) def test_retain_from_dict(self): assert load_operation({'retain': 1}) == Retain(1, None) assert load_operation({ 'retain': 1, 'attributes': {'bold': True} }) == Insert(1, {'bold': True}) def test_delete_from_dict(self): assert load_operation({'delete': 1}) == Delete(1) def test_unknown_operation(self): with pytest.raises(ValueError) as error: assert load_operation({'emotion': 1}) assert error.match('Unknown operation') class TestData(unittest.TestCase): def test_insert_as_data(self): assert Insert('foo', None).as_data() == {'insert': 'foo'} assert Insert('foo', {}).as_data() == {'insert': 'foo'} assert Insert('foo', {'bold': True}).as_data() == { 'insert': 'foo', 'attributes': {'bold': True} } assert Insert(1, {'img': 'image.jpg'}).as_data() == { 'insert': 1, 'attributes': {'img': 'image.jpg'} } def test_retain_as_data(self): assert Retain(1, None).as_data() == {'retain': 1} assert Retain(1, {}).as_data() == {'retain': 1} assert Retain(1, {'bold': True}).as_data() == { 'retain': 1, 'attributes': {'bold': True} } def test_delete_as_data(self): assert Delete(1).as_data() == {'delete': 1} assert Delete(2).as_data() == {'delete': 2} def test_delta_as_data(self): delta = Delta(ops=[ Insert('abc', None), Retain(1, {'color': 'red'}), Delete(4), Insert('def', {'bold': True}), Retain(6, None) ]) expected = [ {'insert': 'abc'}, {'retain': 1, 'attributes': {'color': 'red'}}, {'delete': 4}, {'insert': 'def', 'attributes': {'bold': True}}, {'retain': 6} ] self.assertListEqual(delta.as_data(), expected) class TestAsStringJson(unittest.TestCase): def test_insert_str_json(self): assert str(Insert('foo', None)) == '{"insert": "foo"}' assert str(Insert('foo', {})) == '{"insert": "foo"}' assert str(Insert('foo', { 'bold': True})) == '{"insert": "foo", "attributes": {"bold": true}}' def test_retain_str_json(self): assert str(Retain('foo', None)) == '{"retain": "foo"}' assert str(Retain('foo', {})) == '{"retain": "foo"}' assert str(Retain('foo', { 'bold': True})) == '{"retain": "foo", "attributes": {"bold": true}}' def test_delete_str_json(self): assert str(Delete(1)) == '{"delete": 1}' def test_delta_as_data(self): delta = Delta(ops=[ Insert('abc', None), Retain(1, {'color': 'red'}), Delete(4), Insert('def', {'bold': True}), Retain(6, None) ]) expected = [ {'insert': 'abc'}, {'retain': 1, 'attributes': {'color': 'red'}}, {'delete': 4}, {'insert': 'def', 'attributes': {'bold': True}}, {'retain': 6} ] self.assertListEqual(delta.as_data(), expected) def test_delta_as_string(self): delta = Delta(ops=[ Insert('abc', None), Retain(1, {'color': 'red'}), Delete(3), ]) assert str(delta) == ('[{"insert": "abc"}, ' '{"retain": 1, "attributes": {"color": "red"}}, ' '{"delete": 3}]')
32.064
80
0.498503
6caf9b66059aa4d9d963c3224053c8f23375751d
2,263
py
Python
densephrases/scripts/dump/save_meta.py
Pranav174/DensePhrases
0f3ad63107d7c09b81218b1e77dcc31325b61450
[ "Apache-2.0" ]
331
2021-03-31T11:14:55.000Z
2022-03-28T04:18:52.000Z
densephrases/scripts/dump/save_meta.py
ss756/DensePhrases
5c5465100112ec5267a7ba06eea5765ea494b365
[ "Apache-2.0" ]
17
2021-06-04T19:14:53.000Z
2021-12-22T06:10:15.000Z
densephrases/scripts/dump/save_meta.py
ss756/DensePhrases
5c5465100112ec5267a7ba06eea5765ea494b365
[ "Apache-2.0" ]
40
2021-04-12T09:53:00.000Z
2022-03-23T10:56:54.000Z
import argparse import os import h5py import torch from tqdm import tqdm def get_range(name): # name = name.replace('_tfidf', '') return list(map(int, os.path.splitext(name)[0].split('-'))) def find_name(names, pos): for name in names: start, end = get_range(name) assert start != end, 'you have self-looping at %s' % name if start == pos: return name, end raise Exception('hdf5 file starting with %d not found.') def check_dump(args): print('checking dir contiguity...') names = os.listdir(args.dump_dir) pos = args.start while pos < args.end: name, pos = find_name(names, pos) assert pos == args.end, 'reached %d, which is different from the specified end %d' % (pos, args.end) print('dir contiguity test passed!') print('checking file corruption...') pos = args.start corrupted_paths = [] metadata = {} keys_to_save = ['f2o_end', 'f2o_start', 'span_logits', 'start2end', 'word2char_end', 'word2char_start'] while pos < args.end: name, pos = find_name(names, pos) path = os.path.join(args.dump_dir, name) try: with h5py.File(path, 'r') as f: print('checking %s...' % path) for dk, group in tqdm(f.items()): # keys = list(group.keys()) metadata[dk] = {save_key: group[save_key][:] for save_key in keys_to_save} metadata[dk]['context'] = group.attrs['context'] metadata[dk]['title'] = group.attrs['title'] except Exception as e: print(e) print('%s corrupted!' % path) corrupted_paths.append(path) break torch.save(metadata, 'tmp.bin') if len(corrupted_paths) > 0: print('following files are corrupted:') for path in corrupted_paths: print(path) else: print('file corruption test passed!') def get_args(): parser = argparse.ArgumentParser() parser.add_argument('dump_dir') parser.add_argument('start', type=int) parser.add_argument('end', type=int) return parser.parse_args() def main(): args = get_args() check_dump(args) if __name__ == '__main__': main()
29.012821
107
0.590809
b38d553c850fdcbfc6ca9d112524269b92d0a8c0
4,689
py
Python
test/integration/025_duplicate_model_test/test_duplicate_model.py
tjengel/dbt
f985902a002fba36f6f709c6aacf9ae20778e58c
[ "Apache-2.0" ]
1
2021-09-01T20:50:52.000Z
2021-09-01T20:50:52.000Z
test/integration/025_duplicate_model_test/test_duplicate_model.py
tjengel/dbt
f985902a002fba36f6f709c6aacf9ae20778e58c
[ "Apache-2.0" ]
1
2019-10-28T15:33:04.000Z
2019-10-28T15:33:04.000Z
test/integration/025_duplicate_model_test/test_duplicate_model.py
tjengel/dbt
f985902a002fba36f6f709c6aacf9ae20778e58c
[ "Apache-2.0" ]
2
2019-05-10T21:23:08.000Z
2021-06-09T01:28:37.000Z
from dbt.exceptions import CompilationException from test.integration.base import DBTIntegrationTest, use_profile class TestDuplicateModelEnabled(DBTIntegrationTest): @property def schema(self): return "duplicate_model_025" @property def models(self): return "models-1" @property def profile_config(self): return { "test": { "outputs": { "dev": { "type": "postgres", "threads": 1, "host": self.database_host, "port": 5432, "user": "root", "pass": "password", "dbname": "dbt", "schema": self.unique_schema() }, }, "target": "dev" } } @use_profile("postgres") def test_postgres_duplicate_model_enabled(self): message = "dbt found two resources with the name" try: self.run_dbt(["run"]) self.assertTrue(False, "dbt did not throw for duplicate models") except CompilationException as e: self.assertTrue(message in str(e), "dbt did not throw the correct error message") class TestDuplicateModelDisabled(DBTIntegrationTest): @property def schema(self): return "duplicate_model_025" @property def models(self): return "models-2" @property def profile_config(self): return { "test": { "outputs": { "dev": { "type": "postgres", "threads": 1, "host": self.database_host, "port": 5432, "user": "root", "pass": "password", "dbname": "dbt", "schema": self.unique_schema() }, }, "target": "dev" } } @use_profile("postgres") def test_postgres_duplicate_model_disabled(self): try: results = self.run_dbt(["run"]) except CompilationException: self.fail( "Compilation Exception raised on disabled model") self.assertEqual(len(results), 1) query = "select value from {schema}.model" \ .format(schema=self.unique_schema()) result = self.run_sql(query, fetch="one")[0] assert result == 1 class TestDuplicateModelEnabledAcrossPackages(DBTIntegrationTest): @property def schema(self): return "duplicate_model_025" @property def models(self): return "models-3" @property def packages_config(self): return { "packages": [ { 'git': 'https://github.com/fishtown-analytics/dbt-integration-project', 'revision': 'master', 'warn-unpinned': False, }, ], } @use_profile("postgres") def test_postgres_duplicate_model_enabled_across_packages(self): self.run_dbt(["deps"]) message = "dbt found two resources with the name" try: self.run_dbt(["run"]) self.assertTrue(False, "dbt did not throw for duplicate models") except CompilationException as e: self.assertTrue(message in str(e), "dbt did not throw the correct error message") class TestDuplicateModelDisabledAcrossPackages(DBTIntegrationTest): def setUp(self): DBTIntegrationTest.setUp(self) self.run_sql_file("seed.sql") @property def schema(self): return "duplicate_model_025" @property def models(self): return "models-4" @property def packages_config(self): return { "packages": [ { 'git': 'https://github.com/fishtown-analytics/dbt-integration-project', 'revision': 'master', 'warn-unpinned': False, }, ], } @use_profile("postgres") def test_postgres_duplicate_model_disabled_across_packages(self): self.run_dbt(["deps"]) try: self.run_dbt(["run"]) except CompilationException: self.fail( "Compilation Exception raised on disabled model") query = "select 1 from {schema}.table_model" \ .format(schema=self.unique_schema()) result = self.run_sql(query, fetch="one")[0] assert result == 1
29.30625
93
0.516528
561d183b6ec68826ce275c6fef47c16a07d7ed62
424
py
Python
leadmanager/accounts/urls.py
epoyepoy/lead-manager
db9bd76c3549a5f794af63b5583659d3d6e0e510
[ "MIT" ]
null
null
null
leadmanager/accounts/urls.py
epoyepoy/lead-manager
db9bd76c3549a5f794af63b5583659d3d6e0e510
[ "MIT" ]
null
null
null
leadmanager/accounts/urls.py
epoyepoy/lead-manager
db9bd76c3549a5f794af63b5583659d3d6e0e510
[ "MIT" ]
null
null
null
from django.urls import path, include from .api import RegisterAPI, LoginAPI, UserAPI from knox import views as knox_views urlpatterns = [ path('api/auth', include('knox.urls')), path('api/auth/register', RegisterAPI.as_view()), path('api/auth/login', LoginAPI.as_view()), path('api/auth/user', UserAPI.as_view()), path('api/auth/logout', knox_views.LogoutView.as_view(), name='knox_logout') ]
32.615385
61
0.693396
e3c8a6dc433739546a19226d5e3070dddb2f26b1
19,697
py
Python
components/partition_table/gen_esp32part.py
ghsecuritylab/esp_alexa_idf
e132e8b960af6d576ce2fca4f6b2994be2f42e56
[ "Apache-2.0" ]
24
2019-03-16T05:34:52.000Z
2020-06-20T08:08:37.000Z
components/partition_table/gen_esp32part.py
ghsecuritylab/esp_alexa_idf
e132e8b960af6d576ce2fca4f6b2994be2f42e56
[ "Apache-2.0" ]
10
2021-03-09T15:34:26.000Z
2022-02-26T17:34:35.000Z
components/partition_table/gen_esp32part.py
ghsecuritylab/esp_alexa_idf
e132e8b960af6d576ce2fca4f6b2994be2f42e56
[ "Apache-2.0" ]
16
2019-03-25T06:03:30.000Z
2020-07-18T23:44:28.000Z
#!/usr/bin/env python # # ESP32 partition table generation tool # # Converts partition tables to/from CSV and binary formats. # # See https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/partition-tables.html # for explanation of partition table structure and uses. # # Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function, division from __future__ import unicode_literals import argparse import os import re import struct import sys import hashlib import binascii MAX_PARTITION_LENGTH = 0xC00 # 3K for partition data (96 entries) leaves 1K in a 4K sector for signature MD5_PARTITION_BEGIN = b"\xEB\xEB" + b"\xFF" * 14 # The first 2 bytes are like magic numbers for MD5 sum PARTITION_TABLE_SIZE = 0x1000 # Size of partition table __version__ = '1.2' APP_TYPE = 0x00 DATA_TYPE = 0x01 TYPES = { "app" : APP_TYPE, "data" : DATA_TYPE, } # Keep this map in sync with esp_partition_subtype_t enum in esp_partition.h SUBTYPES = { APP_TYPE : { "factory" : 0x00, "test" : 0x20, }, DATA_TYPE : { "ota" : 0x00, "phy" : 0x01, "nvs" : 0x02, "coredump" : 0x03, "nvs_keys" : 0x04, "esphttpd" : 0x80, "fat" : 0x81, "spiffs" : 0x82, }, } quiet = False md5sum = True secure = False offset_part_table = 0 def status(msg): """ Print status message to stderr """ if not quiet: critical(msg) def critical(msg): """ Print critical message to stderr """ sys.stderr.write(msg) sys.stderr.write('\n') class PartitionTable(list): def __init__(self): super(PartitionTable, self).__init__(self) @classmethod def from_csv(cls, csv_contents): res = PartitionTable() lines = csv_contents.splitlines() def expand_vars(f): f = os.path.expandvars(f) m = re.match(r'(?<!\\)\$([A-Za-z_][A-Za-z0-9_]*)', f) if m: raise InputError("unknown variable '%s'" % m.group(1)) return f for line_no in range(len(lines)): line = expand_vars(lines[line_no]).strip() if line.startswith("#") or len(line) == 0: continue try: res.append(PartitionDefinition.from_csv(line, line_no+1)) except InputError as e: raise InputError("Error at line %d: %s" % (line_no+1, e)) except Exception: critical("Unexpected error parsing CSV line %d: %s" % (line_no+1, line)) raise # fix up missing offsets & negative sizes last_end = offset_part_table + PARTITION_TABLE_SIZE # first offset after partition table for e in res: if e.offset is not None and e.offset < last_end: if e == res[0]: raise InputError("CSV Error: First partition offset 0x%x overlaps end of partition table 0x%x" % (e.offset, last_end)) else: raise InputError("CSV Error: Partitions overlap. Partition at line %d sets offset 0x%x. Previous partition ends 0x%x" % (e.line_no, e.offset, last_end)) if e.offset is None: pad_to = 0x10000 if e.type == APP_TYPE else 4 if last_end % pad_to != 0: last_end += pad_to - (last_end % pad_to) e.offset = last_end if e.size < 0: e.size = -e.size - e.offset last_end = e.offset + e.size return res def __getitem__(self, item): """ Allow partition table access via name as well as by numeric index. """ if isinstance(item, str): for x in self: if x.name == item: return x raise ValueError("No partition entry named '%s'" % item) else: return super(PartitionTable, self).__getitem__(item) def find_by_type(self, ptype, subtype): """ Return a partition by type & subtype, returns None if not found """ # convert ptype & subtypes names (if supplied this way) to integer values try: ptype = TYPES[ptype] except KeyError: try: ptypes = int(ptype, 0) except TypeError: pass try: subtype = SUBTYPES[int(ptype)][subtype] except KeyError: try: ptypes = int(ptype, 0) except TypeError: pass for p in self: if p.type == ptype and p.subtype == subtype: return p return None def find_by_name(self, name): for p in self: if p.name == name: return p return None def verify(self): # verify each partition individually for p in self: p.verify() # check on duplicate name names = [ p.name for p in self ] duplicates = set( n for n in names if names.count(n) > 1 ) # print sorted duplicate partitions by name if len(duplicates) != 0: print("A list of partitions that have the same name:") for p in sorted(self, key=lambda x:x.name): if len(duplicates.intersection([p.name])) != 0: print("%s" % (p.to_csv())) raise InputError("Partition names must be unique") # check for overlaps last = None for p in sorted(self, key=lambda x:x.offset): if p.offset < offset_part_table + PARTITION_TABLE_SIZE: raise InputError("Partition offset 0x%x is below 0x%x" % (p.offset, offset_part_table + PARTITION_TABLE_SIZE)) if last is not None and p.offset < last.offset + last.size: raise InputError("Partition at 0x%x overlaps 0x%x-0x%x" % (p.offset, last.offset, last.offset+last.size-1)) last = p def flash_size(self): """ Return the size that partitions will occupy in flash (ie the offset the last partition ends at) """ try: last = sorted(self, reverse=True)[0] except IndexError: return 0 # empty table! return last.offset + last.size @classmethod def from_binary(cls, b): md5 = hashlib.md5(); result = cls() for o in range(0,len(b),32): data = b[o:o+32] if len(data) != 32: raise InputError("Partition table length must be a multiple of 32 bytes") if data == b'\xFF'*32: return result # got end marker if md5sum and data[:2] == MD5_PARTITION_BEGIN[:2]: #check only the magic number part if data[16:] == md5.digest(): continue # the next iteration will check for the end marker else: raise InputError("MD5 checksums don't match! (computed: 0x%s, parsed: 0x%s)" % (md5.hexdigest(), binascii.hexlify(data[16:]))) else: md5.update(data) result.append(PartitionDefinition.from_binary(data)) raise InputError("Partition table is missing an end-of-table marker") def to_binary(self): result = b"".join(e.to_binary() for e in self) if md5sum: result += MD5_PARTITION_BEGIN + hashlib.md5(result).digest() if len(result )>= MAX_PARTITION_LENGTH: raise InputError("Binary partition table length (%d) longer than max" % len(result)) result += b"\xFF" * (MAX_PARTITION_LENGTH - len(result)) # pad the sector, for signing return result def to_csv(self, simple_formatting=False): rows = [ "# Espressif ESP32 Partition Table", "# Name, Type, SubType, Offset, Size, Flags" ] rows += [ x.to_csv(simple_formatting) for x in self ] return "\n".join(rows) + "\n" class PartitionDefinition(object): MAGIC_BYTES = b"\xAA\x50" ALIGNMENT = { APP_TYPE : 0x10000, DATA_TYPE : 0x04, } # dictionary maps flag name (as used in CSV flags list, property name) # to bit set in flags words in binary format FLAGS = { "encrypted" : 0 } # add subtypes for the 16 OTA slot values ("ota_XX, etc.") for ota_slot in range(16): SUBTYPES[TYPES["app"]]["ota_%d" % ota_slot] = 0x10 + ota_slot def __init__(self): self.name = "" self.type = None self.subtype = None self.offset = None self.size = None self.encrypted = False @classmethod def from_csv(cls, line, line_no): """ Parse a line from the CSV """ line_w_defaults = line + ",,,," # lazy way to support default fields fields = [ f.strip() for f in line_w_defaults.split(",") ] res = PartitionDefinition() res.line_no = line_no res.name = fields[0] res.type = res.parse_type(fields[1]) res.subtype = res.parse_subtype(fields[2]) res.offset = res.parse_address(fields[3]) res.size = res.parse_address(fields[4]) if res.size is None: raise InputError("Size field can't be empty") flags = fields[5].split(":") for flag in flags: if flag in cls.FLAGS: setattr(res, flag, True) elif len(flag) > 0: raise InputError("CSV flag column contains unknown flag '%s'" % (flag)) return res def __eq__(self, other): return self.name == other.name and self.type == other.type \ and self.subtype == other.subtype and self.offset == other.offset \ and self.size == other.size def __repr__(self): def maybe_hex(x): return "0x%x" % x if x is not None else "None" return "PartitionDefinition('%s', 0x%x, 0x%x, %s, %s)" % (self.name, self.type, self.subtype or 0, maybe_hex(self.offset), maybe_hex(self.size)) def __str__(self): return "Part '%s' %d/%d @ 0x%x size 0x%x" % (self.name, self.type, self.subtype, self.offset or -1, self.size or -1) def __cmp__(self, other): return self.offset - other.offset def __lt__(self, other): return self.offset < other.offset def __gt__(self, other): return self.offset > other.offset def __le__(self, other): return self.offset <= other.offset def __ge__(self, other): return self.offset >= other.offset def parse_type(self, strval): if strval == "": raise InputError("Field 'type' can't be left empty.") return parse_int(strval, TYPES) def parse_subtype(self, strval): if strval == "": return 0 # default return parse_int(strval, SUBTYPES.get(self.type, {})) def parse_address(self, strval): if strval == "": return None # PartitionTable will fill in default return parse_int(strval) def verify(self): if self.type is None: raise ValidationError(self, "Type field is not set") if self.subtype is None: raise ValidationError(self, "Subtype field is not set") if self.offset is None: raise ValidationError(self, "Offset field is not set") align = self.ALIGNMENT.get(self.type, 4) if self.offset % align: raise ValidationError(self, "Offset 0x%x is not aligned to 0x%x" % (self.offset, align)) if self.size % align and secure: raise ValidationError(self, "Size 0x%x is not aligned to 0x%x" % (self.size, align)) if self.size is None: raise ValidationError(self, "Size field is not set") if self.name in TYPES and TYPES.get(self.name, "") != self.type: critical("WARNING: Partition has name '%s' which is a partition type, but does not match this partition's type (0x%x). Mistake in partition table?" % (self.name, self.type)) all_subtype_names = [] for names in (t.keys() for t in SUBTYPES.values()): all_subtype_names += names if self.name in all_subtype_names and SUBTYPES.get(self.type, {}).get(self.name, "") != self.subtype: critical("WARNING: Partition has name '%s' which is a partition subtype, but this partition has non-matching type 0x%x and subtype 0x%x. Mistake in partition table?" % (self.name, self.type, self.subtype)) STRUCT_FORMAT = b"<2sBBLL16sL" @classmethod def from_binary(cls, b): if len(b) != 32: raise InputError("Partition definition length must be exactly 32 bytes. Got %d bytes." % len(b)) res = cls() (magic, res.type, res.subtype, res.offset, res.size, res.name, flags) = struct.unpack(cls.STRUCT_FORMAT, b) if b"\x00" in res.name: # strip null byte padding from name string res.name = res.name[:res.name.index(b"\x00")] res.name = res.name.decode() if magic != cls.MAGIC_BYTES: raise InputError("Invalid magic bytes (%r) for partition definition" % magic) for flag,bit in cls.FLAGS.items(): if flags & (1<<bit): setattr(res, flag, True) flags &= ~(1<<bit) if flags != 0: critical("WARNING: Partition definition had unknown flag(s) 0x%08x. Newer binary format?" % flags) return res def get_flags_list(self): return [ flag for flag in self.FLAGS.keys() if getattr(self, flag) ] def to_binary(self): flags = sum((1 << self.FLAGS[flag]) for flag in self.get_flags_list()) return struct.pack(self.STRUCT_FORMAT, self.MAGIC_BYTES, self.type, self.subtype, self.offset, self.size, self.name.encode(), flags) def to_csv(self, simple_formatting=False): def addr_format(a, include_sizes): if not simple_formatting and include_sizes: for (val, suffix) in [ (0x100000, "M"), (0x400, "K") ]: if a % val == 0: return "%d%s" % (a // val, suffix) return "0x%x" % a def lookup_keyword(t, keywords): for k,v in keywords.items(): if simple_formatting == False and t == v: return k return "%d" % t def generate_text_flags(): """ colon-delimited list of flags """ return ":".join(self.get_flags_list()) return ",".join([ self.name, lookup_keyword(self.type, TYPES), lookup_keyword(self.subtype, SUBTYPES.get(self.type, {})), addr_format(self.offset, False), addr_format(self.size, True), generate_text_flags()]) def parse_int(v, keywords={}): """Generic parser for integer fields - int(x,0) with provision for k/m/K/M suffixes and 'keyword' value lookup. """ try: for letter, multiplier in [ ("k",1024), ("m",1024*1024) ]: if v.lower().endswith(letter): return parse_int(v[:-1], keywords) * multiplier return int(v, 0) except ValueError: if len(keywords) == 0: raise InputError("Invalid field value %s" % v) try: return keywords[v.lower()] except KeyError: raise InputError("Value '%s' is not valid. Known keywords: %s" % (v, ", ".join(keywords))) def main(): global quiet global md5sum global offset_part_table global secure parser = argparse.ArgumentParser(description='ESP32 partition table utility') parser.add_argument('--flash-size', help='Optional flash size limit, checks partition table fits in flash', nargs='?', choices=[ '1MB', '2MB', '4MB', '8MB', '16MB' ]) parser.add_argument('--disable-md5sum', help='Disable md5 checksum for the partition table', default=False, action='store_true') parser.add_argument('--no-verify', help="Don't verify partition table fields", action='store_true') parser.add_argument('--verify', '-v', help="Verify partition table fields (deprecated, this behaviour is enabled by default and this flag does nothing.", action='store_true') parser.add_argument('--quiet', '-q', help="Don't print non-critical status messages to stderr", action='store_true') parser.add_argument('--offset', '-o', help='Set offset partition table', default='0x8000') parser.add_argument('--secure', help="Require app partitions to be suitable for secure boot", action='store_true') parser.add_argument('input', help='Path to CSV or binary file to parse.', type=argparse.FileType('rb')) parser.add_argument('output', help='Path to output converted binary or CSV file. Will use stdout if omitted.', nargs='?', default='-') args = parser.parse_args() quiet = args.quiet md5sum = not args.disable_md5sum secure = args.secure offset_part_table = int(args.offset, 0) input = args.input.read() input_is_binary = input[0:2] == PartitionDefinition.MAGIC_BYTES if input_is_binary: status("Parsing binary partition input...") table = PartitionTable.from_binary(input) else: input = input.decode() status("Parsing CSV input...") table = PartitionTable.from_csv(input) if not args.no_verify: status("Verifying table...") table.verify() if args.flash_size: size_mb = int(args.flash_size.replace("MB", "")) size = size_mb * 1024 * 1024 # flash memory uses honest megabytes! table_size = table.flash_size() if size < table_size: raise InputError("Partitions defined in '%s' occupy %.1fMB of flash (%d bytes) which does not fit in configured flash size %dMB. Change the flash size in menuconfig under the 'Serial Flasher Config' menu." % (args.input.name, table_size / 1024.0 / 1024.0, table_size, size_mb)) if input_is_binary: output = table.to_csv() with sys.stdout if args.output == '-' else open(args.output, 'w') as f: f.write(output) else: output = table.to_binary() try: stdout_binary = sys.stdout.buffer # Python 3 except AttributeError: stdout_binary = sys.stdout with stdout_binary if args.output == '-' else open(args.output, 'wb') as f: f.write(output) class InputError(RuntimeError): def __init__(self, e): super(InputError, self).__init__(e) class ValidationError(InputError): def __init__(self, partition, message): super(ValidationError, self).__init__( "Partition %s invalid: %s" % (partition.name, message)) if __name__ == '__main__': try: main() except InputError as e: print(e, file=sys.stderr) sys.exit(2)
38.321012
219
0.584861
605ede8a124cbf08f682eab9a5bb1a6b0c8e5d38
13,600
py
Python
healthcare/api-client/fhir/fhir_resources_test.py
apecr/python-docs-samples
26b581bb6ce148e13a9c7f2cd801f138b8aa8412
[ "Apache-2.0" ]
1
2020-06-04T16:50:49.000Z
2020-06-04T16:50:49.000Z
healthcare/api-client/fhir/fhir_resources_test.py
apecr/python-docs-samples
26b581bb6ce148e13a9c7f2cd801f138b8aa8412
[ "Apache-2.0" ]
null
null
null
healthcare/api-client/fhir/fhir_resources_test.py
apecr/python-docs-samples
26b581bb6ce148e13a9c7f2cd801f138b8aa8412
[ "Apache-2.0" ]
1
2020-05-29T20:33:18.000Z
2020-05-29T20:33:18.000Z
# Copyright 2018 Google LLC All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import uuid import backoff import pytest from requests.exceptions import HTTPError # Add datasets for bootstrapping datasets for testing sys.path.append(os.path.join(os.path.dirname(__file__), "..", "datasets")) # noqa import datasets # noqa import fhir_stores # noqa import fhir_resources # noqa cloud_region = "us-central1" base_url = "https://healthcare.googleapis.com/v1beta1" project_id = os.environ["GCLOUD_PROJECT"] service_account_json = os.environ["GOOGLE_APPLICATION_CREDENTIALS"] bundle = os.path.join(os.path.dirname(__file__), "resources/execute_bundle.json") dataset_id = "test_dataset_{}".format(uuid.uuid4()) fhir_store_id = "test_fhir_store-{}".format(uuid.uuid4()) resource_type = "Patient" # A giveup callback for backoff. def fatal_code(e): return 400 <= e.response.status_code < 500 @pytest.fixture(scope="module") def test_dataset(): dataset = datasets.create_dataset( service_account_json, project_id, cloud_region, dataset_id ) yield dataset # Clean up datasets.delete_dataset(service_account_json, project_id, cloud_region, dataset_id) @pytest.fixture(scope="module") def test_fhir_store(): fhir_store = fhir_stores.create_fhir_store( service_account_json, project_id, cloud_region, dataset_id, fhir_store_id ) yield fhir_store # Clean up fhir_stores.delete_fhir_store( service_account_json, project_id, cloud_region, dataset_id, fhir_store_id ) # Fixture that creates/deletes a Patient resource for various tests. @pytest.fixture(scope="module") def test_patient(): patient_response = fhir_resources.create_patient( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, ) patient_resource_id = patient_response.json()["id"] yield patient_resource_id # Clean up fhir_resources.delete_resource( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, resource_type, patient_resource_id, ) def test_create_patient(test_dataset, test_fhir_store, capsys): # Manually create a new Patient here to test that creating a Patient # works. fhir_resources.create_patient( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, ) out, _ = capsys.readouterr() print(out) assert "Created Patient" in out def test_get_patient(test_dataset, test_fhir_store, test_patient, capsys): fhir_resources.get_resource( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, resource_type, test_patient ) out, _ = capsys.readouterr() print(out) assert "Got Patient resource" in out @pytest.mark.skip(reason='flaky test sometimes returns 403 errors, need to investigate') def test_conditional_patch_resource(test_dataset, test_fhir_store, test_patient, capsys): # The conditional method tests use an Observation, so we have to create an # Encounter from test_patient and then create an Observation from the # Encounter. encounter_response = fhir_resources.create_encounter( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, test_patient, ) encounter_resource_id = encounter_response.json()["id"] observation_response = fhir_resources.create_observation( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, test_patient, encounter_resource_id, ) observation_resource_id = observation_response.json()["id"] fhir_resources.conditional_patch_resource( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, ) # In accordance with the FHIR spec, if conditional patch or conditional update # can only be applied to one resource at a time. If the search criteria # identify more than one match, the request returns a 412 Precondition Failed # error. Every time the tests create an Observation resource, the resource is # identical, therefore you have to delete each Observation after it's created # or else conditional patch/update will detect more than one Observation # that matches. fhir_resources.delete_resource( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, 'Observation', observation_resource_id ) out, _ = capsys.readouterr() print(out) assert "Conditionally patched" in out @pytest.mark.skip(reason='flaky test sometimes returns 412 errors, need to investigate') def test_conditional_update_resource(test_dataset, test_fhir_store, test_patient, capsys): # The conditional method tests use an Observation, so we have to create an # Encounter from test_patient and then create an Observation from the # Encounter. encounter_response = fhir_resources.create_encounter( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, test_patient, ) encounter_resource_id = encounter_response.json()["id"] observation_response = fhir_resources.create_observation( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, test_patient, encounter_resource_id, ) observation_resource_id = observation_response.json()["id"] fhir_resources.conditional_update_resource( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, test_patient, encounter_resource_id, ) # In accordance with the FHIR spec, if conditional patch or conditional update # can only be applied to one resource at a time. If the search criteria # identify more than one match, the request returns a 412 Precondition Failed # error. Every time the tests create an Observation resource, the resource is # identical, therefore you have to delete each Observation after it's created # or else conditional patch/update will detect more than one Observation # that matches. fhir_resources.delete_resource( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, 'Observation', observation_resource_id ) out, _ = capsys.readouterr() assert "Conditionally updated" in out def test_conditional_delete_resource(test_dataset, test_fhir_store, test_patient, capsys): # The conditional method tests use an Observation, so we have to create an # Encounter from test_patient and then create an Observation from the # Encounter. @backoff.on_exception( backoff.expo, HTTPError, max_time=60, giveup=fatal_code ) def create_encounter(): encounter_response = fhir_resources.create_encounter( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, test_patient, ) return encounter_response.json()["id"] encounter_resource_id = create_encounter() @backoff.on_exception( backoff.expo, HTTPError, max_time=60, giveup=fatal_code ) def create_observation(): fhir_resources.create_observation( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, test_patient, encounter_resource_id, ) create_observation() @backoff.on_exception( backoff.expo, HTTPError, max_time=60, giveup=fatal_code ) def conditional_delete_resource(): fhir_resources.conditional_delete_resource( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, ) conditional_delete_resource() out, _ = capsys.readouterr() print(out) assert "Conditionally deleted" in out def test_update_patient(test_dataset, test_fhir_store, test_patient, capsys): fhir_resources.update_resource( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, resource_type, test_patient ) out, _ = capsys.readouterr() print(out) assert "Updated Patient resource" in out def test_patch_patient(test_dataset, test_fhir_store, test_patient, capsys): fhir_resources.patch_resource( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, resource_type, test_patient ) out, _ = capsys.readouterr() print(out) assert "Patched Patient resource" in out def test_resource_versions(test_dataset, test_fhir_store, test_patient, capsys): # We have to update the resource so that different versions of it are # created, then we test to see if we can get/delete those versions. fhir_resources.update_resource( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, resource_type, test_patient, ) history = fhir_resources.list_resource_history( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, resource_type, test_patient, ) fhir_resources.get_resource_history( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, resource_type, test_patient, history["entry"][-1]["resource"]["meta"]["versionId"], ) fhir_resources.delete_resource_purge( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, resource_type, test_patient, ) out, _ = capsys.readouterr() print(out) # list_resource_history test assert "History for Patient resource" in out # get_resource_history test assert "Got history for Patient resource" in out # delete_resource_purge test assert "Deleted versions of Patient resource" in out def test_search_resources_get(test_dataset, test_fhir_store, test_patient, capsys): fhir_resources.search_resources_get( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, resource_type, ) out, _ = capsys.readouterr() assert "Using GET request" in out def test_search_resources_post(test_dataset, test_fhir_store, test_patient, capsys): fhir_resources.search_resources_post( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, ) out, _ = capsys.readouterr() assert "Using POST request" in out def test_get_patient_everything(test_dataset, test_fhir_store, test_patient, capsys): fhir_resources.get_patient_everything( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, test_patient, ) out, _ = capsys.readouterr() # get_patient_everything test assert "id" in out def test_get_metadata(test_dataset, test_fhir_store, capsys): fhir_resources.get_metadata( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, ) out, _ = capsys.readouterr() # get_metadata test assert "fhirVersion" in out def test_delete_patient(test_dataset, test_fhir_store, test_patient, capsys): fhir_resources.delete_resource( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, resource_type, test_patient ) out, _ = capsys.readouterr() print(out) assert "Deleted Patient resource" in out def test_execute_bundle(test_dataset, test_fhir_store, capsys): fhir_resources.execute_bundle( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id, bundle, ) out, _ = capsys.readouterr() # execute_bundle test assert "Executed bundle" in out
25.954198
90
0.671838
bceefc277ee44ab6c4f5543ed2fbaec962996d98
7,842
py
Python
contrib/bitrpc/bitrpc.py
bitmxittz/Bitmxittz2
f4fdd17c09fdee79feea729bb81b3b99862423f7
[ "MIT" ]
1
2017-12-22T15:32:01.000Z
2017-12-22T15:32:01.000Z
contrib/bitrpc/bitrpc.py
bitmxittz/Bitmxittz2
f4fdd17c09fdee79feea729bb81b3b99862423f7
[ "MIT" ]
null
null
null
contrib/bitrpc/bitrpc.py
bitmxittz/Bitmxittz2
f4fdd17c09fdee79feea729bb81b3b99862423f7
[ "MIT" ]
1
2019-05-30T14:10:31.000Z
2019-05-30T14:10:31.000Z
from jsonrpc import ServiceProxy import sys import string # ===== BEGIN USER SETTINGS ===== # if you do not set these you will be prompted for a password for every command rpcuser = "" rpcpass = "" # ====== END USER SETTINGS ====== if rpcpass == "": access = ServiceProxy("http://127.0.0.1:14432") else: access = ServiceProxy("http://"+rpcuser+":"+rpcpass+"@127.0.0.1:14432") cmd = sys.argv[1].lower() if cmd == "backupwallet": try: path = raw_input("Enter destination path/filename: ") print access.backupwallet(path) except: print "\n---An error occurred---\n" elif cmd == "getaccount": try: addr = raw_input("Enter a Bitmxittz address: ") print access.getaccount(addr) except: print "\n---An error occurred---\n" elif cmd == "getaccountaddress": try: acct = raw_input("Enter an account name: ") print access.getaccountaddress(acct) except: print "\n---An error occurred---\n" elif cmd == "getaddressesbyaccount": try: acct = raw_input("Enter an account name: ") print access.getaddressesbyaccount(acct) except: print "\n---An error occurred---\n" elif cmd == "getbalance": try: acct = raw_input("Enter an account (optional): ") mc = raw_input("Minimum confirmations (optional): ") try: print access.getbalance(acct, mc) except: print access.getbalance() except: print "\n---An error occurred---\n" elif cmd == "getblockbycount": try: height = raw_input("Height: ") print access.getblockbycount(height) except: print "\n---An error occurred---\n" elif cmd == "getblockcount": try: print access.getblockcount() except: print "\n---An error occurred---\n" elif cmd == "getblocknumber": try: print access.getblocknumber() except: print "\n---An error occurred---\n" elif cmd == "getconnectioncount": try: print access.getconnectioncount() except: print "\n---An error occurred---\n" elif cmd == "getdifficulty": try: print access.getdifficulty() except: print "\n---An error occurred---\n" elif cmd == "getgenerate": try: print access.getgenerate() except: print "\n---An error occurred---\n" elif cmd == "gethashespersec": try: print access.gethashespersec() except: print "\n---An error occurred---\n" elif cmd == "getinfo": try: print access.getinfo() except: print "\n---An error occurred---\n" elif cmd == "getnewaddress": try: acct = raw_input("Enter an account name: ") try: print access.getnewaddress(acct) except: print access.getnewaddress() except: print "\n---An error occurred---\n" elif cmd == "getreceivedbyaccount": try: acct = raw_input("Enter an account (optional): ") mc = raw_input("Minimum confirmations (optional): ") try: print access.getreceivedbyaccount(acct, mc) except: print access.getreceivedbyaccount() except: print "\n---An error occurred---\n" elif cmd == "getreceivedbyaddress": try: addr = raw_input("Enter a Bitmxittz address (optional): ") mc = raw_input("Minimum confirmations (optional): ") try: print access.getreceivedbyaddress(addr, mc) except: print access.getreceivedbyaddress() except: print "\n---An error occurred---\n" elif cmd == "gettransaction": try: txid = raw_input("Enter a transaction ID: ") print access.gettransaction(txid) except: print "\n---An error occurred---\n" elif cmd == "getwork": try: data = raw_input("Data (optional): ") try: print access.gettransaction(data) except: print access.gettransaction() except: print "\n---An error occurred---\n" elif cmd == "help": try: cmd = raw_input("Command (optional): ") try: print access.help(cmd) except: print access.help() except: print "\n---An error occurred---\n" elif cmd == "listaccounts": try: mc = raw_input("Minimum confirmations (optional): ") try: print access.listaccounts(mc) except: print access.listaccounts() except: print "\n---An error occurred---\n" elif cmd == "listreceivedbyaccount": try: mc = raw_input("Minimum confirmations (optional): ") incemp = raw_input("Include empty? (true/false, optional): ") try: print access.listreceivedbyaccount(mc, incemp) except: print access.listreceivedbyaccount() except: print "\n---An error occurred---\n" elif cmd == "listreceivedbyaddress": try: mc = raw_input("Minimum confirmations (optional): ") incemp = raw_input("Include empty? (true/false, optional): ") try: print access.listreceivedbyaddress(mc, incemp) except: print access.listreceivedbyaddress() except: print "\n---An error occurred---\n" elif cmd == "listtransactions": try: acct = raw_input("Account (optional): ") count = raw_input("Number of transactions (optional): ") frm = raw_input("Skip (optional):") try: print access.listtransactions(acct, count, frm) except: print access.listtransactions() except: print "\n---An error occurred---\n" elif cmd == "move": try: frm = raw_input("From: ") to = raw_input("To: ") amt = raw_input("Amount:") mc = raw_input("Minimum confirmations (optional): ") comment = raw_input("Comment (optional): ") try: print access.move(frm, to, amt, mc, comment) except: print access.move(frm, to, amt) except: print "\n---An error occurred---\n" elif cmd == "sendfrom": try: frm = raw_input("From: ") to = raw_input("To: ") amt = raw_input("Amount:") mc = raw_input("Minimum confirmations (optional): ") comment = raw_input("Comment (optional): ") commentto = raw_input("Comment-to (optional): ") try: print access.sendfrom(frm, to, amt, mc, comment, commentto) except: print access.sendfrom(frm, to, amt) except: print "\n---An error occurred---\n" elif cmd == "sendmany": try: frm = raw_input("From: ") to = raw_input("To (in format address1:amount1,address2:amount2,...): ") mc = raw_input("Minimum confirmations (optional): ") comment = raw_input("Comment (optional): ") try: print access.sendmany(frm,to,mc,comment) except: print access.sendmany(frm,to) except: print "\n---An error occurred---\n" elif cmd == "sendtoaddress": try: to = raw_input("To (in format address1:amount1,address2:amount2,...): ") amt = raw_input("Amount:") comment = raw_input("Comment (optional): ") commentto = raw_input("Comment-to (optional): ") try: print access.sendtoaddress(to,amt,comment,commentto) except: print access.sendtoaddress(to,amt) except: print "\n---An error occurred---\n" elif cmd == "setaccount": try: addr = raw_input("Address: ") acct = raw_input("Account:") print access.setaccount(addr,acct) except: print "\n---An error occurred---\n" elif cmd == "setgenerate": try: gen= raw_input("Generate? (true/false): ") cpus = raw_input("Max processors/cores (-1 for unlimited, optional):") try: print access.setgenerate(gen, cpus) except: print access.setgenerate(gen) except: print "\n---An error occurred---\n" elif cmd == "settxfee": try: amt = raw_input("Amount:") print access.settxfee(amt) except: print "\n---An error occurred---\n" elif cmd == "stop": try: print access.stop() except: print "\n---An error occurred---\n" elif cmd == "validateaddress": try: addr = raw_input("Address: ") print access.validateaddress(addr) except: print "\n---An error occurred---\n" elif cmd == "walletpassphrase": try: pwd = raw_input("Enter wallet passphrase: ") access.walletpassphrase(pwd, 60) print "\n---Wallet unlocked---\n" except: print "\n---An error occurred---\n" elif cmd == "walletpassphrasechange": try: pwd = raw_input("Enter old wallet passphrase: ") pwd2 = raw_input("Enter new wallet passphrase: ") access.walletpassphrasechange(pwd, pwd2) print print "\n---Passphrase changed---\n" except: print print "\n---An error occurred---\n" print else: print "Command not found or not supported"
24.129231
79
0.668452
d9ad0fb8916c59d43659f4efd575cefba82bbe23
3,928
py
Python
lib/spack/spack/cmd/dev_build.py
carlabguillen/spack
7070bb892f9bdb5cf9e76e0eecd64f6cc5f4695c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
1
2020-05-24T15:23:12.000Z
2020-05-24T15:23:12.000Z
lib/spack/spack/cmd/dev_build.py
carlabguillen/spack
7070bb892f9bdb5cf9e76e0eecd64f6cc5f4695c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
6
2022-02-26T11:44:34.000Z
2022-03-12T12:14:50.000Z
lib/spack/spack/cmd/dev_build.py
carlabguillen/spack
7070bb892f9bdb5cf9e76e0eecd64f6cc5f4695c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2
2020-09-15T02:37:59.000Z
2020-09-21T04:34:38.000Z
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import sys import os import llnl.util.tty as tty import spack.config import spack.cmd import spack.cmd.common.arguments as arguments import spack.repo from spack.stage import DIYStage description = "developer build: build from code in current working directory" section = "build" level = "long" def setup_parser(subparser): arguments.add_common_arguments(subparser, ['jobs']) subparser.add_argument( '-d', '--source-path', dest='source_path', default=None, help="path to source directory. defaults to the current directory") subparser.add_argument( '-i', '--ignore-dependencies', action='store_true', dest='ignore_deps', help="don't try to install dependencies of requested packages") arguments.add_common_arguments(subparser, ['no_checksum']) subparser.add_argument( '--keep-prefix', action='store_true', help="do not remove the install prefix if installation fails") subparser.add_argument( '--skip-patch', action='store_true', help="skip patching for the developer build") subparser.add_argument( '-q', '--quiet', action='store_true', dest='quiet', help="do not display verbose build output while installing") subparser.add_argument( '--drop-in', type=str, dest='shell', default=None, help="drop into a build environment in a new shell, e.g. bash, zsh") arguments.add_common_arguments(subparser, ['spec']) stop_group = subparser.add_mutually_exclusive_group() stop_group.add_argument( '-b', '--before', type=str, dest='before', default=None, help="phase to stop before when installing (default None)") stop_group.add_argument( '-u', '--until', type=str, dest='until', default=None, help="phase to stop after when installing (default None)") cd_group = subparser.add_mutually_exclusive_group() arguments.add_common_arguments(cd_group, ['clean', 'dirty']) def dev_build(self, args): if not args.spec: tty.die("spack dev-build requires a package spec argument.") specs = spack.cmd.parse_specs(args.spec) if len(specs) > 1: tty.die("spack dev-build only takes one spec.") spec = specs[0] if not spack.repo.path.exists(spec.name): tty.die("No package for '{0}' was found.".format(spec.name), " Use `spack create` to create a new package") if not spec.versions.concrete: tty.die( "spack dev-build spec must have a single, concrete version. " "Did you forget a package version number?") spec.concretize() package = spack.repo.get(spec) if package.installed: tty.error("Already installed in %s" % package.prefix) tty.msg("Uninstall or try adding a version suffix for this dev build.") sys.exit(1) source_path = args.source_path if source_path is None: source_path = os.getcwd() source_path = os.path.abspath(source_path) # Forces the build to run out of the current directory. package.stage = DIYStage(source_path) # disable checksumming if requested if args.no_checksum: spack.config.set('config:checksum', False, scope='command_line') package.do_install( make_jobs=args.jobs, keep_prefix=args.keep_prefix, install_deps=not args.ignore_deps, verbose=not args.quiet, keep_stage=True, # don't remove source dir for dev build. dirty=args.dirty, stop_before=args.before, stop_at=args.until) # drop into the build environment of the package? if args.shell is not None: spack.build_environment.setup_package(package, dirty=False) os.execvp(args.shell, [args.shell])
36.036697
79
0.677444
27d6c596957bd137565ac19d5744d635afb3b8a6
1,841
py
Python
biodata/api/mutations.py
znatty22/biodataservice
a3eeb137d2e727a0fc58437b185f2637bc4665ed
[ "Apache-2.0" ]
null
null
null
biodata/api/mutations.py
znatty22/biodataservice
a3eeb137d2e727a0fc58437b185f2637bc4665ed
[ "Apache-2.0" ]
null
null
null
biodata/api/mutations.py
znatty22/biodataservice
a3eeb137d2e727a0fc58437b185f2637bc4665ed
[ "Apache-2.0" ]
null
null
null
import graphene from biodata.api import models as m from biodata.api import objects as o class CreateStudyMutation(graphene.Mutation): class Arguments: short_name = graphene.String(required=True) name = graphene.String(required=False) study = graphene.Field(o.StudyType) def mutate(self, info, short_name, name=None): study = m.Study( short_name=short_name, name=name ) study.save() return CreateStudyMutation(study=study) class CreateParticipantMutation(graphene.Mutation): class Arguments: study = graphene.String(required=True) gender = graphene.String(required=True) race = graphene.String(required=False) ethnicity = graphene.String(required=False) participant = graphene.Field(o.ParticipantType) def mutate(self, info, study, gender, race=None, ethnicity=None): participant = m.Participant( gender=gender, race=race, ethnicity=ethnicity, study_id=study ) participant.save() return CreateParticipantMutation(participant=participant) class CreateBiospecimenMutation(graphene.Mutation): class Arguments: participant = graphene.String(required=True) analyte_type = graphene.String(required=False) biospecimen = graphene.Field(o.BiospecimenType) def mutate(self, info, participant, analyte_type=None): biospecimen = m.Biospecimen( analyte_type=analyte_type, participant_id=participant ) biospecimen.save() return CreateBiospecimenMutation(biospecimen=biospecimen) class Mutation(graphene.ObjectType): create_participant_mutation = CreateParticipantMutation.Field() create_study_mutation = CreateStudyMutation.Field() create_biospecimen_mutation = CreateBiospecimenMutation.Field()
31.741379
73
0.712113
24622a9ce68a8b80af701be571d0cfdc8b85652f
1,412
py
Python
auth0/v3/management/users_by_email.py
bumplzz69/auth0-python
763f331f66eab465e2ef6654a74b48d1f4b47d9a
[ "MIT" ]
null
null
null
auth0/v3/management/users_by_email.py
bumplzz69/auth0-python
763f331f66eab465e2ef6654a74b48d1f4b47d9a
[ "MIT" ]
null
null
null
auth0/v3/management/users_by_email.py
bumplzz69/auth0-python
763f331f66eab465e2ef6654a74b48d1f4b47d9a
[ "MIT" ]
null
null
null
from .rest import RestClient class UsersByEmail(object): """Auth0 users by email endpoints Args: domain (str): Your Auth0 domain, e.g: 'username.auth0.com' token (str): Management API v2 Token telemetry (bool, optional): Enable or disable Telemetry (defaults to True) """ def __init__(self, domain, token, telemetry=True): self.domain = domain self.client = RestClient(jwt=token, telemetry=telemetry) def _url(self): url = 'https://%s/api/v2/users-by-email' % self.domain return url def search_users_by_email(self, email, fields=None, include_fields=True): """List or search users. Args: email: Email to search fields (list of str, optional): A list of fields to include or exclude from the result (depending on include_fields). Empty to retrieve all fields. include_fields (bool, optional): True if the fields specified are to be include in the result, False otherwise. See: https://auth0.com/docs/api/management/v2#!/Users_By_Email/get_users_by_email """ params = { 'email': email, 'fields': fields and ','.join(fields) or None, 'include_fields': str(include_fields).lower() } return self.client.get(self._url(), params=params)
30.042553
89
0.606941
f61755ac3f24324fba205e2759ca0c1bf8bd6dbc
3,059
py
Python
rule11_interruption.py
e96031413/proofread
f4fc798d3b57c6f7a55f4e18de68f2272eb9fc44
[ "MIT" ]
null
null
null
rule11_interruption.py
e96031413/proofread
f4fc798d3b57c6f7a55f4e18de68f2272eb9fc44
[ "MIT" ]
null
null
null
rule11_interruption.py
e96031413/proofread
f4fc798d3b57c6f7a55f4e18de68f2272eb9fc44
[ "MIT" ]
null
null
null
import os from color_print import * from p_arser import nlp from p_arser import sentencizer principle = color_magenta('''Writing Principle 11: Avoid interruptions between subject and verb and between verb and object. ''') example = color_cyan(''' Bad: We conclude, based on very simplified models of solar variability, that soloar variability is insignificant. Good: We conclude that soloar variability is insignificant based on very simplified models of solar variability, Good: Based on very simplified models of solar variability, we conclude that soloar variability is insignificant. ''') def get_dependence(sentence, dep=['ROOT'], parser=None): '''dependence analysis to find subjects, verb, objects''' parsed_ex = parser(sentence) for idx, token in enumerate(parsed_ex): if token.dep_ in dep: return idx, token, parsed_ex return None, None, parsed_ex def report_subject_interruption(sentence, max_len=10): '''report the long subject for one sentence ''' idx_s, subj, parsed_ex = get_dependence(sentence, ['nsubj', 'csubj'], nlp) idx_v, verb, parsed_ex = get_dependence(sentence, ['ROOT'], nlp) idx_o, obj, parsed_ex = get_dependence(sentence, ['obj'], nlp) if (idx_s is None or idx_v is None): return None interruption_distance = abs(idx_v - idx_s) if interruption_distance > max_len: n_coma = 0 interrupt_start= None interrupt_end = None suggestion = [] for ii, token in enumerate(parsed_ex): if token.text == ',': n_coma += 1 if interrupt_start == None: interrupt_start = ii else: interrupt_end = ii if interrupt_start is None or interrupt_end is None or \ interrupt_start < idx_s or interrupt_end > idx_v: return "" for ii, token in enumerate(parsed_ex): if ii < interrupt_start: suggestion.append(token.text) elif ii < interrupt_end: suggestion.append(color_red(token.text)) else: suggestion.append(token.text) return ' '.join(suggestion) def report_interruptions(file_path, max_len=25): '''report long subjects for all sentences in the paper''' sentences = sentencizer(file_path) suggestions = [] for sentence in sentences: sug = report_subject_interruption(sentence.text, max_len=max_len) if sug: suggestions.append(sug) if len(suggestions): print("Report interruptions for ", color_cyan(file_path.split('/')[-1])) for sug in suggestions: print(sug) print(color_blue("******************************************************")) if __name__ == "__main__": exmp = "We conclude, based on very simplified models of solar variability, that soloar variability is insignificant." report_subject_interruption(exmp, max_len=5)
35.16092
122
0.62831
7703321a0cbd9a9c4496dcab5366c448bac6f2eb
9,352
py
Python
data_generation/lumencor.py
AndrewGYork/remote_refocus
5be485e13df4b9caf71941e8e937acaf6b959348
[ "CC-BY-4.0" ]
16
2018-01-11T22:31:05.000Z
2019-07-06T12:06:37.000Z
data_generation/lumencor.py
calico/remote_refocus
7c62907eed8f27afbfe3ef07d62c7a5ea9d3c7ac
[ "CC-BY-4.0" ]
null
null
null
data_generation/lumencor.py
calico/remote_refocus
7c62907eed8f27afbfe3ef07d62c7a5ea9d3c7ac
[ "CC-BY-4.0" ]
2
2018-01-11T20:03:51.000Z
2019-02-09T20:36:28.000Z
import serial class SpectraX: """Controls Lumencor SpectraX through a serial port.""" def __init__(self, which_port, verbose=True): """Constructor for SpectraX class. Arguments: which_port -- Specify which serial port the SpectraX is connected to e.g. 'COM6' (on Windows). Keyword arguments: verbose -- True | False. Specify if print statements will be executed. This is useful for debug purposes. """ self.verbose = verbose self.port = serial.Serial(port=which_port, baudrate=9600, timeout=.25) ## Set up initial states self.led_intensities = {'red':0, 'green':0, 'cyan':0, 'uv':0, 'blue':0, 'teal':0} self.led_states = {'red':False, 'green':False, 'cyan':False, 'uv':False, 'blue':False, 'teal':False, 'yellow_filter':False} if self.verbose: print("SpectraX initializing...") ## Write initial 'must be issued' commands to the port self._send(b'\x57\x02\xff\x50') self._send(b'\x57\x03\xAB\x50') ## Set initial led intensities to 0 and ensure SpextraX is responding self.set_intensity(blocking=False, **self.led_intensities) self._force_response() if self.verbose: print(" SpectraX is ready!") def _send(self, cmd, expected_response=0): """Send bytes to the SpectraX serial port. Arguments: cmd -- bytes to write to the serial port Keyword Arguments: expected_response -- number of bytes expected for a response defaults to 0 (no response) Returns: None if expected_reponse == 0 bytes if expected_response > 0 """ assert type(cmd) is bytes assert expected_response >= 0 assert int(expected_response) == expected_response if self.verbose: print(' Sending command to SpectraX:', ' '.join('%02x'%i for i in cmd)) self.port.write(cmd) if expected_response > 0: response = self.port.read(expected_response) if self.verbose: print(' Reading response from SpectraX:', ' '.join('%02x'%i for i in response)) return response else: return None def get_temperature(self): """Read the temperature of the SpectraX unit. Arguments: None Returns: The current temperature of the SpectraX unit in degrees C """ if self.verbose: print("Checking SpectraX temperature...") response = self._send(b'\x53\x91\x02\x50', expected_response=2) temperature = 0.125 * (int.from_bytes(response, byteorder='big') >> 5) if self.verbose: print("SpectraX is %s degrees" % temperature) return temperature def _force_response(self): """Force a response from the SpectraX unit. The serial port protocol for interacting with the SpectraX unit does not provide a response upon receipt of command. This function uses the 'check temperature' serial command and will block until a response is received. If no response is received, this will result in an AssertionError. The logic of calling this function is that if the unit is able to repond to this command, it likely has executed all previous commands. Arguments: None Returns: None """ if self.verbose: print("Checking SpectraX for responsiveness...") response = self._send(b'\x53\x91\x02\x50', expected_response=2) assert len(response) == 2 if self.verbose: print (" ... ok to proceed") def _intensity_setter(self, led, intensity, blocking = True): """Set intensity of specific led. Arguments: led -- 'blue' | 'teal' | 'uv' | 'cyan' | 'green' | 'red'. Specify which led is to be set. Providing a value not listed above will result in a KeyError. intensity -- int between 0 and 255. Specify the intensity of this led. This value has not been tested for linearity. Providing a value outside of allowable range will result in AssertionError. Keyword Arguments: blocking -- True | False. Set if this command will call _force_response. If true, this command should block until a response is received. """ assert 0 <= intensity <= 255 color = led.lower() if self.verbose: print("Setting SpectraX %s intensity to %i / 255" % (color, intensity)) self._send(({ 'blue': b'\x53\x1a\x03\x01', 'teal': b'\x53\x1a\x03\x02', 'uv': b'\x53\x18\x03\x01', 'cyan': b'\x53\x18\x03\x02', 'green':b'\x53\x18\x03\x04', 'red': b'\x53\x18\x03\x08'}[color]+ (((4095-intensity) << 12)+80).to_bytes(3,byteorder='big'))) if blocking: self._force_response() def set_intensity(self, red=None, green=None, cyan=None, uv=None, blue=None, teal=None, blocking=True): """Set intensity of leds in SpectraX. This will sequencially set the intensity for each led where the value is not None. There is a way in the serial port protocol to set the same intensity to multiple leds with a single command but that is ignored here. Keyword Arguments: red -- int [0..255]. green -- int [0..255]. cyan -- int [0..255]. uv -- int [0..255]. blue -- int [0..255]. teal -- int [0..255]. blocking -- True | False. Check for the unit's ability to respond after setting all intensities. """ intensities = locals() intensities.pop('self') intensities.pop('blocking') for color , intensity in intensities.items(): if intensity is not None: self._intensity_setter(color, intensity, blocking=blocking) def _state_cmd_generator(self): """Formats bytes to write to serial port to specifiy led states. This function was written to clarify the syntax of set_led_state function. Returns: bytes -- in a format to be written to serial port for setting led enabled/disabled states. """ states_byte = (127 -self.led_states['red']*1 -self.led_states['green']*2 -self.led_states['cyan']*4 -self.led_states['uv']*8 -self.led_states['yellow_filter']*16 -self.led_states['blue']*32 -self.led_states['teal']*64) return b'\x4f'+states_byte.to_bytes(1,byteorder='big')+b'\x50' def set_led_state(self, red=None, green=None, cyan=None, uv=None, blue=None, teal=None, yellow_filter=None, blocking=True): """Enables/disables specific leds of the SpectraX. Enabling 'yellow_filter' will shift the spectra of the light from the green led. Keyword Arguments: red -- True | False. True for "ON". False for "OFF". green -- True | False. True for "ON". False for "OFF". cyan -- True | False. True for "ON". False for "OFF". uv -- True | False. True for "ON". False for "OFF". blue -- True | False. True for "ON". False for "OFF". teal -- True | False. True for "ON". False for "OFF". yellow_filter -- True | False. True for "IN". False for "OUT". """ states_to_set = locals() states_to_set.pop('self') states_to_set.pop('blocking') ## Default to previous known states if no new state is provided for led in states_to_set: if states_to_set[led] is not None: self.led_states[led] = states_to_set[led] if self.verbose: print('Setting SpectraX LED states:') for led in self.led_states: print(' %13s: %s' % (led, self.led_states[led])) self._send(self._state_cmd_generator()) if blocking: self._force_response() def close(self): self.set_led_state(red=False, green=False, cyan=False, uv=False, blue=False, teal=False) self.set_intensity(red=0, green=0, cyan=0, uv=0, blue=0, teal=0) self.port.close() if __name__ == '__main__': import time spectrax = SpectraX('COM8', verbose=False) print("Done initializing...") spectrax.set_intensity(red=255, blocking=True) spectrax.set_led_state(red=True, blocking=False) time.sleep(1) spectrax.set_led_state(red=False, blocking=True)
41.93722
80
0.553785
b9e1f10935fd4f70163f71e81bd257bc2d6d1bba
1,788
py
Python
sdk/ml/azure-ai-ml/tests/test_configs/batch_setup/light_gbm_examples/python-guide/plot_example.py
dubiety/azure-sdk-for-python
62ffa839f5d753594cf0fe63668f454a9d87a346
[ "MIT" ]
1
2022-02-01T18:50:12.000Z
2022-02-01T18:50:12.000Z
sdk/ml/azure-ai-ml/tests/test_configs/batch_setup/light_gbm_examples/python-guide/plot_example.py
ellhe-blaster/azure-sdk-for-python
82193ba5e81cc5e5e5a5239bba58abe62e86f469
[ "MIT" ]
null
null
null
sdk/ml/azure-ai-ml/tests/test_configs/batch_setup/light_gbm_examples/python-guide/plot_example.py
ellhe-blaster/azure-sdk-for-python
82193ba5e81cc5e5e5a5239bba58abe62e86f469
[ "MIT" ]
null
null
null
# coding: utf-8 import lightgbm as lgb import pandas as pd if lgb.compat.MATPLOTLIB_INSTALLED: import matplotlib.pyplot as plt else: raise ImportError("You need to install matplotlib for plot_example.py.") print("Loading data...") # load or create your dataset df_train = pd.read_csv("../regression/regression.train", header=None, sep="\t") df_test = pd.read_csv("../regression/regression.test", header=None, sep="\t") y_train = df_train[0] y_test = df_test[0] X_train = df_train.drop(0, axis=1) X_test = df_test.drop(0, axis=1) # create dataset for lightgbm lgb_train = lgb.Dataset(X_train, y_train) lgb_test = lgb.Dataset(X_test, y_test, reference=lgb_train) # specify your configurations as a dict params = {"num_leaves": 5, "metric": ("l1", "l2"), "verbose": 0} evals_result = {} # to record eval results for plotting print("Starting training...") # train gbm = lgb.train( params, lgb_train, num_boost_round=100, valid_sets=[lgb_train, lgb_test], feature_name=["f" + str(i + 1) for i in range(X_train.shape[-1])], categorical_feature=[21], evals_result=evals_result, verbose_eval=10, ) print("Plotting metrics recorded during training...") ax = lgb.plot_metric(evals_result, metric="l1") plt.show() print("Plotting feature importances...") ax = lgb.plot_importance(gbm, max_num_features=10) plt.show() print("Plotting split value histogram...") ax = lgb.plot_split_value_histogram(gbm, feature="f26", bins="auto") plt.show() print("Plotting 54th tree...") # one tree use categorical feature to split ax = lgb.plot_tree(gbm, tree_index=53, figsize=(15, 15), show_info=["split_gain"]) plt.show() print("Plotting 54th tree with graphviz...") graph = lgb.create_tree_digraph(gbm, tree_index=53, name="Tree54") graph.render(view=True)
29.311475
82
0.720358
3629bb281f0a1c1ede5b90f7f598ce32b6059574
53,084
py
Python
research/object_detection/inputs_test.py
873040/Abhishek
2ddd716e66bc5cc6e6f0787508dd07da0e02e75a
[ "Apache-2.0" ]
10
2020-06-30T06:43:48.000Z
2022-03-22T11:01:20.000Z
research/object_detection/inputs_test.py
873040/Abhishek
2ddd716e66bc5cc6e6f0787508dd07da0e02e75a
[ "Apache-2.0" ]
10
2019-12-28T21:31:19.000Z
2020-04-12T20:01:58.000Z
research/object_detection/inputs_test.py
873040/Abhishek
2ddd716e66bc5cc6e6f0787508dd07da0e02e75a
[ "Apache-2.0" ]
9
2020-03-30T02:11:52.000Z
2020-04-05T02:15:08.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.tflearn.inputs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import os from absl.testing import parameterized import numpy as np import tensorflow as tf from object_detection import inputs from object_detection.core import preprocessor from object_detection.core import standard_fields as fields from object_detection.utils import config_util from object_detection.utils import test_case FLAGS = tf.flags.FLAGS def _get_configs_for_model(model_name): """Returns configurations for model.""" fname = os.path.join(tf.resource_loader.get_data_files_path(), 'samples/configs/' + model_name + '.config') label_map_path = os.path.join(tf.resource_loader.get_data_files_path(), 'data/pet_label_map.pbtxt') data_path = os.path.join(tf.resource_loader.get_data_files_path(), 'test_data/pets_examples.record') configs = config_util.get_configs_from_pipeline_file(fname) override_dict = { 'train_input_path': data_path, 'eval_input_path': data_path, 'label_map_path': label_map_path } return config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) def _make_initializable_iterator(dataset): """Creates an iterator, and initializes tables. Args: dataset: A `tf.data.Dataset` object. Returns: A `tf.data.Iterator`. """ iterator = dataset.make_initializable_iterator() tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer) return iterator class InputsTest(test_case.TestCase, parameterized.TestCase): def test_faster_rcnn_resnet50_train_input(self): """Tests the training input function for FasterRcnnResnet50.""" configs = _get_configs_for_model('faster_rcnn_resnet50_pets') model_config = configs['model'] model_config.faster_rcnn.num_classes = 37 train_input_fn = inputs.create_train_input_fn( configs['train_config'], configs['train_input_config'], model_config) features, labels = _make_initializable_iterator(train_input_fn()).get_next() self.assertAllEqual([1, None, None, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual([1], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [1, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [1, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [1, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [1, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_confidences].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_confidences].dtype) def test_faster_rcnn_resnet50_train_input_with_additional_channels(self): """Tests the training input function for FasterRcnnResnet50.""" configs = _get_configs_for_model('faster_rcnn_resnet50_pets') model_config = configs['model'] configs['train_input_config'].num_additional_channels = 2 configs['train_config'].retain_original_images = True model_config.faster_rcnn.num_classes = 37 train_input_fn = inputs.create_train_input_fn( configs['train_config'], configs['train_input_config'], model_config) features, labels = _make_initializable_iterator(train_input_fn()).get_next() self.assertAllEqual([1, None, None, 5], features[fields.InputDataFields.image].shape.as_list()) self.assertAllEqual( [1, None, None, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual([1], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [1, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [1, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [1, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [1, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_confidences].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_confidences].dtype) @parameterized.parameters( {'eval_batch_size': 1}, {'eval_batch_size': 8} ) def test_faster_rcnn_resnet50_eval_input(self, eval_batch_size=1): """Tests the eval input function for FasterRcnnResnet50.""" configs = _get_configs_for_model('faster_rcnn_resnet50_pets') model_config = configs['model'] model_config.faster_rcnn.num_classes = 37 eval_config = configs['eval_config'] eval_config.batch_size = eval_batch_size eval_input_fn = inputs.create_eval_input_fn( eval_config, configs['eval_input_configs'][0], model_config) features, labels = _make_initializable_iterator(eval_input_fn()).get_next() self.assertAllEqual([eval_batch_size, None, None, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual( [eval_batch_size, None, None, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.uint8, features[fields.InputDataFields.original_image].dtype) self.assertAllEqual([eval_batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [eval_batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [eval_batch_size, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_area].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_area].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list()) self.assertEqual( tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_difficult].shape.as_list()) self.assertEqual( tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype) def test_ssd_inceptionV2_train_input(self): """Tests the training input function for SSDInceptionV2.""" configs = _get_configs_for_model('ssd_inception_v2_pets') model_config = configs['model'] model_config.ssd.num_classes = 37 batch_size = configs['train_config'].batch_size train_input_fn = inputs.create_train_input_fn( configs['train_config'], configs['train_input_config'], model_config) features, labels = _make_initializable_iterator(train_input_fn()).get_next() self.assertAllEqual([batch_size, 300, 300, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual([batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [batch_size], labels[fields.InputDataFields.num_groundtruth_boxes].shape.as_list()) self.assertEqual(tf.int32, labels[fields.InputDataFields.num_groundtruth_boxes].dtype) self.assertAllEqual( [batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [batch_size, 100, model_config.ssd.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [batch_size, 100], labels[ fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) @parameterized.parameters( {'eval_batch_size': 1}, {'eval_batch_size': 8} ) def test_ssd_inceptionV2_eval_input(self, eval_batch_size=1): """Tests the eval input function for SSDInceptionV2.""" configs = _get_configs_for_model('ssd_inception_v2_pets') model_config = configs['model'] model_config.ssd.num_classes = 37 eval_config = configs['eval_config'] eval_config.batch_size = eval_batch_size eval_input_fn = inputs.create_eval_input_fn( eval_config, configs['eval_input_configs'][0], model_config) features, labels = _make_initializable_iterator(eval_input_fn()).get_next() self.assertAllEqual([eval_batch_size, 300, 300, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual( [eval_batch_size, 300, 300, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.uint8, features[fields.InputDataFields.original_image].dtype) self.assertAllEqual([eval_batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [eval_batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [eval_batch_size, 100, model_config.ssd.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[ fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_area].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_area].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list()) self.assertEqual( tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_difficult].shape.as_list()) self.assertEqual( tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype) def test_ssd_inceptionV2_eval_input_with_additional_channels( self, eval_batch_size=1): """Tests the eval input function for SSDInceptionV2 with additional channels. Args: eval_batch_size: Batch size for eval set. """ configs = _get_configs_for_model('ssd_inception_v2_pets') model_config = configs['model'] model_config.ssd.num_classes = 37 configs['eval_input_configs'][0].num_additional_channels = 1 eval_config = configs['eval_config'] eval_config.batch_size = eval_batch_size eval_config.retain_original_image_additional_channels = True eval_input_fn = inputs.create_eval_input_fn( eval_config, configs['eval_input_configs'][0], model_config) features, labels = _make_initializable_iterator(eval_input_fn()).get_next() self.assertAllEqual([eval_batch_size, 300, 300, 4], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual( [eval_batch_size, 300, 300, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.uint8, features[fields.InputDataFields.original_image].dtype) self.assertAllEqual([eval_batch_size, 300, 300, 1], features[ fields.InputDataFields.image_additional_channels].shape.as_list()) self.assertEqual( tf.uint8, features[fields.InputDataFields.image_additional_channels].dtype) self.assertAllEqual([eval_batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [eval_batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [eval_batch_size, 100, model_config.ssd.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_area].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_area].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list()) self.assertEqual(tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_difficult].shape.as_list()) self.assertEqual(tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype) def test_predict_input(self): """Tests the predict input function.""" configs = _get_configs_for_model('ssd_inception_v2_pets') predict_input_fn = inputs.create_predict_input_fn( model_config=configs['model'], predict_input_config=configs['eval_input_configs'][0]) serving_input_receiver = predict_input_fn() image = serving_input_receiver.features[fields.InputDataFields.image] receiver_tensors = serving_input_receiver.receiver_tensors[ inputs.SERVING_FED_EXAMPLE_KEY] self.assertEqual([1, 300, 300, 3], image.shape.as_list()) self.assertEqual(tf.float32, image.dtype) self.assertEqual(tf.string, receiver_tensors.dtype) def test_predict_input_with_additional_channels(self): """Tests the predict input function with additional channels.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['eval_input_configs'][0].num_additional_channels = 2 predict_input_fn = inputs.create_predict_input_fn( model_config=configs['model'], predict_input_config=configs['eval_input_configs'][0]) serving_input_receiver = predict_input_fn() image = serving_input_receiver.features[fields.InputDataFields.image] receiver_tensors = serving_input_receiver.receiver_tensors[ inputs.SERVING_FED_EXAMPLE_KEY] # RGB + 2 additional channels = 5 channels. self.assertEqual([1, 300, 300, 5], image.shape.as_list()) self.assertEqual(tf.float32, image.dtype) self.assertEqual(tf.string, receiver_tensors.dtype) def test_error_with_bad_train_config(self): """Tests that a TypeError is raised with improper train config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 train_input_fn = inputs.create_train_input_fn( train_config=configs['eval_config'], # Expecting `TrainConfig`. train_input_config=configs['train_input_config'], model_config=configs['model']) with self.assertRaises(TypeError): train_input_fn() def test_error_with_bad_train_input_config(self): """Tests that a TypeError is raised with improper train input config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 train_input_fn = inputs.create_train_input_fn( train_config=configs['train_config'], train_input_config=configs['model'], # Expecting `InputReader`. model_config=configs['model']) with self.assertRaises(TypeError): train_input_fn() def test_error_with_bad_train_model_config(self): """Tests that a TypeError is raised with improper train model config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 train_input_fn = inputs.create_train_input_fn( train_config=configs['train_config'], train_input_config=configs['train_input_config'], model_config=configs['train_config']) # Expecting `DetectionModel`. with self.assertRaises(TypeError): train_input_fn() def test_error_with_bad_eval_config(self): """Tests that a TypeError is raised with improper eval config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['train_config'], # Expecting `EvalConfig`. eval_input_config=configs['eval_input_configs'][0], model_config=configs['model']) with self.assertRaises(TypeError): eval_input_fn() def test_error_with_bad_eval_input_config(self): """Tests that a TypeError is raised with improper eval input config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['eval_config'], eval_input_config=configs['model'], # Expecting `InputReader`. model_config=configs['model']) with self.assertRaises(TypeError): eval_input_fn() def test_error_with_bad_eval_model_config(self): """Tests that a TypeError is raised with improper eval model config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['eval_config'], eval_input_config=configs['eval_input_configs'][0], model_config=configs['eval_config']) # Expecting `DetectionModel`. with self.assertRaises(TypeError): eval_input_fn() def test_output_equal_in_replace_empty_string_with_random_number(self): string_placeholder = tf.placeholder(tf.string, shape=[]) replaced_string = inputs._replace_empty_string_with_random_number( string_placeholder) test_string = b'hello world' feed_dict = {string_placeholder: test_string} with self.test_session() as sess: out_string = sess.run(replaced_string, feed_dict=feed_dict) self.assertEqual(test_string, out_string) def test_output_is_integer_in_replace_empty_string_with_random_number(self): string_placeholder = tf.placeholder(tf.string, shape=[]) replaced_string = inputs._replace_empty_string_with_random_number( string_placeholder) empty_string = '' feed_dict = {string_placeholder: empty_string} tf.set_random_seed(0) with self.test_session() as sess: out_string = sess.run(replaced_string, feed_dict=feed_dict) # Test whether out_string is a string which represents an integer. int(out_string) # throws an error if out_string is not castable to int. self.assertEqual(out_string, b'2798129067578209328') def test_force_no_resize(self): """Tests the functionality of force_no_reisze option.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['eval_config'].force_no_resize = True eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['eval_config'], eval_input_config=configs['eval_input_configs'][0], model_config=configs['model'] ) train_input_fn = inputs.create_train_input_fn( train_config=configs['train_config'], train_input_config=configs['train_input_config'], model_config=configs['model'] ) features_train, _ = _make_initializable_iterator( train_input_fn()).get_next() features_eval, _ = _make_initializable_iterator( eval_input_fn()).get_next() images_train, images_eval = features_train['image'], features_eval['image'] self.assertEqual([1, None, None, 3], images_eval.shape.as_list()) self.assertEqual([24, 300, 300, 3], images_train.shape.as_list()) class DataAugmentationFnTest(test_case.TestCase): def test_apply_image_and_box_augmentation(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }), (preprocessor.scale_boxes_to_pixel_coordinates, {}), ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)) } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) with self.test_session() as sess: augmented_tensor_dict_out = sess.run(augmented_tensor_dict) self.assertAllEqual( augmented_tensor_dict_out[fields.InputDataFields.image].shape, [20, 20, 3] ) self.assertAllClose( augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes], [[10, 10, 20, 20]] ) def test_apply_image_and_box_augmentation_with_scores(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }), (preprocessor.scale_boxes_to_pixel_coordinates, {}), ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1.0], np.float32)), fields.InputDataFields.groundtruth_weights: tf.constant(np.array([0.8], np.float32)), } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) with self.test_session() as sess: augmented_tensor_dict_out = sess.run(augmented_tensor_dict) self.assertAllEqual( augmented_tensor_dict_out[fields.InputDataFields.image].shape, [20, 20, 3] ) self.assertAllClose( augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes], [[10, 10, 20, 20]] ) self.assertAllClose( augmented_tensor_dict_out[fields.InputDataFields.groundtruth_classes], [1.0] ) self.assertAllClose( augmented_tensor_dict_out[ fields.InputDataFields.groundtruth_weights], [0.8] ) def test_include_masks_in_data_augmentation(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }) ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_instance_masks: tf.constant(np.zeros([2, 10, 10], np.uint8)) } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) with self.test_session() as sess: augmented_tensor_dict_out = sess.run(augmented_tensor_dict) self.assertAllEqual( augmented_tensor_dict_out[fields.InputDataFields.image].shape, [20, 20, 3]) self.assertAllEqual(augmented_tensor_dict_out[ fields.InputDataFields.groundtruth_instance_masks].shape, [2, 20, 20]) def test_include_keypoints_in_data_augmentation(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }), (preprocessor.scale_boxes_to_pixel_coordinates, {}), ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)), fields.InputDataFields.groundtruth_keypoints: tf.constant(np.array([[[0.5, 1.0], [0.5, 0.5]]], np.float32)) } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) with self.test_session() as sess: augmented_tensor_dict_out = sess.run(augmented_tensor_dict) self.assertAllEqual( augmented_tensor_dict_out[fields.InputDataFields.image].shape, [20, 20, 3] ) self.assertAllClose( augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes], [[10, 10, 20, 20]] ) self.assertAllClose( augmented_tensor_dict_out[fields.InputDataFields.groundtruth_keypoints], [[[10, 20], [10, 10]]] ) def _fake_model_preprocessor_fn(image): return (image, tf.expand_dims(tf.shape(image)[1:], axis=0)) def _fake_image_resizer_fn(image, mask): return (image, mask, tf.shape(image)) def _fake_resize50_preprocess_fn(image): image = image[0] image, shape = preprocessor.resize_to_range( image, min_dimension=50, max_dimension=50, pad_to_max_dimension=True) return tf.expand_dims(image, 0), tf.expand_dims(shape, axis=0) class DataTransformationFnTest(test_case.TestCase): def test_combine_additional_channels_if_present(self): image = np.random.rand(4, 4, 3).astype(np.float32) additional_channels = np.random.rand(4, 4, 2).astype(np.float32) tensor_dict = { fields.InputDataFields.image: tf.constant(image), fields.InputDataFields.image_additional_channels: tf.constant(additional_channels), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1, 1], np.int32)) } input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=1) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllEqual(transformed_inputs[fields.InputDataFields.image].dtype, tf.float32) self.assertAllEqual(transformed_inputs[fields.InputDataFields.image].shape, [4, 4, 5]) self.assertAllClose(transformed_inputs[fields.InputDataFields.image], np.concatenate((image, additional_channels), axis=2)) def test_use_multiclass_scores_when_present(self): image = np.random.rand(4, 4, 3).astype(np.float32) tensor_dict = { fields.InputDataFields.image: tf.constant(image), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.multiclass_scores: tf.constant(np.array([0.2, 0.3, 0.5, 0.1, 0.6, 0.3], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1, 2], np.int32)) } input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=3, use_multiclass_scores=True) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllClose( np.array([[0.2, 0.3, 0.5], [0.1, 0.6, 0.3]], np.float32), transformed_inputs[fields.InputDataFields.groundtruth_classes]) def test_use_multiclass_scores_when_not_present(self): image = np.random.rand(4, 4, 3).astype(np.float32) tensor_dict = { fields.InputDataFields.image: tf.constant(image), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.multiclass_scores: tf.placeholder(tf.float32), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1, 2], np.int32)) } input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=3, use_multiclass_scores=True) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict), feed_dict={ tensor_dict[fields.InputDataFields.multiclass_scores]: np.array([], dtype=np.float32) }) self.assertAllClose( np.array([[0, 1, 0], [0, 0, 1]], np.float32), transformed_inputs[fields.InputDataFields.groundtruth_classes]) def test_returns_correct_class_label_encodings(self): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_classes], [[0, 0, 1], [1, 0, 0]]) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_confidences], [[0, 0, 1], [1, 0, 0]]) def test_returns_correct_labels_with_unrecognized_class(self): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant( np.array([[0, 0, 1, 1], [.2, .2, 4, 4], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.groundtruth_area: tf.constant(np.array([.5, .4, .3])), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, -1, 1], np.int32)), fields.InputDataFields.groundtruth_keypoints: tf.constant( np.array([[[.1, .1]], [[.2, .2]], [[.5, .5]]], np.float32)), fields.InputDataFields.groundtruth_keypoint_visibilities: tf.constant([True, False, True]), fields.InputDataFields.groundtruth_instance_masks: tf.constant(np.random.rand(3, 4, 4).astype(np.float32)), fields.InputDataFields.groundtruth_is_crowd: tf.constant([False, True, False]), fields.InputDataFields.groundtruth_difficult: tf.constant(np.array([0, 0, 1], np.int32)) } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_classes], [[0, 0, 1], [1, 0, 0]]) self.assertAllEqual( transformed_inputs[fields.InputDataFields.num_groundtruth_boxes], 2) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_area], [.5, .3]) self.assertAllEqual( transformed_inputs[fields.InputDataFields.groundtruth_confidences], [[0, 0, 1], [1, 0, 0]]) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_boxes], [[0, 0, 1, 1], [.5, .5, 1, 1]]) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_keypoints], [[[.1, .1]], [[.5, .5]]]) self.assertAllEqual( transformed_inputs[ fields.InputDataFields.groundtruth_keypoint_visibilities], [True, True]) self.assertAllEqual( transformed_inputs[ fields.InputDataFields.groundtruth_instance_masks].shape, [2, 4, 4]) self.assertAllEqual( transformed_inputs[fields.InputDataFields.groundtruth_is_crowd], [False, False]) self.assertAllEqual( transformed_inputs[fields.InputDataFields.groundtruth_difficult], [0, 1]) def test_returns_correct_merged_boxes(self): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes, merge_multiple_boxes=True) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_boxes], [[.5, .5, 1., 1.]]) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_classes], [[1, 0, 1]]) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_confidences], [[1, 0, 1]]) self.assertAllClose( transformed_inputs[fields.InputDataFields.num_groundtruth_boxes], 1) def test_returns_correct_groundtruth_confidences_when_input_present(self): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)), fields.InputDataFields.groundtruth_confidences: tf.constant(np.array([1.0, -1.0], np.float32)) } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_classes], [[0, 0, 1], [1, 0, 0]]) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_confidences], [[0, 0, 1], [-1, 0, 0]]) def test_returns_resized_masks(self): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_instance_masks: tf.constant(np.random.rand(2, 4, 4).astype(np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)), fields.InputDataFields.original_image_spatial_shape: tf.constant(np.array([4, 4], np.int32)) } def fake_image_resizer_fn(image, masks=None): resized_image = tf.image.resize_images(image, [8, 8]) results = [resized_image] if masks is not None: resized_masks = tf.transpose( tf.image.resize_images(tf.transpose(masks, [1, 2, 0]), [8, 8]), [2, 0, 1]) results.append(resized_masks) results.append(tf.shape(resized_image)) return results num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=fake_image_resizer_fn, num_classes=num_classes, retain_original_image=True) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllEqual(transformed_inputs[ fields.InputDataFields.original_image].dtype, tf.uint8) self.assertAllEqual(transformed_inputs[ fields.InputDataFields.original_image_spatial_shape], [4, 4]) self.assertAllEqual(transformed_inputs[ fields.InputDataFields.original_image].shape, [8, 8, 3]) self.assertAllEqual(transformed_inputs[ fields.InputDataFields.groundtruth_instance_masks].shape, [2, 8, 8]) def test_applies_model_preprocess_fn_to_image_tensor(self): np_image = np.random.randint(256, size=(4, 4, 3)) tensor_dict = { fields.InputDataFields.image: tf.constant(np_image), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def fake_model_preprocessor_fn(image): return (image / 255., tf.expand_dims(tf.shape(image)[1:], axis=0)) num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllClose(transformed_inputs[fields.InputDataFields.image], np_image / 255.) self.assertAllClose(transformed_inputs[fields.InputDataFields. true_image_shape], [4, 4, 3]) def test_applies_data_augmentation_fn_to_tensor_dict(self): np_image = np.random.randint(256, size=(4, 4, 3)) tensor_dict = { fields.InputDataFields.image: tf.constant(np_image), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def add_one_data_augmentation_fn(tensor_dict): return {key: value + 1 for key, value in tensor_dict.items()} num_classes = 4 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes, data_augmentation_fn=add_one_data_augmentation_fn) with self.test_session() as sess: augmented_tensor_dict = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllEqual(augmented_tensor_dict[fields.InputDataFields.image], np_image + 1) self.assertAllEqual( augmented_tensor_dict[fields.InputDataFields.groundtruth_classes], [[0, 0, 0, 1], [0, 1, 0, 0]]) def test_applies_data_augmentation_fn_before_model_preprocess_fn(self): np_image = np.random.randint(256, size=(4, 4, 3)) tensor_dict = { fields.InputDataFields.image: tf.constant(np_image), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def mul_two_model_preprocessor_fn(image): return (image * 2, tf.expand_dims(tf.shape(image)[1:], axis=0)) def add_five_to_image_data_augmentation_fn(tensor_dict): tensor_dict[fields.InputDataFields.image] += 5 return tensor_dict num_classes = 4 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=mul_two_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes, data_augmentation_fn=add_five_to_image_data_augmentation_fn) with self.test_session() as sess: augmented_tensor_dict = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllEqual(augmented_tensor_dict[fields.InputDataFields.image], (np_image + 5) * 2) def test_resize_with_padding(self): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(100, 50, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1, 2], np.int32)), fields.InputDataFields.groundtruth_keypoints: tf.constant([[0.1, 0.2], [0.3, 0.4]]), } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_resize50_preprocess_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes,) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_boxes], [[.5, .25, 1., .5], [.0, .0, .5, .25]]) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_keypoints], [[[.1, .1], [.3, .2]]]) class PadInputDataToStaticShapesFnTest(test_case.TestCase): def test_pad_images_boxes_and_classes(self): input_tensor_dict = { fields.InputDataFields.image: tf.placeholder(tf.float32, [None, None, 3]), fields.InputDataFields.groundtruth_boxes: tf.placeholder(tf.float32, [None, 4]), fields.InputDataFields.groundtruth_classes: tf.placeholder(tf.int32, [None, 3]), fields.InputDataFields.true_image_shape: tf.placeholder(tf.int32, [3]), fields.InputDataFields.original_image_spatial_shape: tf.placeholder(tf.int32, [2]) } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), [5, 6, 3]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.true_image_shape] .shape.as_list(), [3]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.original_image_spatial_shape] .shape.as_list(), [2]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_boxes] .shape.as_list(), [3, 4]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_classes] .shape.as_list(), [3, 3]) def test_clip_boxes_and_classes(self): input_tensor_dict = { fields.InputDataFields.groundtruth_boxes: tf.placeholder(tf.float32, [None, 4]), fields.InputDataFields.groundtruth_classes: tf.placeholder(tf.int32, [None, 3]), fields.InputDataFields.num_groundtruth_boxes: tf.placeholder(tf.int32, []) } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_boxes] .shape.as_list(), [3, 4]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_classes] .shape.as_list(), [3, 3]) with self.test_session() as sess: out_tensor_dict = sess.run( padded_tensor_dict, feed_dict={ input_tensor_dict[fields.InputDataFields.groundtruth_boxes]: np.random.rand(5, 4), input_tensor_dict[fields.InputDataFields.groundtruth_classes]: np.random.rand(2, 3), input_tensor_dict[fields.InputDataFields.num_groundtruth_boxes]: 5, }) self.assertAllEqual( out_tensor_dict[fields.InputDataFields.groundtruth_boxes].shape, [3, 4]) self.assertAllEqual( out_tensor_dict[fields.InputDataFields.groundtruth_classes].shape, [3, 3]) self.assertEqual( out_tensor_dict[fields.InputDataFields.num_groundtruth_boxes], 3) def test_do_not_pad_dynamic_images(self): input_tensor_dict = { fields.InputDataFields.image: tf.placeholder(tf.float32, [None, None, 3]), } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[None, None]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), [None, None, 3]) def test_images_and_additional_channels(self): input_tensor_dict = { fields.InputDataFields.image: tf.placeholder(tf.float32, [None, None, 5]), fields.InputDataFields.image_additional_channels: tf.placeholder(tf.float32, [None, None, 2]), } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) # pad_input_data_to_static_shape assumes that image is already concatenated # with additional channels. self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), [5, 6, 5]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image_additional_channels] .shape.as_list(), [5, 6, 2]) def test_images_and_additional_channels_errors(self): input_tensor_dict = { fields.InputDataFields.image: tf.placeholder(tf.float32, [None, None, 3]), fields.InputDataFields.image_additional_channels: tf.placeholder(tf.float32, [None, None, 2]), fields.InputDataFields.original_image: tf.placeholder(tf.float32, [None, None, 3]), } with self.assertRaises(ValueError): _ = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) def test_gray_images(self): input_tensor_dict = { fields.InputDataFields.image: tf.placeholder(tf.float32, [None, None, 1]), } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), [5, 6, 1]) def test_gray_images_and_additional_channels(self): input_tensor_dict = { fields.InputDataFields.image: tf.placeholder(tf.float32, [None, None, 3]), fields.InputDataFields.image_additional_channels: tf.placeholder(tf.float32, [None, None, 2]), } # pad_input_data_to_static_shape assumes that image is already concatenated # with additional channels. padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), [5, 6, 3]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image_additional_channels] .shape.as_list(), [5, 6, 2]) def test_keypoints(self): input_tensor_dict = { fields.InputDataFields.groundtruth_keypoints: tf.placeholder(tf.float32, [None, 16, 4]), fields.InputDataFields.groundtruth_keypoint_visibilities: tf.placeholder(tf.bool, [None, 16]), } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_keypoints] .shape.as_list(), [3, 16, 4]) self.assertAllEqual( padded_tensor_dict[ fields.InputDataFields.groundtruth_keypoint_visibilities] .shape.as_list(), [3, 16]) if __name__ == '__main__': tf.test.main()
41.536776
81
0.69083
e9461939ec5e38edd12bf74c238f436cc873fc0f
5,426
py
Python
build/PureCloudPlatformClientV2/models/date_range_with_optional_end.py
cjohnson-ctl/platform-client-sdk-python
38ce53bb8012b66e8a43cc8bd6ff00cf6cc99100
[ "MIT" ]
10
2019-02-22T00:27:08.000Z
2021-09-12T23:23:44.000Z
libs/PureCloudPlatformClientV2/models/date_range_with_optional_end.py
rocketbot-cl/genesysCloud
dd9d9b5ebb90a82bab98c0d88b9585c22c91f333
[ "MIT" ]
5
2018-06-07T08:32:00.000Z
2021-07-28T17:37:26.000Z
libs/PureCloudPlatformClientV2/models/date_range_with_optional_end.py
rocketbot-cl/genesysCloud
dd9d9b5ebb90a82bab98c0d88b9585c22c91f333
[ "MIT" ]
6
2020-04-09T17:43:07.000Z
2022-02-17T08:48:05.000Z
# coding: utf-8 """ Copyright 2016 SmartBear Software Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Ref: https://github.com/swagger-api/swagger-codegen """ from pprint import pformat from six import iteritems import re import json from ..utils import sanitize_for_serialization class DateRangeWithOptionalEnd(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ DateRangeWithOptionalEnd - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'start_business_unit_date': 'date', 'end_business_unit_date': 'date' } self.attribute_map = { 'start_business_unit_date': 'startBusinessUnitDate', 'end_business_unit_date': 'endBusinessUnitDate' } self._start_business_unit_date = None self._end_business_unit_date = None @property def start_business_unit_date(self): """ Gets the start_business_unit_date of this DateRangeWithOptionalEnd. The start date for work plan rotation or an agent, interpreted in the business unit's time zone. Dates are represented as an ISO-8601 string. For example: yyyy-MM-dd :return: The start_business_unit_date of this DateRangeWithOptionalEnd. :rtype: date """ return self._start_business_unit_date @start_business_unit_date.setter def start_business_unit_date(self, start_business_unit_date): """ Sets the start_business_unit_date of this DateRangeWithOptionalEnd. The start date for work plan rotation or an agent, interpreted in the business unit's time zone. Dates are represented as an ISO-8601 string. For example: yyyy-MM-dd :param start_business_unit_date: The start_business_unit_date of this DateRangeWithOptionalEnd. :type: date """ self._start_business_unit_date = start_business_unit_date @property def end_business_unit_date(self): """ Gets the end_business_unit_date of this DateRangeWithOptionalEnd. The end date for work plan rotation or an agent, interpreted in the business unit's time zone. Null denotes open ended date range. Dates are represented as an ISO-8601 string. For example: yyyy-MM-dd :return: The end_business_unit_date of this DateRangeWithOptionalEnd. :rtype: date """ return self._end_business_unit_date @end_business_unit_date.setter def end_business_unit_date(self, end_business_unit_date): """ Sets the end_business_unit_date of this DateRangeWithOptionalEnd. The end date for work plan rotation or an agent, interpreted in the business unit's time zone. Null denotes open ended date range. Dates are represented as an ISO-8601 string. For example: yyyy-MM-dd :param end_business_unit_date: The end_business_unit_date of this DateRangeWithOptionalEnd. :type: date """ self._end_business_unit_date = end_business_unit_date def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_json(self): """ Returns the model as raw JSON """ return json.dumps(sanitize_for_serialization(self.to_dict())) def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
34.56051
207
0.63638
9f3d583430c06ace8d37ad0aefc7a07f17a8ddee
292
py
Python
suzieq/sqobjects/ifCounters.py
ewlumpkin/suzieq
9d55a46a631f01535d5b8ab1c0b870f840bbc526
[ "Apache-2.0" ]
null
null
null
suzieq/sqobjects/ifCounters.py
ewlumpkin/suzieq
9d55a46a631f01535d5b8ab1c0b870f840bbc526
[ "Apache-2.0" ]
null
null
null
suzieq/sqobjects/ifCounters.py
ewlumpkin/suzieq
9d55a46a631f01535d5b8ab1c0b870f840bbc526
[ "Apache-2.0" ]
null
null
null
from suzieq.sqobjects.basicobj import SqObject class IfCountersObj(SqObject): def __init__(self, **kwargs): super().__init__(table='ifCounters', **kwargs) self._valid_get_args = ['namespace', 'hostname', 'columns', 'ifname', 'query_str']
32.444444
77
0.616438
df80b7003f5ee3d8e801a8d69947af261738663c
96
py
Python
.tox/py27/lib/python2.7/re.py
RGKim/locustksy
018322331d37483acf61e210302e4e1da21d719f
[ "MIT" ]
8
2019-01-14T14:49:09.000Z
2020-07-24T18:32:06.000Z
ENV/lib/python2.7/re.py
timxor/onchainjobs
61f45b1bf2f88fd9c7de90ac43932dbe01cd43b7
[ "MIT" ]
7
2018-11-26T01:07:13.000Z
2018-11-26T08:01:59.000Z
ENV/lib/python2.7/re.py
timxor/onchainjobs
61f45b1bf2f88fd9c7de90ac43932dbe01cd43b7
[ "MIT" ]
1
2019-09-01T05:47:58.000Z
2019-09-01T05:47:58.000Z
/usr/local/Cellar/python@2/2.7.15_1/Frameworks/Python.framework/Versions/2.7/lib/python2.7/re.py
96
96
0.802083
b8afbd2ced86a49470dd704a579a10d78c158c03
19,359
py
Python
tensorflow/models/embedding/word2vec.py
285219011/hello-world
dfb71ea206eb9f61e5d97c9727caa1a6449e39cb
[ "Apache-2.0" ]
6
2017-04-25T01:30:41.000Z
2019-12-11T15:08:46.000Z
tensorflow/models/embedding/word2vec.py
PaulTR/tensorflow
84bcff1e814ee5697b5980535583737f8e81d82f
[ "Apache-2.0" ]
null
null
null
tensorflow/models/embedding/word2vec.py
PaulTR/tensorflow
84bcff1e814ee5697b5980535583737f8e81d82f
[ "Apache-2.0" ]
8
2017-04-17T23:39:12.000Z
2019-05-11T14:06:31.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Multi-threaded word2vec mini-batched skip-gram model. Trains the model described in: (Mikolov, et. al.) Efficient Estimation of Word Representations in Vector Space ICLR 2013. http://arxiv.org/abs/1301.3781 This model does traditional minibatching. The key ops used are: * placeholder for feeding in tensors for each example. * embedding_lookup for fetching rows from the embedding matrix. * sigmoid_cross_entropy_with_logits to calculate the loss. * GradientDescentOptimizer for optimizing the loss. * skipgram custom op that does input processing. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import threading import time from six.moves import xrange # pylint: disable=redefined-builtin import numpy as np import tensorflow as tf from tensorflow.models.embedding import gen_word2vec as word2vec flags = tf.app.flags flags.DEFINE_string("save_path", None, "Directory to write the model and " "training summaries.") flags.DEFINE_string("train_data", None, "Training text file. " "E.g., unzipped file http://mattmahoney.net/dc/text8.zip.") flags.DEFINE_string( "eval_data", None, "File consisting of analogies of four tokens." "embedding 2 - embedding 1 + embedding 3 should be close " "to embedding 4." "E.g. https://word2vec.googlecode.com/svn/trunk/questions-words.txt.") flags.DEFINE_integer("embedding_size", 200, "The embedding dimension size.") flags.DEFINE_integer( "epochs_to_train", 15, "Number of epochs to train. Each epoch processes the training data once " "completely.") flags.DEFINE_float("learning_rate", 0.2, "Initial learning rate.") flags.DEFINE_integer("num_neg_samples", 100, "Negative samples per training example.") flags.DEFINE_integer("batch_size", 16, "Number of training examples processed per step " "(size of a minibatch).") flags.DEFINE_integer("concurrent_steps", 12, "The number of concurrent training steps.") flags.DEFINE_integer("window_size", 5, "The number of words to predict to the left and right " "of the target word.") flags.DEFINE_integer("min_count", 5, "The minimum number of word occurrences for it to be " "included in the vocabulary.") flags.DEFINE_float("subsample", 1e-3, "Subsample threshold for word occurrence. Words that appear " "with higher frequency will be randomly down-sampled. Set " "to 0 to disable.") flags.DEFINE_boolean( "interactive", False, "If true, enters an IPython interactive session to play with the trained " "model. E.g., try model.analogy(b'france', b'paris', b'russia') and " "model.nearby([b'proton', b'elephant', b'maxwell'])") flags.DEFINE_integer("statistics_interval", 5, "Print statistics every n seconds.") flags.DEFINE_integer("summary_interval", 5, "Save training summary to file every n seconds (rounded " "up to statistics interval).") flags.DEFINE_integer("checkpoint_interval", 600, "Checkpoint the model (i.e. save the parameters) every n " "seconds (rounded up to statistics interval).") FLAGS = flags.FLAGS class Options(object): """Options used by our word2vec model.""" def __init__(self): # Model options. # Embedding dimension. self.emb_dim = FLAGS.embedding_size # Training options. # The training text file. self.train_data = FLAGS.train_data # Number of negative samples per example. self.num_samples = FLAGS.num_neg_samples # The initial learning rate. self.learning_rate = FLAGS.learning_rate # Number of epochs to train. After these many epochs, the learning # rate decays linearly to zero and the training stops. self.epochs_to_train = FLAGS.epochs_to_train # Concurrent training steps. self.concurrent_steps = FLAGS.concurrent_steps # Number of examples for one training step. self.batch_size = FLAGS.batch_size # The number of words to predict to the left and right of the target word. self.window_size = FLAGS.window_size # The minimum number of word occurrences for it to be included in the # vocabulary. self.min_count = FLAGS.min_count # Subsampling threshold for word occurrence. self.subsample = FLAGS.subsample # How often to print statistics. self.statistics_interval = FLAGS.statistics_interval # How often to write to the summary file (rounds up to the nearest # statistics_interval). self.summary_interval = FLAGS.summary_interval # How often to write checkpoints (rounds up to the nearest statistics # interval). self.checkpoint_interval = FLAGS.checkpoint_interval # Where to write out summaries. self.save_path = FLAGS.save_path # Eval options. # The text file for eval. self.eval_data = FLAGS.eval_data class Word2Vec(object): """Word2Vec model (Skipgram).""" def __init__(self, options, session): self._options = options self._session = session self._word2id = {} self._id2word = [] self.build_graph() self.build_eval_graph() self.save_vocab() self._read_analogies() def _read_analogies(self): """Reads through the analogy question file. Returns: questions: a [n, 4] numpy array containing the analogy question's word ids. questions_skipped: questions skipped due to unknown words. """ questions = [] questions_skipped = 0 with open(self._options.eval_data, "rb") as analogy_f: for line in analogy_f: if line.startswith(b":"): # Skip comments. continue words = line.strip().lower().split(b" ") ids = [self._word2id.get(w.strip()) for w in words] if None in ids or len(ids) != 4: questions_skipped += 1 else: questions.append(np.array(ids)) print("Eval analogy file: ", self._options.eval_data) print("Questions: ", len(questions)) print("Skipped: ", questions_skipped) self._analogy_questions = np.array(questions, dtype=np.int32) def forward(self, examples, labels): """Build the graph for the forward pass.""" opts = self._options # Declare all variables we need. # Embedding: [vocab_size, emb_dim] init_width = 0.5 / opts.emb_dim emb = tf.Variable( tf.random_uniform( [opts.vocab_size, opts.emb_dim], -init_width, init_width), name="emb") self._emb = emb # Softmax weight: [vocab_size, emb_dim]. Transposed. sm_w_t = tf.Variable( tf.zeros([opts.vocab_size, opts.emb_dim]), name="sm_w_t") # Softmax bias: [emb_dim]. sm_b = tf.Variable(tf.zeros([opts.vocab_size]), name="sm_b") # Global step: scalar, i.e., shape []. self.global_step = tf.Variable(0, name="global_step") # Nodes to compute the nce loss w/ candidate sampling. labels_matrix = tf.reshape( tf.cast(labels, dtype=tf.int64), [opts.batch_size, 1]) # Negative sampling. sampled_ids, _, _ = (tf.nn.fixed_unigram_candidate_sampler( true_classes=labels_matrix, num_true=1, num_sampled=opts.num_samples, unique=True, range_max=opts.vocab_size, distortion=0.75, unigrams=opts.vocab_counts.tolist())) # Embeddings for examples: [batch_size, emb_dim] example_emb = tf.nn.embedding_lookup(emb, examples) # Weights for labels: [batch_size, emb_dim] true_w = tf.nn.embedding_lookup(sm_w_t, labels) # Biases for labels: [batch_size, 1] true_b = tf.nn.embedding_lookup(sm_b, labels) # Weights for sampled ids: [num_sampled, emb_dim] sampled_w = tf.nn.embedding_lookup(sm_w_t, sampled_ids) # Biases for sampled ids: [num_sampled, 1] sampled_b = tf.nn.embedding_lookup(sm_b, sampled_ids) # True logits: [batch_size, 1] true_logits = tf.reduce_sum(tf.mul(example_emb, true_w), 1) + true_b # Sampled logits: [batch_size, num_sampled] # We replicate sampled noise lables for all examples in the batch # using the matmul. sampled_b_vec = tf.reshape(sampled_b, [opts.num_samples]) sampled_logits = tf.matmul(example_emb, sampled_w, transpose_b=True) + sampled_b_vec return true_logits, sampled_logits def nce_loss(self, true_logits, sampled_logits): """Build the graph for the NCE loss.""" # cross-entropy(logits, labels) opts = self._options true_xent = tf.nn.sigmoid_cross_entropy_with_logits( true_logits, tf.ones_like(true_logits)) sampled_xent = tf.nn.sigmoid_cross_entropy_with_logits( sampled_logits, tf.zeros_like(sampled_logits)) # NCE-loss is the sum of the true and noise (sampled words) # contributions, averaged over the batch. nce_loss_tensor = (tf.reduce_sum(true_xent) + tf.reduce_sum(sampled_xent)) / opts.batch_size return nce_loss_tensor def optimize(self, loss): """Build the graph to optimize the loss function.""" # Optimizer nodes. # Linear learning rate decay. opts = self._options words_to_train = float(opts.words_per_epoch * opts.epochs_to_train) lr = opts.learning_rate * tf.maximum( 0.0001, 1.0 - tf.cast(self._words, tf.float32) / words_to_train) self._lr = lr optimizer = tf.train.GradientDescentOptimizer(lr) train = optimizer.minimize(loss, global_step=self.global_step, gate_gradients=optimizer.GATE_NONE) self._train = train def build_eval_graph(self): """Build the eval graph.""" # Eval graph # Each analogy task is to predict the 4th word (d) given three # words: a, b, c. E.g., a=italy, b=rome, c=france, we should # predict d=paris. # The eval feeds three vectors of word ids for a, b, c, each of # which is of size N, where N is the number of analogies we want to # evaluate in one batch. analogy_a = tf.placeholder(dtype=tf.int32) # [N] analogy_b = tf.placeholder(dtype=tf.int32) # [N] analogy_c = tf.placeholder(dtype=tf.int32) # [N] # Normalized word embeddings of shape [vocab_size, emb_dim]. nemb = tf.nn.l2_normalize(self._emb, 1) # Each row of a_emb, b_emb, c_emb is a word's embedding vector. # They all have the shape [N, emb_dim] a_emb = tf.gather(nemb, analogy_a) # a's embs b_emb = tf.gather(nemb, analogy_b) # b's embs c_emb = tf.gather(nemb, analogy_c) # c's embs # We expect that d's embedding vectors on the unit hyper-sphere is # near: c_emb + (b_emb - a_emb), which has the shape [N, emb_dim]. target = c_emb + (b_emb - a_emb) # Compute cosine distance between each pair of target and vocab. # dist has shape [N, vocab_size]. dist = tf.matmul(target, nemb, transpose_b=True) # For each question (row in dist), find the top 4 words. _, pred_idx = tf.nn.top_k(dist, 4) # Nodes for computing neighbors for a given word according to # their cosine distance. nearby_word = tf.placeholder(dtype=tf.int32) # word id nearby_emb = tf.gather(nemb, nearby_word) nearby_dist = tf.matmul(nearby_emb, nemb, transpose_b=True) nearby_val, nearby_idx = tf.nn.top_k(nearby_dist, min(1000, self._options.vocab_size)) # Nodes in the construct graph which are used by training and # evaluation to run/feed/fetch. self._analogy_a = analogy_a self._analogy_b = analogy_b self._analogy_c = analogy_c self._analogy_pred_idx = pred_idx self._nearby_word = nearby_word self._nearby_val = nearby_val self._nearby_idx = nearby_idx def build_graph(self): """Build the graph for the full model.""" opts = self._options # The training data. A text file. (words, counts, words_per_epoch, self._epoch, self._words, examples, labels) = word2vec.skipgram(filename=opts.train_data, batch_size=opts.batch_size, window_size=opts.window_size, min_count=opts.min_count, subsample=opts.subsample) (opts.vocab_words, opts.vocab_counts, opts.words_per_epoch) = self._session.run([words, counts, words_per_epoch]) opts.vocab_size = len(opts.vocab_words) print("Data file: ", opts.train_data) print("Vocab size: ", opts.vocab_size - 1, " + UNK") print("Words per epoch: ", opts.words_per_epoch) self._examples = examples self._labels = labels self._id2word = opts.vocab_words for i, w in enumerate(self._id2word): self._word2id[w] = i true_logits, sampled_logits = self.forward(examples, labels) loss = self.nce_loss(true_logits, sampled_logits) tf.scalar_summary("NCE loss", loss) self._loss = loss self.optimize(loss) # Properly initialize all variables. tf.initialize_all_variables().run() self.saver = tf.train.Saver() def save_vocab(self): """Save the vocabulary to a file so the model can be reloaded.""" opts = self._options with open(os.path.join(opts.save_path, "vocab.txt"), "w") as f: for i in xrange(opts.vocab_size): f.write("%s %d\n" % (tf.compat.as_text(opts.vocab_words[i]), opts.vocab_counts[i])) def _train_thread_body(self): initial_epoch, = self._session.run([self._epoch]) while True: _, epoch = self._session.run([self._train, self._epoch]) if epoch != initial_epoch: break def train(self): """Train the model.""" opts = self._options initial_epoch, initial_words = self._session.run([self._epoch, self._words]) summary_op = tf.merge_all_summaries() summary_writer = tf.train.SummaryWriter(opts.save_path, self._session.graph) workers = [] for _ in xrange(opts.concurrent_steps): t = threading.Thread(target=self._train_thread_body) t.start() workers.append(t) last_words, last_time, last_summary_time = initial_words, time.time(), 0 last_checkpoint_time = 0 while True: time.sleep(opts.statistics_interval) # Reports our progress once a while. (epoch, step, loss, words, lr) = self._session.run( [self._epoch, self.global_step, self._loss, self._words, self._lr]) now = time.time() last_words, last_time, rate = words, now, (words - last_words) / ( now - last_time) print("Epoch %4d Step %8d: lr = %5.3f loss = %6.2f words/sec = %8.0f\r" % (epoch, step, lr, loss, rate), end="") sys.stdout.flush() if now - last_summary_time > opts.summary_interval: summary_str = self._session.run(summary_op) summary_writer.add_summary(summary_str, step) last_summary_time = now if now - last_checkpoint_time > opts.checkpoint_interval: self.saver.save(self._session, os.path.join(opts.save_path, "model.ckpt"), global_step=step.astype(int)) last_checkpoint_time = now if epoch != initial_epoch: break for t in workers: t.join() return epoch def _predict(self, analogy): """Predict the top 4 answers for analogy questions.""" idx, = self._session.run([self._analogy_pred_idx], { self._analogy_a: analogy[:, 0], self._analogy_b: analogy[:, 1], self._analogy_c: analogy[:, 2] }) return idx def eval(self): """Evaluate analogy questions and reports accuracy.""" # How many questions we get right at precision@1. correct = 0 total = self._analogy_questions.shape[0] start = 0 while start < total: limit = start + 2500 sub = self._analogy_questions[start:limit, :] idx = self._predict(sub) start = limit for question in xrange(sub.shape[0]): for j in xrange(4): if idx[question, j] == sub[question, 3]: # Bingo! We predicted correctly. E.g., [italy, rome, france, paris]. correct += 1 break elif idx[question, j] in sub[question, :3]: # We need to skip words already in the question. continue else: # The correct label is not the precision@1 break print() print("Eval %4d/%d accuracy = %4.1f%%" % (correct, total, correct * 100.0 / total)) def analogy(self, w0, w1, w2): """Predict word w3 as in w0:w1 vs w2:w3.""" wid = np.array([[self._word2id.get(w, 0) for w in [w0, w1, w2]]]) idx = self._predict(wid) for c in [self._id2word[i] for i in idx[0, :]]: if c not in [w0, w1, w2]: return c return "unknown" def nearby(self, words, num=20): """Prints out nearby words given a list of words.""" ids = np.array([self._word2id.get(x, 0) for x in words]) vals, idx = self._session.run( [self._nearby_val, self._nearby_idx], {self._nearby_word: ids}) for i in xrange(len(words)): print("\n%s\n=====================================" % (words[i])) for (neighbor, distance) in zip(idx[i, :num], vals[i, :num]): print("%-20s %6.4f" % (self._id2word[neighbor], distance)) def _start_shell(local_ns=None): # An interactive shell is useful for debugging/development. import IPython user_ns = {} if local_ns: user_ns.update(local_ns) user_ns.update(globals()) IPython.start_ipython(argv=[], user_ns=user_ns) def main(_): """Train a word2vec model.""" if not FLAGS.train_data or not FLAGS.eval_data or not FLAGS.save_path: print("--train_data --eval_data and --save_path must be specified.") sys.exit(1) opts = Options() with tf.Graph().as_default(), tf.Session() as session: with tf.device("/cpu:0"): model = Word2Vec(opts, session) for _ in xrange(opts.epochs_to_train): model.train() # Process one epoch model.eval() # Eval analogies. # Perform a final save. model.saver.save(session, os.path.join(opts.save_path, "model.ckpt"), global_step=model.global_step) if FLAGS.interactive: # E.g., # [0]: model.analogy(b'france', b'paris', b'russia') # [1]: model.nearby([b'proton', b'elephant', b'maxwell']) _start_shell(locals()) if __name__ == "__main__": tf.app.run()
36.734345
80
0.649155
4903483dd9efe44dadf1e149b59c19fa0581388f
6,916
py
Python
onnxruntime/python/tools/featurizer_ops/data_frame_tool.py
michaelgsharp/onnxruntime
da653ccdac344372052025d95cc84e93237f6f84
[ "MIT" ]
null
null
null
onnxruntime/python/tools/featurizer_ops/data_frame_tool.py
michaelgsharp/onnxruntime
da653ccdac344372052025d95cc84e93237f6f84
[ "MIT" ]
null
null
null
onnxruntime/python/tools/featurizer_ops/data_frame_tool.py
michaelgsharp/onnxruntime
da653ccdac344372052025d95cc84e93237f6f84
[ "MIT" ]
1
2020-10-01T09:26:19.000Z
2020-10-01T09:26:19.000Z
#------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. #-------------------------------------------------------------------------- import numpy as np import onnxruntime as onnxrt ort_float_set = set([np.float32, np.float64]) pd_float_set = set(['float64']) ort_int_set = set([np.int8, np.uint8, np.int16, np.uint16, np.int32, np.uint32, np.int64, np.uint64]) pd_int_set = set(['int64']) types_dict = { 'tensor(float16)': np.float16, 'tensor(float)' : np.float32, 'tensor(double)' : np.float64, 'tensor(int8)' : np.int8, 'tensor(uint8)' : np.uint8, 'tensor(int16)' : np.int16, 'tensor(uint16)' : np.uint16, 'tensor(int32)' : np.int32, 'tensor(uint32)' : np.uint32, 'tensor(int64)' : np.int64, 'tensor(uint64)' : np.uint64, 'tensor(bool)' : np.bool, 'tensor(string)' : np.object } class DataFrameTool(): """ This is a utility class used to run a model with pandas.DataFrame input """ def __init__(self, model_path, sess_options=None): """ :param model_path: path to the model to be loaded :param sess_options: see onnxruntime.SessionsOptions """ self._model_path = model_path self._sess_options = sess_options self._sess = onnxrt.InferenceSession(self._model_path, self._sess_options) def _reshape_input(self, input_array, expected_shape): """ :param - input_array numpy array. This one is obtained from DataFrame and expected to have : a rank if 1. :expected_shape - shape fetched from the model which may include dynamic elements. : expected_shape may at most have one -1, None or zero which will be computed from : the size of the input_array. We replace None and zeros to -1 and let np.ndarray.reshape deal with it. """ # expected_shape rank is one, we will let onnxruntime to deal with it if len(expected_shape) == 1: return input_array inferred_shape = [dim if dim else -1 for dim in expected_shape] return input_array.reshape(inferred_shape) def _validate_type(self, input_meta, col_type): """ : input_meta - meta info obtained from the model for the given input : col_type - dtype of the column : throws if conditions are not met float16 and bool will always require exact match We attempt to convert any type to a string if it is required. With strings we always want to put this into a flat array, cast to np.object and then reshape as object Any other type to qualify for casting must match either integer or floating point types """ expected_type = types_dict[input_meta.type] if input_meta.type == 'tensor(string)': return elif expected_type == col_type: return elif expected_type in ort_float_set and str(col_type) in pd_float_set: return elif expected_type in ort_int_set and str(col_type) in pd_int_set: return raise TypeError("Input {} requires type {} unable to cast column type {} ".format( input_meta.name, expected_type, col_type)) def _process_input_list(self, df, input_metas, require): """ Return a dictionary of input_name : a typed and shaped np.array of values for a given input_meta The function does the heavy lifting for _get_input_feeds() :param df: See :class:`pandas.DataFrame`. :param input_metas: a list of name/type pairs :require is a boolean. If True this helper throws on a missing input. """ feeds = {} # Process mandadory inputs. Raise an error if anything is not present for input_meta in input_metas: # We fully expect all the types are in the above dictionary assert input_meta.type in types_dict, "Update types_dict for the new type" if input_meta.name in df.columns: self._validate_type(input_meta, df[input_meta.name].dtype) # With strings we must cast first to np.object then then reshape # so we do it for everything input_array = np.array(df[input_meta.name]).astype(types_dict[input_meta.type]) feeds[input_meta.name] = self._reshape_input(input_array, input_meta.shape) elif require: raise RuntimeError("This model requires input {} of type {} but it is not found in the DataFrame".format( input_meta.name, types_dict[input_meta.type])) return feeds def _get_input_feeds(self, df, sess): """ Return a dictionary of input_name : a typed and shaped np.array of values This function accepts Pandas DataFrame as the first argument and onnxruntime session with a loaded model. The function interrogates the model for the inputs and matches the model input names to the DataFrame instance column names. It requires exact matches for bool and float16 types. It attempts to convert to string any input type if string is required. It attempts to convert floating types to each other and does the same for all of the integer types without requiring an exact match. :param df: See :class:`pandas.DataFrame`. The function only considers the first row (0) of each column and feeds the data to the appropriate model inputs. :param sess: See :class:`onnxruntime.InferenceSession`. :: For example: pd.DataFrame([[0], [4],[20]],index=[0], columns=['A', 'B', 'C']) """ if df.empty: raise RuntimeError('input DataFrame is empty') # Process mandadory inputs. Raise an error if anything is not present feeds = self._process_input_list(df, sess.get_inputs(), True) # Process optional overridable initializers. If present the initialzier value # is overriden by the input. If not, the initialzier value embedded in the model takes effect. initializers = self._process_input_list(df, sess.get_overridable_initializers(), False) feeds.update(initializers) return feeds def execute(self, df, output_names, run_options=None): "Return a list of output values restricted to output names if not empty" """ Compute the predictions. :param df: See :class:`pandas.DataFrame`. :param output_names: name of the outputs that we are interested in :param run_options: See :class:`onnxruntime.RunOptions`. :: sess.run([output_name], {input_name: x}) """ input_feed = self._get_input_feeds(df, self._sess); return self._sess.run(output_names, input_feed, run_options)
41.915152
121
0.640977
dd55389311667ceb97d8f7ce7a857b30070d2523
11,910
py
Python
symphony/bdk/gen/pod_model/avatar.py
SymphonyOSF/symphony-api-client-python
70137a893f4385381a3158ef80e1be156e0fc4bd
[ "Apache-2.0" ]
null
null
null
symphony/bdk/gen/pod_model/avatar.py
SymphonyOSF/symphony-api-client-python
70137a893f4385381a3158ef80e1be156e0fc4bd
[ "Apache-2.0" ]
null
null
null
symphony/bdk/gen/pod_model/avatar.py
SymphonyOSF/symphony-api-client-python
70137a893f4385381a3158ef80e1be156e0fc4bd
[ "Apache-2.0" ]
null
null
null
""" Pod API This document refers to Symphony API calls that do not need encryption or decryption of content. - sessionToken can be obtained by calling the authenticationAPI on the symphony back end and the key manager respectively. Refer to the methods described in authenticatorAPI.yaml. - Actions are defined to be atomic, ie will succeed in their entirety or fail and have changed nothing. - If it returns a 40X status then it will have made no change to the system even if ome subset of the request would have succeeded. - If this contract cannot be met for any reason then this is an error and the response code will be 50X. # noqa: E501 The version of the OpenAPI document: 20.14.1 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from typing import List, Union from symphony.bdk.gen.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from symphony.bdk.gen.exceptions import ApiAttributeError class Avatar(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a pod_model may have properties that are of type self, this must run after the class is loaded """ return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a pod_model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'size': (str, none_type), # noqa: E501 'url': (str, none_type), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'size': 'size', # noqa: E501 'url': 'url', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """Avatar - a pod_model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the pod_model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) size (str): The Avatar Size. [optional] # noqa: E501 url (str): Url of the image. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """Avatar - a pod_model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the pod_model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) size (str): The Avatar Size. [optional] # noqa: E501 url (str): Url of the image. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.size: str = None self.url: str = None for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
45.458015
637
0.578338
4e20437718718ca5e18a0b0e3ebdbc65cd30681e
1,136
py
Python
Patchport.py
zj3t/FirmAE
9b411a220966dc477df07f76c5354bdd213732ac
[ "MIT" ]
null
null
null
Patchport.py
zj3t/FirmAE
9b411a220966dc477df07f76c5354bdd213732ac
[ "MIT" ]
null
null
null
Patchport.py
zj3t/FirmAE
9b411a220966dc477df07f76c5354bdd213732ac
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import os import sys import subprocess def command(cmd): try: result = subprocess.check_output(cmd, shell=True) result = result.decode().split('\n')[:-1] except: result = '' return result def Patchport(INDEX): os.chdir('./scripts') for i in range(1,10): find ="listen=:"+str(i)+"00" match = "listen=:"+str(INDEX)+"00" cmd = 'find ./makeNetwork.py -name "*" -exec perl -pi -e "s/'+str(find)+'/'+str(match)+'/g" {} \;' command(cmd+' 2> /dev/null') print("Patch "+str(i)) os.chdir('../') if __name__ == "__main__": INDEX = sys.argv[1] argc = len(sys.argv) if argc != 2: print('Arguement Error') if int(INDEX) <= 0 or int(INDEX) > 9: sys.exit(-1) buf = [] while True: if int(INDEX) >= 10: print("INDEX 0~9") sys.exit(-1) buf = command('netstat -nlp | grep "'+str(INDEX)+'001"') if len(buf) != 0: INDEX = input("Already Use, bind error...'\n INDEX : ") else: Patchport(INDEX) break
22.27451
106
0.505282
a228a29e6e89415385e57a4ac3d987c0bc283403
3,017
py
Python
Original_Data/providence_tide_gage_hourly.py
ccb60/Providence_SLR
240de3a42761a5b309a86f424155720e5a6caa44
[ "MIT" ]
null
null
null
Original_Data/providence_tide_gage_hourly.py
ccb60/Providence_SLR
240de3a42761a5b309a86f424155720e5a6caa44
[ "MIT" ]
null
null
null
Original_Data/providence_tide_gage_hourly.py
ccb60/Providence_SLR
240de3a42761a5b309a86f424155720e5a6caa44
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Quick script to download Providence Tide Station data to CSV files A script is convenient because hourly data are only available on a yearly basis. @author: Curtis """ import requests from datetime import date MONTHLENGTHS = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] BASE = r'https://tidesandcurrents.noaa.gov/api/datagetter' PARAMETERS = { 'station':'8454000', # Providence'', Maine 'product':'hourly_height', # other products for this station include':' # Air Temperature air_temperature # Water Temperature water_temperature # Barometric Pressure air_pressure # Predicted tides predictions # Observed Water Levels water_level # Hourly heights hourly_height (predates six minute data) # datums may also be useful to convert between units on the fly 'application':'CascoBayEstuaryPartnership', # This is just to be polite 'begin_date':'20150101', # express dates in yyyymmdd or mm/dd/yyyy format 'end_date':'20150105', 'datum':'MLLW', # many alternatives. Most likely would be MSL, MLLW or NAVD 'units':'metric', 'time_zone':'lst', # This gives consistent time, without DST, Alternatives: gmt or lst_dst 'format':'csv', # also available are json and xml 'interval':'h' # only need to specify 'h', hourly, or 'hilo' 6 min is default } def setupfile(thefilename): with open(thefilename, 'w') as outfile: outfile.write('DateTime, Date, Time, Water Level, Sigma\n') def assembleurl(base, parms): theurl = base + '?' for k,v in parms.iteritems(): theurl += k + '=' + v + '&' return theurl[:-1] def adddata(thefilename, theresponse): with open(thefilename, 'a') as outfile: for a in theresponse.split('\n'): if a[:4] == 'Date': #Eliminate the header row for each pass continue if a[:6] == 'Error': # Eliminate rows that say there's a problem continue if a.find('1,1,1') == -1: # Eliminate rows that contain no real data because of errors try: lst = a.split(',') thedate, thetime = lst[0].split() except ValueError: # If you can't parse the line, skip it! continue outfile.write(lst[0] + ',' + thedate + ',' + thetime + ',' + lst[1] + ',' + lst[2] + '\n') if __name__ == '__main__': thefile = 'providence_tides_hourly.csv' setupfile(thefile) # this will erase any file with the same name. for year in range(1938, 2021): print ('Year:', year) begindate = str(year) + '0101' enddate = str(year) + '1231' PARAMETERS['begin_date'] = begindate PARAMETERS['end_date'] = enddate #url = assembleurl(BASE, PARAMETERS) response = requests.get(BASE, PARAMETERS) adddata(thefile, response.text)
40.226667
99
0.598276
640fb8f59b586f7e2c012fccd1c30ed06e9f7280
481
py
Python
Train_Model/util/tokenizer_helpers.py
collinli2022/2021_June_TeenHacks
1804645c8ece1d73ea4f00ee9d7be2bfb5037e71
[ "MIT" ]
2
2020-01-29T20:35:47.000Z
2021-04-29T02:57:01.000Z
Train_Model/util/tokenizer_helpers.py
collinli2022/2021_June_TeenHacks
1804645c8ece1d73ea4f00ee9d7be2bfb5037e71
[ "MIT" ]
11
2018-12-01T00:40:25.000Z
2022-02-10T00:05:58.000Z
Train_Model/util/tokenizer_helpers.py
collinli2022/2021_June_TeenHacks
1804645c8ece1d73ea4f00ee9d7be2bfb5037e71
[ "MIT" ]
null
null
null
# Keras Tokenizer Serialization # Written by Gautam Mittal import pickle, json def save_tokenizer(filepath, tokenizer): with open(filepath, 'wb') as handle: pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL) def load_tokenizer(filepath): with open(filepath, 'rb') as handle: return pickle.load(handle) def save_word_index(filepath, tokenizer): with open(filepath, 'w') as handle: handle.write(json.dumps(tokenizer.word_index))
28.294118
72
0.72973
16209d66f50cc03dd249efd7cacb5ebda93ffb94
53
py
Python
qtable/__init__.py
ihgazni2/qtable
269bb1052d7c7aeeae4d0b1024746fae38870c40
[ "MIT" ]
null
null
null
qtable/__init__.py
ihgazni2/qtable
269bb1052d7c7aeeae4d0b1024746fae38870c40
[ "MIT" ]
null
null
null
qtable/__init__.py
ihgazni2/qtable
269bb1052d7c7aeeae4d0b1024746fae38870c40
[ "MIT" ]
null
null
null
__all__ = ["qtable","engine","ndarr","locs","utils"]
26.5
52
0.622642
5c418a8d46fcbfa9c3eaa13cf8de1f604df55b72
4,360
py
Python
pyspedas/mms/fpi/mms_load_fpi_calc_pad.py
ergsc-devel/pyspedas
43d985cbcd23c54205453b06e08f8e51d29ab435
[ "MIT" ]
75
2019-02-22T12:59:33.000Z
2022-02-26T15:33:20.000Z
pyspedas/mms/fpi/mms_load_fpi_calc_pad.py
ergsc-devel/pyspedas
43d985cbcd23c54205453b06e08f8e51d29ab435
[ "MIT" ]
40
2019-07-02T07:46:34.000Z
2022-02-23T21:48:50.000Z
pyspedas/mms/fpi/mms_load_fpi_calc_pad.py
ergsc-devel/pyspedas
43d985cbcd23c54205453b06e08f8e51d29ab435
[ "MIT" ]
43
2019-02-22T13:03:41.000Z
2022-01-24T19:26:59.000Z
from pyspedas import tnames from pytplot import get_data, store_data, options def mms_load_fpi_calc_pad(probe='1', level='sitl', datatype='', data_rate='', suffix='', autoscale=True): """ Calculates the omni-directional pitch angle distribution (summed and averaged) from the individual tplot variables Parameters ---------- probe: str probe, valid values for MMS probes are ['1','2','3','4']. level: str indicates level of data processing. the default if no level is specified is 'sitl' datatype: str Valid datatypes for FPI are: Quicklook: ['des', 'dis'] SITL: '' (none; loads both electron and ion data from single CDF) L1b/L2: ['des-dist', 'dis-dist', 'dis-moms', 'des-moms'] data_rate: str instrument data rates for FPI include 'brst' and 'fast'. The default is 'fast'. suffix: str The tplot variable names will be given this suffix. By default, no suffix is added. autoscale: bool If set, use the default zrange; otherwise, use the min and max of the data for the zrange Returns: List of tplot variables created. """ out_vars = [] if isinstance(datatype, str): if datatype == '*' or datatype == '': if level.lower() == 'ql': datatype = ['des', 'dis'] else: datatype = ['des-dist', 'dis-dist'] if isinstance(datatype, str): datatype = [datatype] for dtype in datatype: species = dtype[1] if level.lower() == 'sitl': spec_str_format = 'PitchAngDist' obs_str_format = '_fpi_' + species else: spec_str_format = 'pitchAngDist' obs_str_format = '_d' + species + 's_' obsstr = 'mms' + str(probe) + obs_str_format if level.lower() == 'l2': spec_str_format = 'pitchangdist' pad_vars = [obsstr+spec_str_format+'_'+erange+'en_'+data_rate+suffix for erange in ['low', 'mid', 'high']] else: pad_vars = [obsstr+spec_str_format+'_'+erange+'En'+suffix for erange in ['low', 'mid', 'high']] pad_avg_name = obsstr+'PitchAngDist_avg'+suffix low_en = get_data(pad_vars[0]) mid_en = get_data(pad_vars[1]) high_en = get_data(pad_vars[2]) if low_en is None or mid_en is None or high_en is None: v3_low_pad = tnames(pad_vars[0].lower()+'_'+data_rate) v3_mid_pad = tnames(pad_vars[1].lower()+'_'+data_rate) v3_high_pad = tnames(pad_vars[2].lower()+'_'+data_rate) if v3_low_pad == [] or v3_mid_pad == [] or v3_high_pad == []: continue low_en = get_data(v3_low_pad[0]) mid_en = get_data(v3_mid_pad[0]) high_en = get_data(v3_high_pad[0]) pad_avg_name = pad_avg_name.lower() e_pad_sum = low_en.y+mid_en.y+high_en.y e_pad_avg = e_pad_sum/3.0 if level == 'l2': pad_avg_name = pad_avg_name.lower() if species == 'e': species_str = 'electron' elif species == 'i': species_str = 'ion' if level == 'ql': store_data(obsstr+'PitchAngDist_sum'+suffix, data={'x': low_en.times, 'y': e_pad_sum, 'v': low_en.v}) options(obsstr+'PitchAngDist_sum'+suffix, 'ytitle', 'MMS'+str(probe)+' \\ '+species_str+' \\ PAD \\ SUM') options(obsstr+'PitchAngDist_sum'+suffix, 'yrange', [0, 180]) options(obsstr+'PitchAngDist_sum'+suffix, 'zlog', True) options(obsstr+'PitchAngDist_sum'+suffix, 'spec', True) options(obsstr+'PitchAngDist_sum'+suffix, 'Colormap', 'jet') out_vars.append(obsstr+'PitchAngDist_sum'+suffix) store_data(pad_avg_name, data={'x': low_en.times, 'y': e_pad_avg, 'v': low_en.v}) options(pad_avg_name, 'ztitle', 'eV/(cm!U2!N s sr eV)') options(pad_avg_name, 'ytitle', 'MMS'+str(probe)+' \\ '+species_str+' \\ PAD \\ AVG') options(pad_avg_name, 'yrange', [0, 180]) options(pad_avg_name, 'zlog', True) options(pad_avg_name, 'spec', True) options(pad_avg_name, 'Colormap', 'jet') out_vars.append(pad_avg_name) return out_vars
37.913043
118
0.575917
3101ac2198f7e6ab7e411d1318016ffc72804460
7,870
py
Python
django_elasticsearch_dsl/documents.py
simion/django-elasticsearch-dsl
ecb6ac22bce353eb34851b185488ee6636034574
[ "Apache-2.0" ]
null
null
null
django_elasticsearch_dsl/documents.py
simion/django-elasticsearch-dsl
ecb6ac22bce353eb34851b185488ee6636034574
[ "Apache-2.0" ]
null
null
null
django_elasticsearch_dsl/documents.py
simion/django-elasticsearch-dsl
ecb6ac22bce353eb34851b185488ee6636034574
[ "Apache-2.0" ]
null
null
null
from __future__ import unicode_literals from collections import deque from functools import partial from django import VERSION as DJANGO_VERSION from django.db import models from elasticsearch.helpers import bulk, parallel_bulk from elasticsearch_dsl import Document as DSLDocument from six import iteritems from .exceptions import ModelFieldNotMappedError from .fields import ( BooleanField, DateField, DEDField, DoubleField, FileField, IntegerField, KeywordField, LongField, ShortField, TextField, ) from .search import Search from .signals import post_index model_field_class_to_field_class = { models.AutoField: IntegerField, models.BigAutoField: LongField, models.BigIntegerField: LongField, models.BooleanField: BooleanField, models.CharField: TextField, models.DateField: DateField, models.DateTimeField: DateField, models.DecimalField: DoubleField, models.EmailField: TextField, models.FileField: FileField, models.FilePathField: KeywordField, models.FloatField: DoubleField, models.ImageField: FileField, models.IntegerField: IntegerField, models.NullBooleanField: BooleanField, models.PositiveIntegerField: IntegerField, models.PositiveSmallIntegerField: ShortField, models.SlugField: KeywordField, models.SmallIntegerField: ShortField, models.TextField: TextField, models.TimeField: LongField, models.URLField: TextField, models.UUIDField: KeywordField, } class DocType(DSLDocument): _prepared_fields = [] def __init__(self, related_instance_to_ignore=None, **kwargs): super(DocType, self).__init__(**kwargs) self._related_instance_to_ignore = related_instance_to_ignore self._prepared_fields = self.init_prepare() def __eq__(self, other): return id(self) == id(other) def __hash__(self): return id(self) @classmethod def search(cls, using=None, index=None): return Search( using=cls._get_using(using), index=cls._default_index(index), doc_type=[cls], model=cls.django.model ) def get_queryset(self): """ Return the queryset that should be indexed by this doc type. """ return self.django.model._default_manager.all() def get_indexing_queryset(self): """ Build queryset (iterator) for use by indexing. """ qs = self.get_queryset() kwargs = {} if DJANGO_VERSION >= (2,) and self.django.queryset_pagination: kwargs = {'chunk_size': self.django.queryset_pagination} return qs.iterator(**kwargs) def init_prepare(self): """ Initialise the data model preparers once here. Extracts the preparers from the model and generate a list of callables to avoid doing that work on every object instance over. """ index_fields = getattr(self, '_fields', {}) fields = [] for name, field in iteritems(index_fields): if not isinstance(field, DEDField): continue if not field._path: field._path = [name] prep_func = getattr(self, 'prepare_%s_with_related' % name, None) if prep_func: fn = partial(prep_func, related_to_ignore=self._related_instance_to_ignore) else: prep_func = getattr(self, 'prepare_%s' % name, None) if prep_func: fn = prep_func else: fn = partial(field.get_value_from_instance, field_value_to_ignore=self._related_instance_to_ignore) fields.append((name, field, fn)) return fields def prepare(self, instance): """ Take a model instance, and turn it into a dict that can be serialized based on the fields defined on this DocType subclass """ data = { name: prep_func(instance) for name, field, prep_func in self._prepared_fields } return data @classmethod def to_field(cls, field_name, model_field): """ Returns the elasticsearch field instance appropriate for the model field class. This is a good place to hook into if you have more complex model field to ES field logic """ try: return model_field_class_to_field_class[ model_field.__class__](attr=field_name) except KeyError: raise ModelFieldNotMappedError( "Cannot convert model field {} " "to an Elasticsearch field!".format(field_name) ) def bulk(self, actions, **kwargs): response = bulk(client=self._get_connection(using=kwargs.pop('using', None)), actions=actions, **kwargs) # send post index signal post_index.send( sender=self.__class__, instance=self, actions=actions, response=response ) return response def parallel_bulk(self, actions, **kwargs): if self.django.queryset_pagination and 'chunk_size' not in kwargs: kwargs['chunk_size'] = self.django.queryset_pagination bulk_actions = parallel_bulk(client=self._get_connection(using=kwargs.pop('using', None)), actions=actions, **kwargs) # As the `parallel_bulk` is lazy, we need to get it into `deque` to run it instantly # See https://discuss.elastic.co/t/helpers-parallel-bulk-in-python-not-working/39498/2 deque(bulk_actions, maxlen=0) # Fake return value to emulate bulk() since we don't have a result yet, # the result is currently not used upstream anyway. return (1, []) @classmethod def generate_id(cls, object_instance): """ The default behavior is to use the Django object's pk (id) as the elasticseach index id (_id). If needed, this method can be overloaded to change this default behavior. """ return object_instance.pk def _prepare_action(self, object_instance, action): return { '_op_type': action, '_index': self._index._name, '_id': self.generate_id(object_instance), '_source': ( self.prepare(object_instance) if action != 'delete' else None ), } def _get_actions(self, object_list, action): for object_instance in object_list: if action == 'delete' or self.should_index_object(object_instance): yield self._prepare_action(object_instance, action) def _bulk(self, *args, **kwargs): """Helper for switching between normal and parallel bulk operation""" parallel = kwargs.pop('parallel', False) if parallel: return self.parallel_bulk(*args, **kwargs) else: return self.bulk(*args, **kwargs) def should_index_object(self, obj): """ Overwriting this method and returning a boolean value should determine whether the object should be indexed. """ return True def update(self, thing, refresh=None, action='index', parallel=False, **kwargs): """ Update each document in ES for a model, iterable of models or queryset """ if refresh is not None: kwargs['refresh'] = refresh elif self.django.auto_refresh: kwargs['refresh'] = self.django.auto_refresh if isinstance(thing, models.Model): object_list = [thing] else: object_list = thing return self._bulk( self._get_actions(object_list, action), parallel=parallel, **kwargs ) # Alias of DocType. Need to remove DocType in 7.x Document = DocType
33.632479
125
0.635578
a27de1fcaca15fce684563a6e104e457ecdcc96c
97
py
Python
aegis/utils/ssh/ssh_handler.py
Yijie-Wu/Aegis
f8082b66d55be135a5e2bec7ac15f860f99f7df7
[ "MIT" ]
null
null
null
aegis/utils/ssh/ssh_handler.py
Yijie-Wu/Aegis
f8082b66d55be135a5e2bec7ac15f860f99f7df7
[ "MIT" ]
null
null
null
aegis/utils/ssh/ssh_handler.py
Yijie-Wu/Aegis
f8082b66d55be135a5e2bec7ac15f860f99f7df7
[ "MIT" ]
null
null
null
# -*- encoding:utf-8 -*- """ Author: Yijie.Wu Email: 1694517106@qq.com Date: 2020/5/16 15:17 """
13.857143
24
0.618557
afa2a3bef7b8a6564cad85a7dd7d078b930baa1b
2,876
py
Python
mayan/apps/metadata/urls.py
mbehrle/mayan-edms
9ebf27d2ea1666eaa36ad6ddc0fb9c6accf5cced
[ "Apache-2.0" ]
null
null
null
mayan/apps/metadata/urls.py
mbehrle/mayan-edms
9ebf27d2ea1666eaa36ad6ddc0fb9c6accf5cced
[ "Apache-2.0" ]
1
2022-03-12T01:03:39.000Z
2022-03-12T01:03:39.000Z
mayan/apps/metadata/urls.py
mbehrle/mayan-edms
9ebf27d2ea1666eaa36ad6ddc0fb9c6accf5cced
[ "Apache-2.0" ]
null
null
null
from __future__ import unicode_literals from django.conf.urls import patterns, url from .api_views import ( APIDocumentMetadataListView, APIDocumentMetadataView, APIDocumentTypeMetadataTypeOptionalListView, APIDocumentTypeMetadataTypeRequiredListView, APIDocumentTypeMetadataTypeRequiredView, APIMetadataTypeListView, APIMetadataTypeView ) urlpatterns = patterns('metadata.views', url(r'^(?P<document_id>\d+)/edit/$', 'metadata_edit', (), 'metadata_edit'), url(r'^(?P<document_id>\d+)/view/$', 'metadata_view', (), 'metadata_view'), url(r'^multiple/edit/$', 'metadata_multiple_edit', (), 'metadata_multiple_edit'), url(r'^(?P<document_id>\d+)/add/$', 'metadata_add', (), 'metadata_add'), url(r'^multiple/add/$', 'metadata_multiple_add', (), 'metadata_multiple_add'), url(r'^(?P<document_id>\d+)/remove/$', 'metadata_remove', (), 'metadata_remove'), url(r'^multiple/remove/$', 'metadata_multiple_remove', (), 'metadata_multiple_remove'), url(r'^setup/type/list/$', 'setup_metadata_type_list', (), 'setup_metadata_type_list'), url(r'^setup/type/create/$', 'setup_metadata_type_create', (), 'setup_metadata_type_create'), url(r'^setup/type/(?P<metadatatype_id>\d+)/edit/$', 'setup_metadata_type_edit', (), 'setup_metadata_type_edit'), url(r'^setup/type/(?P<metadatatype_id>\d+)/delete/$', 'setup_metadata_type_delete', (), 'setup_metadata_type_delete'), url(r'^setup/document/type/(?P<document_type_id>\d+)/metadata/edit/$', 'setup_document_type_metadata', (), 'setup_document_type_metadata'), url(r'^setup/document/type/(?P<document_type_id>\d+)/metadata/edit/required/$', 'setup_document_type_metadata_required', (), 'setup_document_type_metadata_required'), url(r'^tools/missing_required_metadata/$', 'documents_missing_required_metadata', (), 'documents_missing_required_metadata'), ) api_urls = patterns('', url(r'^metadatatypes/$', APIMetadataTypeListView.as_view(), name='metadatatype-list'), url(r'^metadatatypes/(?P<pk>[0-9]+)/$', APIMetadataTypeView.as_view(), name='metadatatype-detail'), url(r'^document/metadata/(?P<pk>[0-9]+)/$', APIDocumentMetadataView.as_view(), name='documentmetadata-detail'), url(r'^document/(?P<document_pk>[0-9]+)/metadata/$', APIDocumentMetadataListView.as_view(), name='documentmetadata-list'), url(r'^document_type/(?P<document_type_pk>[0-9]+)/metadatatypes/optional/$', APIDocumentTypeMetadataTypeOptionalListView.as_view(), name='documenttypemetadatatype-list'), url(r'^document_type/(?P<document_type_pk>[0-9]+)/metadatatypes/required/$', APIDocumentTypeMetadataTypeRequiredListView.as_view(), name='documenttypemetadatatype-list'), url(r'^document_type/(?P<document_type_pk>[0-9]+)/metadatatypes/(?P<metadata_type_pk>[0-9]+)/$', APIDocumentTypeMetadataTypeRequiredView.as_view(), name='documenttypemetadatatype-detail'), )
68.47619
192
0.735396
b68168114934cd7ae924564b1f2e32801a406a63
8,679
py
Python
byfon/cell.py
LyricLy/byfon
83e771c9210b242282cdac96f06e3bdc5d4f39c4
[ "MIT" ]
5
2020-04-08T10:04:52.000Z
2021-08-10T10:01:20.000Z
byfon/cell.py
LyricLy/byfon
83e771c9210b242282cdac96f06e3bdc5d4f39c4
[ "MIT" ]
null
null
null
byfon/cell.py
LyricLy/byfon
83e771c9210b242282cdac96f06e3bdc5d4f39c4
[ "MIT" ]
1
2020-04-09T14:22:03.000Z
2020-04-09T14:22:03.000Z
from contextlib import contextmanager import sys from .errors import FreedCellError from .logical import And, Or from .while_ import while_expr def need_alloc(func): def new_meth(self, *args): for arg in args: if func.__name__ != "mov" and getattr(arg, "freed", False): raise FreedCellError(f"cell at {arg.ptr} was already freed") if self.freed: raise FreedCellError(f"cell at {self.ptr} was already freed") return func(self, *args) return new_meth def resolve_diff(diff): """Find the shortest BF code to change a cell by `diff`, making use of overflow.""" diff %= 256 if diff < 128: return "+" * diff else: return "-" * (256 - diff) def unpack(ts, default=None): for t in ts: try: x, y = t except TypeError: x = t y = default yield x, y class Cell: def __init__(self, tp, ptr, *, is_zero=True): self.tp = tp self.ptr = ptr self.freed = False self._mov_on_lt = False self._must_be_zero = is_zero @need_alloc def free(self): # the ultimate space optimization if self._must_be_zero: self.tp._temps.append(self) self.freed = True def _exe_on(self, code, reset_zero=True): self.tp.seek(self.ptr) self.tp.exe(code) if code and reset_zero: self._must_be_zero = False def _ensure_zero(self): if not self._must_be_zero: self._exe_on("[-]") self._known_zero() def _known_zero(self): if not self._must_be_zero: try: self.tp._restores[-1].append(self) except IndexError: pass self._must_be_zero = True @need_alloc def copy(self): """Create a copy of the cell and return the new cell.""" c1 = self.tp.alloc() c2 = self.tp.alloc() self.mov(c1, c2) self |= c2 return c1 @need_alloc def mov(self, *args): """Move the cell's value to one or more other cells. Destructive (replaces destinations, frees source)""" for b, _ in unpack(args): b.freed = False b._ensure_zero() self.tp.seek(self.ptr) with self.tp.loop(): self.tp.exe("-") for b, m in unpack(args, 1): b._exe_on("+" * m) self.tp.seek(self.ptr) self._known_zero() self.free() def write(self): """Write the cell's current value to stdout. Non-destructive.""" self._exe_on(".", False) @need_alloc def read(self): """Read a single byte from stdin into the cell. Returns self for chaining with Transpiler.alloc(). Destructive (replaces current value).""" self._exe_on(",") return self @need_alloc def __iter__(self): self.tp.seek(self.ptr) if self._must_be_zero: print(f"WARNING: redundant if detected, cell at {self.ptr} is guaranteed to be 0", file=sys.stderr) with self.tp.loop(): yield self |= 0 self._known_zero() self.free() @contextmanager @need_alloc def _while(self): self.tp.seek(self.ptr) if self._must_be_zero: print(f"WARNING: redundant while detected, cell at {self.ptr} is guaranteed to be 0", file=sys.stderr) with self.tp.loop(): yield if self._must_be_zero: print(f"WARNING: while loop is equivalent to if, cell at {self.ptr} is guaranteed to be 0 after first loop", file=sys.stderr) self._known_zero() @need_alloc def not_(self): """Negate the cell with boolean logic. Sets cell to 0 if it is nonzero, and 1 otherwise. Destructive (might replace current value, might destroy and make a new one).""" if self._must_be_zero: self += 1 self._must_be_zero = False return self else: res = self.tp.alloc() res += 1 for if_ in self: res -= 1 return res @need_alloc def and_(self, other): """Perform logical AND on two cells. Destructive (frees both cells).""" res = self.tp.alloc() for if_ in self: for if_ in other: res += 1 return res @need_alloc def or_(self, other, *, normal=False): """Perform logical OR on two cells. Destructive (replaces first cell, frees second one). If normal is True, forces result to be one of 0 or 1. Allocates an additional cell. """ result = self + other if normal: new_result = self.tp.alloc() for if_ in result: new_result += 1 result = new_result return result def __hash__(self): return self.ptr def __repr__(self): after = " = 0" if self._must_be_zero else "" return f"Cell(*{self.ptr}{after})" def __invert__(self): return self.copy() def __neg__(self): self._mov_on_lt = True return self def __ior__(self, other): if isinstance(other, Cell): other.mov(self) else: self.freed = False self._ensure_zero() self._exe_on(resolve_diff(other)) return self @need_alloc def __and__(self, other): """Create a dummy object for use in if_ that acts like the logical AND of two cells. Does not actually perform AND, use Cell.and_ for this. """ return And(self, other) @need_alloc def __or__(self, other): """Create a dummy object for use in if_ that acts like the logical OR of two cells. Does not actually perform OR, use Cell.or_ for this. """ return Or(self, other) @need_alloc def __iadd__(self, other): """Add a cell or integer to the cell. Frees the cell being added.""" if isinstance(other, Cell): self.tp.seek(other.ptr) with self.tp.loop(): self.tp.exe("-") self._exe_on("+") self.tp.seek(other.ptr) other._known_zero() other.free() else: self._exe_on(resolve_diff(other)) return self @need_alloc def __isub__(self, other): """Subtract a cell or integer from the cell. Frees the cell being subtracted.""" if isinstance(other, Cell): self.tp.seek(other.ptr) with self.tp.loop(): self.tp.exe("-") self._exe_on("-") self.tp.seek(other.ptr) other._known_zero() other.free() else: self._exe_on(resolve_diff(-other)) return self @need_alloc def __add__(self, other): """Sum two cells or a cell and an integer. Destructive, non-commutative (mutates left argument, frees right). For non-destructive, commutative behaviour, copy both sides.""" self += other return self __radd__ = __add__ @need_alloc def __sub__(self, other): """Subtract two cells or a cell and an integer. Destructive. (mutates left argument, frees right). For non-destructive behaviour, copy both sides.""" self -= other return self @need_alloc def __rsub__(self, other): """Subtract the cell from an integer. Destructive (frees).""" res = self.tp.alloc() res += other res -= self return res @need_alloc def __mul__(self, other): """Multiply a cell and an integer. Destroys the cell.""" new = self.tp.alloc() self.mov((new, other)) return new __rmul__ = __mul__ @need_alloc def __eq__(self, other): """Check if the value pointed to by two cells is identical. Destroys both cells (frees them). Does not compare the pointers themselves; for that, compare the ptr attributes of the cells. """ return (self != other).not_() @need_alloc def __ne__(self, other): """Check if the value pointed to by two cells differs. Destroys the first cell (frees it), returns the second un-normalized. Does not compare the pointers themselves; for that, compare the ptr attributes of the cells. """ if isinstance(other, Cell): with self._while(): self -= 1 other -= 1 self.free() return other else: self -= other return self
30.667845
181
0.564696
bccba898db172a9e612927812d096d49ee8480b0
1,564
py
Python
tests/test_vigenere.py
GuptaAyush19/Vigenere-Cipher
9e3d5d1cca07010ff7e7bc5c37cfee357d12d84b
[ "MIT" ]
3
2020-12-29T11:42:09.000Z
2021-10-30T10:12:31.000Z
tests/test_vigenere.py
GuptaAyush19/Vigenere-Cipher
9e3d5d1cca07010ff7e7bc5c37cfee357d12d84b
[ "MIT" ]
null
null
null
tests/test_vigenere.py
GuptaAyush19/Vigenere-Cipher
9e3d5d1cca07010ff7e7bc5c37cfee357d12d84b
[ "MIT" ]
1
2021-08-18T23:16:58.000Z
2021-08-18T23:16:58.000Z
import unittest import vigenere import random class TestVigenere(unittest.TestCase): def setUp(self): self.key_size = 100 self.valid_char = [chr(i) for i in range(43, 123)] self.not_int = ["string", 1j, 3.14] @staticmethod def random_text(size=20): text_list = [chr(random.randint(0x21, 0x7e)) for i in range(size)] return "".join(text_list) def test_valid_key(self): self.assertTrue(vigenere.valid_key(vigenere.random_key())) with self.assertRaises(TypeError): vigenere.valid_key(420) with self.assertRaises(Warning): vigenere.valid_key('foo') def test_random_key(self): random_key = vigenere.random_key(key_size=self.key_size) for char in random_key: self.assertIn(char, self.valid_char, "Character in the key does not match key set") self.assertEqual(len(random_key), self.key_size, "Length of key is not equal to the arguement passed") def test_encrypt_decrypt(self): for _ in range(1000): random_key = vigenere.random_key(key_size=100) plain_text = self.random_text(size=1000) cipher = vigenere.encrypt(plain_text, random_key) self.assertEqual(vigenere.decrypt(cipher, random_key), plain_text, "Decrypted cipher not equal to the plain-text") if __name__ == "__main__": unittest.main()
35.545455
78
0.597187
a3c4e6be59c3105b93b89656d5e2a21dd6e0b2e4
1,201
py
Python
tests/test_viewsets.py
bensiu/django-rest-framework
28e8895b8abcc65457862c828b1118a9d722c8ed
[ "BSD-2-Clause" ]
1
2020-03-18T22:31:29.000Z
2020-03-18T22:31:29.000Z
tests/test_viewsets.py
bensiu/django-rest-framework
28e8895b8abcc65457862c828b1118a9d722c8ed
[ "BSD-2-Clause" ]
1
2017-11-22T07:48:52.000Z
2017-11-22T07:48:52.000Z
tests/test_viewsets.py
bensiu/django-rest-framework
28e8895b8abcc65457862c828b1118a9d722c8ed
[ "BSD-2-Clause" ]
1
2020-05-13T00:31:27.000Z
2020-05-13T00:31:27.000Z
from django.test import TestCase from rest_framework import status from rest_framework.response import Response from rest_framework.test import APIRequestFactory from rest_framework.viewsets import GenericViewSet factory = APIRequestFactory() class BasicViewSet(GenericViewSet): def list(self, request, *args, **kwargs): return Response({'ACTION': 'LIST'}) class InitializeViewSetsTestCase(TestCase): def test_initialize_view_set_with_actions(self): request = factory.get('/', '', content_type='application/json') my_view = BasicViewSet.as_view(actions={ 'get': 'list', }) response = my_view(request) assert response.status_code == status.HTTP_200_OK assert response.data == {'ACTION': 'LIST'} def test_initialize_view_set_with_empty_actions(self): try: BasicViewSet.as_view() except TypeError as e: assert str(e) == ("The `actions` argument must be provided " "when calling `.as_view()` on a ViewSet. " "For example `.as_view({'get': 'list'})`") else: self.fail("actions must not be empty.")
33.361111
72
0.642798
af9e6072e13fc920414a76db1dbea52cd9e59eca
68,048
py
Python
ionoscloud/api/network_interfaces_api.py
ionos-cloud/ionos-cloud-sdk-python
3c5804697c262898e6f6a438dc40e1b45a4bb5c9
[ "Apache-2.0" ]
null
null
null
ionoscloud/api/network_interfaces_api.py
ionos-cloud/ionos-cloud-sdk-python
3c5804697c262898e6f6a438dc40e1b45a4bb5c9
[ "Apache-2.0" ]
null
null
null
ionoscloud/api/network_interfaces_api.py
ionos-cloud/ionos-cloud-sdk-python
3c5804697c262898e6f6a438dc40e1b45a4bb5c9
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import import re # noqa: F401 import six from ionoscloud.api_client import ApiClient from ionoscloud.exceptions import ( # noqa: F401 ApiTypeError, ApiValueError ) class NetworkInterfacesApi(object): def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def datacenters_servers_nics_delete(self, datacenter_id, server_id, nic_id, **kwargs): # noqa: E501 """Delete NICs # noqa: E501 Remove the specified NIC. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.datacenters_servers_nics_delete(datacenter_id, server_id, nic_id, async_req=True) >>> result = thread.get() :param datacenter_id: The unique ID of the data center. (required) :type datacenter_id: str :param server_id: The unique ID of the server. (required) :type server_id: str :param nic_id: The unique ID of the NIC. (required) :type nic_id: str :param pretty: Controls whether the response is pretty-printed (with indentations and new lines). :type pretty: bool :param depth: Controls the detail depth of the response objects. GET /datacenters/[ID] - depth=0: Only direct properties are included; children (servers and other elements) are not included. - depth=1: Direct properties and children references are included. - depth=2: Direct properties and children properties are included. - depth=3: Direct properties and children properties and children's children are included. - depth=... and so on :type depth: int :param x_contract_number: Users with multiple contracts must provide the contract number, for which all API requests are to be executed. :type x_contract_number: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: None """ kwargs['_return_http_data_only'] = True return self.datacenters_servers_nics_delete_with_http_info(datacenter_id, server_id, nic_id, **kwargs) # noqa: E501 def datacenters_servers_nics_delete_with_http_info(self, datacenter_id, server_id, nic_id, **kwargs): # noqa: E501 """Delete NICs # noqa: E501 Remove the specified NIC. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.datacenters_servers_nics_delete_with_http_info(datacenter_id, server_id, nic_id, async_req=True) >>> result = thread.get() :param datacenter_id: The unique ID of the data center. (required) :type datacenter_id: str :param server_id: The unique ID of the server. (required) :type server_id: str :param nic_id: The unique ID of the NIC. (required) :type nic_id: str :param pretty: Controls whether the response is pretty-printed (with indentations and new lines). :type pretty: bool :param depth: Controls the detail depth of the response objects. GET /datacenters/[ID] - depth=0: Only direct properties are included; children (servers and other elements) are not included. - depth=1: Direct properties and children references are included. - depth=2: Direct properties and children properties are included. - depth=3: Direct properties and children properties and children's children are included. - depth=... and so on :type depth: int :param x_contract_number: Users with multiple contracts must provide the contract number, for which all API requests are to be executed. :type x_contract_number: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: None """ local_var_params = locals() all_params = [ 'datacenter_id', 'server_id', 'nic_id', 'pretty', 'depth', 'x_contract_number' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth', 'response_type', 'query_params' ] ) for local_var_params_key, local_var_params_val in six.iteritems(local_var_params['kwargs']): if local_var_params_key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method datacenters_servers_nics_delete" % local_var_params_key ) local_var_params[local_var_params_key] = local_var_params_val del local_var_params['kwargs'] # verify the required parameter 'datacenter_id' is set if self.api_client.client_side_validation and ('datacenter_id' not in local_var_params or # noqa: E501 local_var_params['datacenter_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `datacenter_id` when calling `datacenters_servers_nics_delete`") # noqa: E501 # verify the required parameter 'server_id' is set if self.api_client.client_side_validation and ('server_id' not in local_var_params or # noqa: E501 local_var_params['server_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `server_id` when calling `datacenters_servers_nics_delete`") # noqa: E501 # verify the required parameter 'nic_id' is set if self.api_client.client_side_validation and ('nic_id' not in local_var_params or # noqa: E501 local_var_params['nic_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `nic_id` when calling `datacenters_servers_nics_delete`") # noqa: E501 if self.api_client.client_side_validation and 'depth' in local_var_params and local_var_params['depth'] > 10: # noqa: E501 raise ApiValueError("Invalid value for parameter `depth` when calling `datacenters_servers_nics_delete`, must be a value less than or equal to `10`") # noqa: E501 if self.api_client.client_side_validation and 'depth' in local_var_params and local_var_params['depth'] < 0: # noqa: E501 raise ApiValueError("Invalid value for parameter `depth` when calling `datacenters_servers_nics_delete`, must be a value greater than or equal to `0`") # noqa: E501 collection_formats = {} path_params = {} if 'datacenter_id' in local_var_params: path_params['datacenterId'] = local_var_params['datacenter_id'] # noqa: E501 if 'server_id' in local_var_params: path_params['serverId'] = local_var_params['server_id'] # noqa: E501 if 'nic_id' in local_var_params: path_params['nicId'] = local_var_params['nic_id'] # noqa: E501 query_params = list(local_var_params.get('query_params', {}).items()) if 'pretty' in local_var_params and local_var_params['pretty'] is not None: # noqa: E501 query_params.append(('pretty', local_var_params['pretty'])) # noqa: E501 if 'depth' in local_var_params and local_var_params['depth'] is not None: # noqa: E501 query_params.append(('depth', local_var_params['depth'])) # noqa: E501 header_params = {} if 'x_contract_number' in local_var_params: header_params['X-Contract-Number'] = local_var_params['x_contract_number'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['Basic Authentication', 'Token Authentication'] # noqa: E501 response_type = None if 'response_type' in kwargs: response_type = kwargs['response_type'] return self.api_client.call_api( '/datacenters/{datacenterId}/servers/{serverId}/nics/{nicId}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=response_type, # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def datacenters_servers_nics_find_by_id(self, datacenter_id, server_id, nic_id, **kwargs): # noqa: E501 """Retrieve NICs # noqa: E501 Retrieve the properties of the specified NIC. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.datacenters_servers_nics_find_by_id(datacenter_id, server_id, nic_id, async_req=True) >>> result = thread.get() :param datacenter_id: The unique ID of the data center. (required) :type datacenter_id: str :param server_id: The unique ID of the server. (required) :type server_id: str :param nic_id: The unique ID of the NIC. (required) :type nic_id: str :param pretty: Controls whether the response is pretty-printed (with indentations and new lines). :type pretty: bool :param depth: Controls the detail depth of the response objects. GET /datacenters/[ID] - depth=0: Only direct properties are included; children (servers and other elements) are not included. - depth=1: Direct properties and children references are included. - depth=2: Direct properties and children properties are included. - depth=3: Direct properties and children properties and children's children are included. - depth=... and so on :type depth: int :param x_contract_number: Users with multiple contracts must provide the contract number, for which all API requests are to be executed. :type x_contract_number: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: Nic """ kwargs['_return_http_data_only'] = True return self.datacenters_servers_nics_find_by_id_with_http_info(datacenter_id, server_id, nic_id, **kwargs) # noqa: E501 def datacenters_servers_nics_find_by_id_with_http_info(self, datacenter_id, server_id, nic_id, **kwargs): # noqa: E501 """Retrieve NICs # noqa: E501 Retrieve the properties of the specified NIC. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.datacenters_servers_nics_find_by_id_with_http_info(datacenter_id, server_id, nic_id, async_req=True) >>> result = thread.get() :param datacenter_id: The unique ID of the data center. (required) :type datacenter_id: str :param server_id: The unique ID of the server. (required) :type server_id: str :param nic_id: The unique ID of the NIC. (required) :type nic_id: str :param pretty: Controls whether the response is pretty-printed (with indentations and new lines). :type pretty: bool :param depth: Controls the detail depth of the response objects. GET /datacenters/[ID] - depth=0: Only direct properties are included; children (servers and other elements) are not included. - depth=1: Direct properties and children references are included. - depth=2: Direct properties and children properties are included. - depth=3: Direct properties and children properties and children's children are included. - depth=... and so on :type depth: int :param x_contract_number: Users with multiple contracts must provide the contract number, for which all API requests are to be executed. :type x_contract_number: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(Nic, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'datacenter_id', 'server_id', 'nic_id', 'pretty', 'depth', 'x_contract_number' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth', 'response_type', 'query_params' ] ) for local_var_params_key, local_var_params_val in six.iteritems(local_var_params['kwargs']): if local_var_params_key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method datacenters_servers_nics_find_by_id" % local_var_params_key ) local_var_params[local_var_params_key] = local_var_params_val del local_var_params['kwargs'] # verify the required parameter 'datacenter_id' is set if self.api_client.client_side_validation and ('datacenter_id' not in local_var_params or # noqa: E501 local_var_params['datacenter_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `datacenter_id` when calling `datacenters_servers_nics_find_by_id`") # noqa: E501 # verify the required parameter 'server_id' is set if self.api_client.client_side_validation and ('server_id' not in local_var_params or # noqa: E501 local_var_params['server_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `server_id` when calling `datacenters_servers_nics_find_by_id`") # noqa: E501 # verify the required parameter 'nic_id' is set if self.api_client.client_side_validation and ('nic_id' not in local_var_params or # noqa: E501 local_var_params['nic_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `nic_id` when calling `datacenters_servers_nics_find_by_id`") # noqa: E501 if self.api_client.client_side_validation and 'depth' in local_var_params and local_var_params['depth'] > 10: # noqa: E501 raise ApiValueError("Invalid value for parameter `depth` when calling `datacenters_servers_nics_find_by_id`, must be a value less than or equal to `10`") # noqa: E501 if self.api_client.client_side_validation and 'depth' in local_var_params and local_var_params['depth'] < 0: # noqa: E501 raise ApiValueError("Invalid value for parameter `depth` when calling `datacenters_servers_nics_find_by_id`, must be a value greater than or equal to `0`") # noqa: E501 collection_formats = {} path_params = {} if 'datacenter_id' in local_var_params: path_params['datacenterId'] = local_var_params['datacenter_id'] # noqa: E501 if 'server_id' in local_var_params: path_params['serverId'] = local_var_params['server_id'] # noqa: E501 if 'nic_id' in local_var_params: path_params['nicId'] = local_var_params['nic_id'] # noqa: E501 query_params = list(local_var_params.get('query_params', {}).items()) if 'pretty' in local_var_params and local_var_params['pretty'] is not None: # noqa: E501 query_params.append(('pretty', local_var_params['pretty'])) # noqa: E501 if 'depth' in local_var_params and local_var_params['depth'] is not None: # noqa: E501 query_params.append(('depth', local_var_params['depth'])) # noqa: E501 header_params = {} if 'x_contract_number' in local_var_params: header_params['X-Contract-Number'] = local_var_params['x_contract_number'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['Basic Authentication', 'Token Authentication'] # noqa: E501 response_type = 'Nic' if 'response_type' in kwargs: response_type = kwargs['response_type'] return self.api_client.call_api( '/datacenters/{datacenterId}/servers/{serverId}/nics/{nicId}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=response_type, # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def datacenters_servers_nics_get(self, datacenter_id, server_id, **kwargs): # noqa: E501 """List NICs # noqa: E501 List all NICs, attached to the specified server. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.datacenters_servers_nics_get(datacenter_id, server_id, async_req=True) >>> result = thread.get() :param datacenter_id: The unique ID of the data center. (required) :type datacenter_id: str :param server_id: The unique ID of the server. (required) :type server_id: str :param pretty: Controls whether the response is pretty-printed (with indentations and new lines). :type pretty: bool :param depth: Controls the detail depth of the response objects. GET /datacenters/[ID] - depth=0: Only direct properties are included; children (servers and other elements) are not included. - depth=1: Direct properties and children references are included. - depth=2: Direct properties and children properties are included. - depth=3: Direct properties and children properties and children's children are included. - depth=... and so on :type depth: int :param x_contract_number: Users with multiple contracts must provide the contract number, for which all API requests are to be executed. :type x_contract_number: int :param offset: The first element (from the complete list of the elements) to include in the response (used together with <b><i>limit</i></b> for pagination). :type offset: int :param limit: The maximum number of elements to return (use together with offset for pagination). :type limit: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: Nics """ kwargs['_return_http_data_only'] = True return self.datacenters_servers_nics_get_with_http_info(datacenter_id, server_id, **kwargs) # noqa: E501 def datacenters_servers_nics_get_with_http_info(self, datacenter_id, server_id, **kwargs): # noqa: E501 """List NICs # noqa: E501 List all NICs, attached to the specified server. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.datacenters_servers_nics_get_with_http_info(datacenter_id, server_id, async_req=True) >>> result = thread.get() :param datacenter_id: The unique ID of the data center. (required) :type datacenter_id: str :param server_id: The unique ID of the server. (required) :type server_id: str :param pretty: Controls whether the response is pretty-printed (with indentations and new lines). :type pretty: bool :param depth: Controls the detail depth of the response objects. GET /datacenters/[ID] - depth=0: Only direct properties are included; children (servers and other elements) are not included. - depth=1: Direct properties and children references are included. - depth=2: Direct properties and children properties are included. - depth=3: Direct properties and children properties and children's children are included. - depth=... and so on :type depth: int :param x_contract_number: Users with multiple contracts must provide the contract number, for which all API requests are to be executed. :type x_contract_number: int :param offset: The first element (from the complete list of the elements) to include in the response (used together with <b><i>limit</i></b> for pagination). :type offset: int :param limit: The maximum number of elements to return (use together with offset for pagination). :type limit: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(Nics, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'datacenter_id', 'server_id', 'pretty', 'depth', 'x_contract_number', 'offset', 'limit' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth', 'response_type', 'query_params' ] ) for local_var_params_key, local_var_params_val in six.iteritems(local_var_params['kwargs']): if local_var_params_key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method datacenters_servers_nics_get" % local_var_params_key ) local_var_params[local_var_params_key] = local_var_params_val del local_var_params['kwargs'] # verify the required parameter 'datacenter_id' is set if self.api_client.client_side_validation and ('datacenter_id' not in local_var_params or # noqa: E501 local_var_params['datacenter_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `datacenter_id` when calling `datacenters_servers_nics_get`") # noqa: E501 # verify the required parameter 'server_id' is set if self.api_client.client_side_validation and ('server_id' not in local_var_params or # noqa: E501 local_var_params['server_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `server_id` when calling `datacenters_servers_nics_get`") # noqa: E501 if self.api_client.client_side_validation and 'depth' in local_var_params and local_var_params['depth'] > 10: # noqa: E501 raise ApiValueError("Invalid value for parameter `depth` when calling `datacenters_servers_nics_get`, must be a value less than or equal to `10`") # noqa: E501 if self.api_client.client_side_validation and 'depth' in local_var_params and local_var_params['depth'] < 0: # noqa: E501 raise ApiValueError("Invalid value for parameter `depth` when calling `datacenters_servers_nics_get`, must be a value greater than or equal to `0`") # noqa: E501 if self.api_client.client_side_validation and 'offset' in local_var_params and local_var_params['offset'] < 0: # noqa: E501 raise ApiValueError("Invalid value for parameter `offset` when calling `datacenters_servers_nics_get`, must be a value greater than or equal to `0`") # noqa: E501 if self.api_client.client_side_validation and 'limit' in local_var_params and local_var_params['limit'] > 10000: # noqa: E501 raise ApiValueError("Invalid value for parameter `limit` when calling `datacenters_servers_nics_get`, must be a value less than or equal to `10000`") # noqa: E501 if self.api_client.client_side_validation and 'limit' in local_var_params and local_var_params['limit'] < 1: # noqa: E501 raise ApiValueError("Invalid value for parameter `limit` when calling `datacenters_servers_nics_get`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'datacenter_id' in local_var_params: path_params['datacenterId'] = local_var_params['datacenter_id'] # noqa: E501 if 'server_id' in local_var_params: path_params['serverId'] = local_var_params['server_id'] # noqa: E501 query_params = list(local_var_params.get('query_params', {}).items()) if 'pretty' in local_var_params and local_var_params['pretty'] is not None: # noqa: E501 query_params.append(('pretty', local_var_params['pretty'])) # noqa: E501 if 'depth' in local_var_params and local_var_params['depth'] is not None: # noqa: E501 query_params.append(('depth', local_var_params['depth'])) # noqa: E501 if 'offset' in local_var_params and local_var_params['offset'] is not None: # noqa: E501 query_params.append(('offset', local_var_params['offset'])) # noqa: E501 if 'limit' in local_var_params and local_var_params['limit'] is not None: # noqa: E501 query_params.append(('limit', local_var_params['limit'])) # noqa: E501 header_params = {} if 'x_contract_number' in local_var_params: header_params['X-Contract-Number'] = local_var_params['x_contract_number'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['Basic Authentication', 'Token Authentication'] # noqa: E501 response_type = 'Nics' if 'response_type' in kwargs: response_type = kwargs['response_type'] return self.api_client.call_api( '/datacenters/{datacenterId}/servers/{serverId}/nics', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=response_type, # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def datacenters_servers_nics_patch(self, datacenter_id, server_id, nic_id, nic, **kwargs): # noqa: E501 """Partially modify NICs # noqa: E501 Update the properties of the specified NIC. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.datacenters_servers_nics_patch(datacenter_id, server_id, nic_id, nic, async_req=True) >>> result = thread.get() :param datacenter_id: The unique ID of the data center. (required) :type datacenter_id: str :param server_id: The unique ID of the server. (required) :type server_id: str :param nic_id: The unique ID of the NIC. (required) :type nic_id: str :param nic: The properties of the NIC to be updated. (required) :type nic: NicProperties :param pretty: Controls whether the response is pretty-printed (with indentations and new lines). :type pretty: bool :param depth: Controls the detail depth of the response objects. GET /datacenters/[ID] - depth=0: Only direct properties are included; children (servers and other elements) are not included. - depth=1: Direct properties and children references are included. - depth=2: Direct properties and children properties are included. - depth=3: Direct properties and children properties and children's children are included. - depth=... and so on :type depth: int :param x_contract_number: Users with multiple contracts must provide the contract number, for which all API requests are to be executed. :type x_contract_number: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: Nic """ kwargs['_return_http_data_only'] = True return self.datacenters_servers_nics_patch_with_http_info(datacenter_id, server_id, nic_id, nic, **kwargs) # noqa: E501 def datacenters_servers_nics_patch_with_http_info(self, datacenter_id, server_id, nic_id, nic, **kwargs): # noqa: E501 """Partially modify NICs # noqa: E501 Update the properties of the specified NIC. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.datacenters_servers_nics_patch_with_http_info(datacenter_id, server_id, nic_id, nic, async_req=True) >>> result = thread.get() :param datacenter_id: The unique ID of the data center. (required) :type datacenter_id: str :param server_id: The unique ID of the server. (required) :type server_id: str :param nic_id: The unique ID of the NIC. (required) :type nic_id: str :param nic: The properties of the NIC to be updated. (required) :type nic: NicProperties :param pretty: Controls whether the response is pretty-printed (with indentations and new lines). :type pretty: bool :param depth: Controls the detail depth of the response objects. GET /datacenters/[ID] - depth=0: Only direct properties are included; children (servers and other elements) are not included. - depth=1: Direct properties and children references are included. - depth=2: Direct properties and children properties are included. - depth=3: Direct properties and children properties and children's children are included. - depth=... and so on :type depth: int :param x_contract_number: Users with multiple contracts must provide the contract number, for which all API requests are to be executed. :type x_contract_number: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(Nic, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'datacenter_id', 'server_id', 'nic_id', 'nic', 'pretty', 'depth', 'x_contract_number' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth', 'response_type', 'query_params' ] ) for local_var_params_key, local_var_params_val in six.iteritems(local_var_params['kwargs']): if local_var_params_key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method datacenters_servers_nics_patch" % local_var_params_key ) local_var_params[local_var_params_key] = local_var_params_val del local_var_params['kwargs'] # verify the required parameter 'datacenter_id' is set if self.api_client.client_side_validation and ('datacenter_id' not in local_var_params or # noqa: E501 local_var_params['datacenter_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `datacenter_id` when calling `datacenters_servers_nics_patch`") # noqa: E501 # verify the required parameter 'server_id' is set if self.api_client.client_side_validation and ('server_id' not in local_var_params or # noqa: E501 local_var_params['server_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `server_id` when calling `datacenters_servers_nics_patch`") # noqa: E501 # verify the required parameter 'nic_id' is set if self.api_client.client_side_validation and ('nic_id' not in local_var_params or # noqa: E501 local_var_params['nic_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `nic_id` when calling `datacenters_servers_nics_patch`") # noqa: E501 # verify the required parameter 'nic' is set if self.api_client.client_side_validation and ('nic' not in local_var_params or # noqa: E501 local_var_params['nic'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `nic` when calling `datacenters_servers_nics_patch`") # noqa: E501 if self.api_client.client_side_validation and 'depth' in local_var_params and local_var_params['depth'] > 10: # noqa: E501 raise ApiValueError("Invalid value for parameter `depth` when calling `datacenters_servers_nics_patch`, must be a value less than or equal to `10`") # noqa: E501 if self.api_client.client_side_validation and 'depth' in local_var_params and local_var_params['depth'] < 0: # noqa: E501 raise ApiValueError("Invalid value for parameter `depth` when calling `datacenters_servers_nics_patch`, must be a value greater than or equal to `0`") # noqa: E501 collection_formats = {} path_params = {} if 'datacenter_id' in local_var_params: path_params['datacenterId'] = local_var_params['datacenter_id'] # noqa: E501 if 'server_id' in local_var_params: path_params['serverId'] = local_var_params['server_id'] # noqa: E501 if 'nic_id' in local_var_params: path_params['nicId'] = local_var_params['nic_id'] # noqa: E501 query_params = list(local_var_params.get('query_params', {}).items()) if 'pretty' in local_var_params and local_var_params['pretty'] is not None: # noqa: E501 query_params.append(('pretty', local_var_params['pretty'])) # noqa: E501 if 'depth' in local_var_params and local_var_params['depth'] is not None: # noqa: E501 query_params.append(('depth', local_var_params['depth'])) # noqa: E501 header_params = {} if 'x_contract_number' in local_var_params: header_params['X-Contract-Number'] = local_var_params['x_contract_number'] # noqa: E501 form_params = [] local_var_files = {} body_params = None if 'nic' in local_var_params: body_params = local_var_params['nic'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['Basic Authentication', 'Token Authentication'] # noqa: E501 response_type = 'Nic' if 'response_type' in kwargs: response_type = kwargs['response_type'] return self.api_client.call_api( '/datacenters/{datacenterId}/servers/{serverId}/nics/{nicId}', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=response_type, # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def datacenters_servers_nics_post(self, datacenter_id, server_id, nic, **kwargs): # noqa: E501 """Create NICs # noqa: E501 Add a NIC to the specified server. The combined total of NICs and attached volumes cannot exceed 24 per server. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.datacenters_servers_nics_post(datacenter_id, server_id, nic, async_req=True) >>> result = thread.get() :param datacenter_id: The unique ID of the data center. (required) :type datacenter_id: str :param server_id: The unique ID of the server. (required) :type server_id: str :param nic: The NIC to create. (required) :type nic: Nic :param pretty: Controls whether the response is pretty-printed (with indentations and new lines). :type pretty: bool :param depth: Controls the detail depth of the response objects. GET /datacenters/[ID] - depth=0: Only direct properties are included; children (servers and other elements) are not included. - depth=1: Direct properties and children references are included. - depth=2: Direct properties and children properties are included. - depth=3: Direct properties and children properties and children's children are included. - depth=... and so on :type depth: int :param x_contract_number: Users with multiple contracts must provide the contract number, for which all API requests are to be executed. :type x_contract_number: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: Nic """ kwargs['_return_http_data_only'] = True return self.datacenters_servers_nics_post_with_http_info(datacenter_id, server_id, nic, **kwargs) # noqa: E501 def datacenters_servers_nics_post_with_http_info(self, datacenter_id, server_id, nic, **kwargs): # noqa: E501 """Create NICs # noqa: E501 Add a NIC to the specified server. The combined total of NICs and attached volumes cannot exceed 24 per server. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.datacenters_servers_nics_post_with_http_info(datacenter_id, server_id, nic, async_req=True) >>> result = thread.get() :param datacenter_id: The unique ID of the data center. (required) :type datacenter_id: str :param server_id: The unique ID of the server. (required) :type server_id: str :param nic: The NIC to create. (required) :type nic: Nic :param pretty: Controls whether the response is pretty-printed (with indentations and new lines). :type pretty: bool :param depth: Controls the detail depth of the response objects. GET /datacenters/[ID] - depth=0: Only direct properties are included; children (servers and other elements) are not included. - depth=1: Direct properties and children references are included. - depth=2: Direct properties and children properties are included. - depth=3: Direct properties and children properties and children's children are included. - depth=... and so on :type depth: int :param x_contract_number: Users with multiple contracts must provide the contract number, for which all API requests are to be executed. :type x_contract_number: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(Nic, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'datacenter_id', 'server_id', 'nic', 'pretty', 'depth', 'x_contract_number' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth', 'response_type', 'query_params' ] ) for local_var_params_key, local_var_params_val in six.iteritems(local_var_params['kwargs']): if local_var_params_key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method datacenters_servers_nics_post" % local_var_params_key ) local_var_params[local_var_params_key] = local_var_params_val del local_var_params['kwargs'] # verify the required parameter 'datacenter_id' is set if self.api_client.client_side_validation and ('datacenter_id' not in local_var_params or # noqa: E501 local_var_params['datacenter_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `datacenter_id` when calling `datacenters_servers_nics_post`") # noqa: E501 # verify the required parameter 'server_id' is set if self.api_client.client_side_validation and ('server_id' not in local_var_params or # noqa: E501 local_var_params['server_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `server_id` when calling `datacenters_servers_nics_post`") # noqa: E501 # verify the required parameter 'nic' is set if self.api_client.client_side_validation and ('nic' not in local_var_params or # noqa: E501 local_var_params['nic'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `nic` when calling `datacenters_servers_nics_post`") # noqa: E501 if self.api_client.client_side_validation and 'depth' in local_var_params and local_var_params['depth'] > 10: # noqa: E501 raise ApiValueError("Invalid value for parameter `depth` when calling `datacenters_servers_nics_post`, must be a value less than or equal to `10`") # noqa: E501 if self.api_client.client_side_validation and 'depth' in local_var_params and local_var_params['depth'] < 0: # noqa: E501 raise ApiValueError("Invalid value for parameter `depth` when calling `datacenters_servers_nics_post`, must be a value greater than or equal to `0`") # noqa: E501 collection_formats = {} path_params = {} if 'datacenter_id' in local_var_params: path_params['datacenterId'] = local_var_params['datacenter_id'] # noqa: E501 if 'server_id' in local_var_params: path_params['serverId'] = local_var_params['server_id'] # noqa: E501 query_params = list(local_var_params.get('query_params', {}).items()) if 'pretty' in local_var_params and local_var_params['pretty'] is not None: # noqa: E501 query_params.append(('pretty', local_var_params['pretty'])) # noqa: E501 if 'depth' in local_var_params and local_var_params['depth'] is not None: # noqa: E501 query_params.append(('depth', local_var_params['depth'])) # noqa: E501 header_params = {} if 'x_contract_number' in local_var_params: header_params['X-Contract-Number'] = local_var_params['x_contract_number'] # noqa: E501 form_params = [] local_var_files = {} body_params = None if 'nic' in local_var_params: body_params = local_var_params['nic'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['Basic Authentication', 'Token Authentication'] # noqa: E501 response_type = 'Nic' if 'response_type' in kwargs: response_type = kwargs['response_type'] return self.api_client.call_api( '/datacenters/{datacenterId}/servers/{serverId}/nics', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=response_type, # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def datacenters_servers_nics_put(self, datacenter_id, server_id, nic_id, nic, **kwargs): # noqa: E501 """Modify NICs # noqa: E501 Modify the properties of the specified NIC. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.datacenters_servers_nics_put(datacenter_id, server_id, nic_id, nic, async_req=True) >>> result = thread.get() :param datacenter_id: The unique ID of the data center. (required) :type datacenter_id: str :param server_id: The unique ID of the server. (required) :type server_id: str :param nic_id: The unique ID of the NIC. (required) :type nic_id: str :param nic: The modified NIC (required) :type nic: NicPut :param pretty: Controls whether the response is pretty-printed (with indentations and new lines). :type pretty: bool :param depth: Controls the detail depth of the response objects. GET /datacenters/[ID] - depth=0: Only direct properties are included; children (servers and other elements) are not included. - depth=1: Direct properties and children references are included. - depth=2: Direct properties and children properties are included. - depth=3: Direct properties and children properties and children's children are included. - depth=... and so on :type depth: int :param x_contract_number: Users with multiple contracts must provide the contract number, for which all API requests are to be executed. :type x_contract_number: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: Nic """ kwargs['_return_http_data_only'] = True return self.datacenters_servers_nics_put_with_http_info(datacenter_id, server_id, nic_id, nic, **kwargs) # noqa: E501 def datacenters_servers_nics_put_with_http_info(self, datacenter_id, server_id, nic_id, nic, **kwargs): # noqa: E501 """Modify NICs # noqa: E501 Modify the properties of the specified NIC. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.datacenters_servers_nics_put_with_http_info(datacenter_id, server_id, nic_id, nic, async_req=True) >>> result = thread.get() :param datacenter_id: The unique ID of the data center. (required) :type datacenter_id: str :param server_id: The unique ID of the server. (required) :type server_id: str :param nic_id: The unique ID of the NIC. (required) :type nic_id: str :param nic: The modified NIC (required) :type nic: NicPut :param pretty: Controls whether the response is pretty-printed (with indentations and new lines). :type pretty: bool :param depth: Controls the detail depth of the response objects. GET /datacenters/[ID] - depth=0: Only direct properties are included; children (servers and other elements) are not included. - depth=1: Direct properties and children references are included. - depth=2: Direct properties and children properties are included. - depth=3: Direct properties and children properties and children's children are included. - depth=... and so on :type depth: int :param x_contract_number: Users with multiple contracts must provide the contract number, for which all API requests are to be executed. :type x_contract_number: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(Nic, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'datacenter_id', 'server_id', 'nic_id', 'nic', 'pretty', 'depth', 'x_contract_number' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth', 'response_type', 'query_params' ] ) for local_var_params_key, local_var_params_val in six.iteritems(local_var_params['kwargs']): if local_var_params_key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method datacenters_servers_nics_put" % local_var_params_key ) local_var_params[local_var_params_key] = local_var_params_val del local_var_params['kwargs'] # verify the required parameter 'datacenter_id' is set if self.api_client.client_side_validation and ('datacenter_id' not in local_var_params or # noqa: E501 local_var_params['datacenter_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `datacenter_id` when calling `datacenters_servers_nics_put`") # noqa: E501 # verify the required parameter 'server_id' is set if self.api_client.client_side_validation and ('server_id' not in local_var_params or # noqa: E501 local_var_params['server_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `server_id` when calling `datacenters_servers_nics_put`") # noqa: E501 # verify the required parameter 'nic_id' is set if self.api_client.client_side_validation and ('nic_id' not in local_var_params or # noqa: E501 local_var_params['nic_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `nic_id` when calling `datacenters_servers_nics_put`") # noqa: E501 # verify the required parameter 'nic' is set if self.api_client.client_side_validation and ('nic' not in local_var_params or # noqa: E501 local_var_params['nic'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `nic` when calling `datacenters_servers_nics_put`") # noqa: E501 if self.api_client.client_side_validation and 'depth' in local_var_params and local_var_params['depth'] > 10: # noqa: E501 raise ApiValueError("Invalid value for parameter `depth` when calling `datacenters_servers_nics_put`, must be a value less than or equal to `10`") # noqa: E501 if self.api_client.client_side_validation and 'depth' in local_var_params and local_var_params['depth'] < 0: # noqa: E501 raise ApiValueError("Invalid value for parameter `depth` when calling `datacenters_servers_nics_put`, must be a value greater than or equal to `0`") # noqa: E501 collection_formats = {} path_params = {} if 'datacenter_id' in local_var_params: path_params['datacenterId'] = local_var_params['datacenter_id'] # noqa: E501 if 'server_id' in local_var_params: path_params['serverId'] = local_var_params['server_id'] # noqa: E501 if 'nic_id' in local_var_params: path_params['nicId'] = local_var_params['nic_id'] # noqa: E501 query_params = list(local_var_params.get('query_params', {}).items()) if 'pretty' in local_var_params and local_var_params['pretty'] is not None: # noqa: E501 query_params.append(('pretty', local_var_params['pretty'])) # noqa: E501 if 'depth' in local_var_params and local_var_params['depth'] is not None: # noqa: E501 query_params.append(('depth', local_var_params['depth'])) # noqa: E501 header_params = {} if 'x_contract_number' in local_var_params: header_params['X-Contract-Number'] = local_var_params['x_contract_number'] # noqa: E501 form_params = [] local_var_files = {} body_params = None if 'nic' in local_var_params: body_params = local_var_params['nic'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['Basic Authentication', 'Token Authentication'] # noqa: E501 response_type = 'Nic' if 'response_type' in kwargs: response_type = kwargs['response_type'] return self.api_client.call_api( '/datacenters/{datacenterId}/servers/{serverId}/nics/{nicId}', 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=response_type, # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth'))
58.360206
451
0.638887
c016a78b365ff3d83a68401feed386ac0f8160f8
2,354
py
Python
examples/imagenet_logits.py
sis0truk/pretrained-models.pytorch
4aea6d47996279b4b281355ca3d9738d0dff7469
[ "BSD-3-Clause" ]
91
2018-03-21T19:45:00.000Z
2021-12-13T06:08:00.000Z
examples/imagenet_logits.py
wubin1836/pretrained-models.pytorch
cb5127f43c554c0bb52c5ded3c071d9de9a514a4
[ "BSD-3-Clause" ]
6
2019-08-03T08:49:21.000Z
2022-03-11T23:43:56.000Z
examples/imagenet_logits.py
wubin1836/pretrained-models.pytorch
cb5127f43c554c0bb52c5ded3c071d9de9a514a4
[ "BSD-3-Clause" ]
13
2018-03-23T12:31:52.000Z
2020-07-20T13:16:44.000Z
import argparse from PIL import Image import torch import torchvision.transforms as transforms import sys sys.path.append('.') import pretrainedmodels import pretrainedmodels.utils as utils model_names = sorted(name for name in pretrainedmodels.__dict__ if not name.startswith("__") and name.islower() and callable(pretrainedmodels.__dict__[name])) parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') parser.add_argument('--arch', '-a', metavar='ARCH', default='nasnetalarge', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: nasnetalarge)', nargs='+') parser.add_argument('--path_img', type=str, default='data/cat.jpg') def main(): global args args = parser.parse_args() for arch in args.arch: # Load Model model = pretrainedmodels.__dict__[arch](num_classes=1000, pretrained='imagenet') model.eval() path_img = args.path_img # Load and Transform one input image load_img = utils.LoadImage() tf_img = utils.TransformImage(model) input_data = load_img(args.path_img) # 3x400x225 input_data = tf_img(input_data) # 3x299x299 input_data = input_data.unsqueeze(0) # 1x3x299x299 input = torch.autograd.Variable(input_data) # Load Imagenet Synsets with open('data/imagenet_synsets.txt', 'r') as f: synsets = f.readlines() # len(synsets)==1001 # sysnets[0] == background synsets = [x.strip() for x in synsets] splits = [line.split(' ') for line in synsets] key_to_classname = {spl[0]:' '.join(spl[1:]) for spl in splits} with open('data/imagenet_classes.txt', 'r') as f: class_id_to_key = f.readlines() class_id_to_key = [x.strip() for x in class_id_to_key] # Make predictions output = model(input) # size(1, 1000) max, argmax = output.data.squeeze().max(0) class_id = argmax[0] class_key = class_id_to_key[class_id] classname = key_to_classname[class_key] print("'{}': '{}' is a '{}'".format(arch, path_img, classname)) if __name__ == '__main__': main()
32.694444
75
0.608751
7a48fcbaa9c3efd46f5f396a4fddde42f201fbbd
14,698
py
Python
utils/voc_evaluation.py
TheSeriousProgrammer/Keras_QuickNet_SSD
1c5accfa8d6ae16dab035ba9097fe8670680bdc2
[ "MIT" ]
12
2020-09-28T19:56:06.000Z
2022-03-16T06:27:01.000Z
utils/voc_evaluation.py
500swapnil/TensorflowKeras-Efficientnet-SSD
30c3c7ac8a2c05cc60fb4635a3f954c45e46108a
[ "MIT" ]
4
2021-05-20T21:47:44.000Z
2021-10-10T12:33:12.000Z
utils/voc_evaluation.py
500swapnil/TensorflowKeras-Efficientnet-SSD
30c3c7ac8a2c05cc60fb4635a3f954c45e46108a
[ "MIT" ]
1
2021-05-20T21:41:11.000Z
2021-05-20T21:41:11.000Z
# Evalutation code from https://github.com/chainer/chainercv from collections import defaultdict import itertools import numpy as np import six def bbox_iou(bbox_a, bbox_b): """Calculate the Intersection of Unions (IoUs) between bounding boxes. IoU is calculated as a ratio of area of the intersection and area of the union. This function accepts both :obj:`numpy.ndarray` and :obj:`cupy.ndarray` as inputs. Please note that both :obj:`bbox_a` and :obj:`bbox_b` need to be same type. The output is same type as the type of the inputs. Args: bbox_a (array): An array whose shape is :math:`(N, 4)`. :math:`N` is the number of bounding boxes. The dtype should be :obj:`numpy.float32`. bbox_b (array): An array similar to :obj:`bbox_a`, whose shape is :math:`(K, 4)`. The dtype should be :obj:`numpy.float32`. Returns: array: An array whose shape is :math:`(N, K)`. \ An element at index :math:`(n, k)` contains IoUs between \ :math:`n` th bounding box in :obj:`bbox_a` and :math:`k` th bounding \ box in :obj:`bbox_b`. """ if bbox_a.shape[1] != 4 or bbox_b.shape[1] != 4: raise IndexError # top left tl = np.maximum(bbox_a[:, None, :2], bbox_b[:, :2]) # bottom right br = np.minimum(bbox_a[:, None, 2:], bbox_b[:, 2:]) area_i = np.prod(br - tl, axis=2) * (tl < br).all(axis=2) area_a = np.prod(bbox_a[:, 2:] - bbox_a[:, :2], axis=1) area_b = np.prod(bbox_b[:, 2:] - bbox_b[:, :2], axis=1) return area_i / (area_a[:, None] + area_b - area_i) def eval_detection_voc( pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_difficults=None, iou_thresh=0.5, use_07_metric=False): """Calculate average precisions based on evaluation code of PASCAL VOC. This function evaluates predicted bounding boxes obtained from a dataset which has :math:`N` images by using average precision for each class. The code is based on the evaluation code used in PASCAL VOC Challenge. Args: pred_bboxes (iterable of numpy.ndarray): An iterable of :math:`N` sets of bounding boxes. Its index corresponds to an index for the base dataset. Each element of :obj:`pred_bboxes` is a set of coordinates of bounding boxes. This is an array whose shape is :math:`(R, 4)`, where :math:`R` corresponds to the number of bounding boxes, which may vary among boxes. The second axis corresponds to :math:`y_{min}, x_{min}, y_{max}, x_{max}` of a bounding box. pred_labels (iterable of numpy.ndarray): An iterable of labels. Similar to :obj:`pred_bboxes`, its index corresponds to an index for the base dataset. Its length is :math:`N`. pred_scores (iterable of numpy.ndarray): An iterable of confidence scores for predicted bounding boxes. Similar to :obj:`pred_bboxes`, its index corresponds to an index for the base dataset. Its length is :math:`N`. gt_bboxes (iterable of numpy.ndarray): An iterable of ground truth bounding boxes whose length is :math:`N`. An element of :obj:`gt_bboxes` is a bounding box whose shape is :math:`(R, 4)`. Note that the number of bounding boxes in each image does not need to be same as the number of corresponding predicted boxes. gt_labels (iterable of numpy.ndarray): An iterable of ground truth labels which are organized similarly to :obj:`gt_bboxes`. gt_difficults (iterable of numpy.ndarray): An iterable of boolean arrays which is organized similarly to :obj:`gt_bboxes`. This tells whether the corresponding ground truth bounding box is difficult or not. By default, this is :obj:`None`. In that case, this function considers all bounding boxes to be not difficult. iou_thresh (float): A prediction is correct if its Intersection over Union with the ground truth is above this value. use_07_metric (bool): Whether to use PASCAL VOC 2007 evaluation metric for calculating average precision. The default value is :obj:`False`. Returns: dict: The keys, value-types and the description of the values are listed below. * **ap** (*numpy.ndarray*): An array of average precisions. \ The :math:`l`-th value corresponds to the average precision \ for class :math:`l`. If class :math:`l` does not exist in \ either :obj:`pred_labels` or :obj:`gt_labels`, the corresponding \ value is set to :obj:`numpy.nan`. * **map** (*float*): The average of Average Precisions over classes. """ prec, rec = calc_detection_voc_prec_rec(pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_difficults, iou_thresh=iou_thresh) ap = calc_detection_voc_ap(prec, rec, use_07_metric=use_07_metric) return {'ap': ap, 'map': np.nanmean(ap)} def calc_detection_voc_prec_rec( pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_difficults=None, iou_thresh=0.5): """Calculate precision and recall based on evaluation code of PASCAL VOC. This function calculates precision and recall of predicted bounding boxes obtained from a dataset which has :math:`N` images. The code is based on the evaluation code used in PASCAL VOC Challenge. Args: pred_bboxes (iterable of numpy.ndarray): An iterable of :math:`N` sets of bounding boxes. Its index corresponds to an index for the base dataset. Each element of :obj:`pred_bboxes` is a set of coordinates of bounding boxes. This is an array whose shape is :math:`(R, 4)`, where :math:`R` corresponds to the number of bounding boxes, which may vary among boxes. The second axis corresponds to :math:`y_{min}, x_{min}, y_{max}, x_{max}` of a bounding box. pred_labels (iterable of numpy.ndarray): An iterable of labels. Similar to :obj:`pred_bboxes`, its index corresponds to an index for the base dataset. Its length is :math:`N`. pred_scores (iterable of numpy.ndarray): An iterable of confidence scores for predicted bounding boxes. Similar to :obj:`pred_bboxes`, its index corresponds to an index for the base dataset. Its length is :math:`N`. gt_bboxes (iterable of numpy.ndarray): An iterable of ground truth bounding boxes whose length is :math:`N`. An element of :obj:`gt_bboxes` is a bounding box whose shape is :math:`(R, 4)`. Note that the number of bounding boxes in each image does not need to be same as the number of corresponding predicted boxes. gt_labels (iterable of numpy.ndarray): An iterable of ground truth labels which are organized similarly to :obj:`gt_bboxes`. gt_difficults (iterable of numpy.ndarray): An iterable of boolean arrays which is organized similarly to :obj:`gt_bboxes`. This tells whether the corresponding ground truth bounding box is difficult or not. By default, this is :obj:`None`. In that case, this function considers all bounding boxes to be not difficult. iou_thresh (float): A prediction is correct if its Intersection over Union with the ground truth is above this value.. Returns: tuple of two lists: This function returns two lists: :obj:`prec` and :obj:`rec`. * :obj:`prec`: A list of arrays. :obj:`prec[l]` is precision \ for class :math:`l`. If class :math:`l` does not exist in \ either :obj:`pred_labels` or :obj:`gt_labels`, :obj:`prec[l]` is \ set to :obj:`None`. * :obj:`rec`: A list of arrays. :obj:`rec[l]` is recall \ for class :math:`l`. If class :math:`l` that is not marked as \ difficult does not exist in \ :obj:`gt_labels`, :obj:`rec[l]` is \ set to :obj:`None`. """ pred_bboxes = iter(pred_bboxes) pred_labels = iter(pred_labels) pred_scores = iter(pred_scores) gt_bboxes = iter(gt_bboxes) gt_labels = iter(gt_labels) if gt_difficults is None: gt_difficults = itertools.repeat(None) else: gt_difficults = iter(gt_difficults) n_pos = defaultdict(int) score = defaultdict(list) match = defaultdict(list) for pred_bbox, pred_label, pred_score, gt_bbox, gt_label, gt_difficult in \ six.moves.zip( pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_difficults): if gt_difficult is None: gt_difficult = np.zeros(gt_bbox.shape[0], dtype=bool) for l in np.unique(np.concatenate((pred_label, gt_label)).astype(int)): pred_mask_l = pred_label == l pred_bbox_l = pred_bbox[pred_mask_l] pred_score_l = pred_score[pred_mask_l] # sort by score order = pred_score_l.argsort()[::-1] pred_bbox_l = pred_bbox_l[order] pred_score_l = pred_score_l[order] gt_mask_l = gt_label == l gt_bbox_l = gt_bbox[gt_mask_l] gt_difficult_l = gt_difficult[gt_mask_l] n_pos[l] += np.logical_not(gt_difficult_l).sum() score[l].extend(pred_score_l) if len(pred_bbox_l) == 0: continue if len(gt_bbox_l) == 0: match[l].extend((0,) * pred_bbox_l.shape[0]) continue # VOC evaluation follows integer typed bounding boxes. pred_bbox_l = pred_bbox_l.copy() pred_bbox_l[:, 2:] += 1 gt_bbox_l = gt_bbox_l.copy() gt_bbox_l[:, 2:] += 1 iou = bbox_iou(pred_bbox_l, gt_bbox_l) gt_index = iou.argmax(axis=1) # set -1 if there is no matching ground truth gt_index[iou.max(axis=1) < iou_thresh] = -1 del iou selec = np.zeros(gt_bbox_l.shape[0], dtype=bool) for gt_idx in gt_index: if gt_idx >= 0: if gt_difficult_l[gt_idx]: match[l].append(-1) else: if not selec[gt_idx]: match[l].append(1) else: match[l].append(0) selec[gt_idx] = True else: match[l].append(0) for iter_ in ( pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_difficults): if next(iter_, None) is not None: raise ValueError('Length of input iterables need to be same.') n_fg_class = max(n_pos.keys()) + 1 prec = [None] * n_fg_class rec = [None] * n_fg_class for l in n_pos.keys(): score_l = np.array(score[l]) match_l = np.array(match[l], dtype=np.int8) order = score_l.argsort()[::-1] match_l = match_l[order] tp = np.cumsum(match_l == 1) fp = np.cumsum(match_l == 0) # If an element of fp + tp is 0, # the corresponding element of prec[l] is nan. prec[l] = tp / (fp + tp) # If n_pos[l] is 0, rec[l] is None. if n_pos[l] > 0: rec[l] = tp / n_pos[l] return prec, rec def calc_detection_voc_ap(prec, rec, use_07_metric=False): """Calculate average precisions based on evaluation code of PASCAL VOC. This function calculates average precisions from given precisions and recalls. The code is based on the evaluation code used in PASCAL VOC Challenge. Args: prec (list of numpy.array): A list of arrays. :obj:`prec[l]` indicates precision for class :math:`l`. If :obj:`prec[l]` is :obj:`None`, this function returns :obj:`numpy.nan` for class :math:`l`. rec (list of numpy.array): A list of arrays. :obj:`rec[l]` indicates recall for class :math:`l`. If :obj:`rec[l]` is :obj:`None`, this function returns :obj:`numpy.nan` for class :math:`l`. use_07_metric (bool): Whether to use PASCAL VOC 2007 evaluation metric for calculating average precision. The default value is :obj:`False`. Returns: ~numpy.ndarray: This function returns an array of average precisions. The :math:`l`-th value corresponds to the average precision for class :math:`l`. If :obj:`prec[l]` or :obj:`rec[l]` is :obj:`None`, the corresponding value is set to :obj:`numpy.nan`. """ n_fg_class = len(prec) ap = np.empty(n_fg_class) for l in six.moves.range(n_fg_class): if prec[l] is None or rec[l] is None: ap[l] = np.nan continue if use_07_metric: # 11 point metric ap[l] = 0 for t in np.arange(0., 1.1, 0.1): if np.sum(rec[l] >= t) == 0: p = 0 else: p = np.max(np.nan_to_num(prec[l])[rec[l] >= t]) ap[l] += p / 11 else: # correct AP calculation # first append sentinel values at the end mpre = np.concatenate(([0], np.nan_to_num(prec[l]), [0])) mrec = np.concatenate(([0], rec[l], [1])) mpre = np.maximum.accumulate(mpre[::-1])[::-1] # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap[l] = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap
44.539394
80
0.572255
98a52a0f274ab10cecd65f0fbaed260cd1ac9484
4,052
py
Python
sdk/python/pulumi_aws/eks/cluster.py
pulumi-bot/pulumi-aws
756c60135851e015232043c8206567101b8ebd85
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/eks/cluster.py
pulumi-bot/pulumi-aws
756c60135851e015232043c8206567101b8ebd85
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/eks/cluster.py
pulumi-bot/pulumi-aws
756c60135851e015232043c8206567101b8ebd85
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import pulumi import pulumi.runtime class Cluster(pulumi.CustomResource): """ Manages an EKS Cluster. """ def __init__(__self__, __name__, __opts__=None, name=None, role_arn=None, version=None, vpc_config=None): """Create a Cluster resource with the given unique name, props, and options.""" if not __name__: raise TypeError('Missing resource name argument (for URN creation)') if not isinstance(__name__, basestring): raise TypeError('Expected resource name to be a string') if __opts__ and not isinstance(__opts__, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') __props__ = dict() if name and not isinstance(name, basestring): raise TypeError('Expected property name to be a basestring') __self__.name = name """ Name of the cluster. """ __props__['name'] = name if not role_arn: raise TypeError('Missing required property role_arn') elif not isinstance(role_arn, basestring): raise TypeError('Expected property role_arn to be a basestring') __self__.role_arn = role_arn """ The Amazon Resource Name (ARN) of the IAM role that provides permissions for the Kubernetes control plane to make calls to AWS API operations on your behalf. """ __props__['roleArn'] = role_arn if version and not isinstance(version, basestring): raise TypeError('Expected property version to be a basestring') __self__.version = version """ Desired Kubernetes master version. If you do not specify a value, the latest available version is used. """ __props__['version'] = version if not vpc_config: raise TypeError('Missing required property vpc_config') elif not isinstance(vpc_config, dict): raise TypeError('Expected property vpc_config to be a dict') __self__.vpc_config = vpc_config """ Nested argument for the VPC associated with your cluster. Amazon EKS VPC resources have specific requirements to work properly with Kubernetes. For more information, see [Cluster VPC Considerations](https://docs.aws.amazon.com/eks/latest/userguide/network_reqs.html) and [Cluster Security Group Considerations](https://docs.aws.amazon.com/eks/latest/userguide/sec-group-reqs.html) in the Amazon EKS User Guide. Configuration detailed below. """ __props__['vpcConfig'] = vpc_config __self__.arn = pulumi.runtime.UNKNOWN """ The Amazon Resource Name (ARN) of the cluster. """ __self__.certificate_authority = pulumi.runtime.UNKNOWN """ Nested attribute containing `certificate-authority-data` for your cluster. """ __self__.created_at = pulumi.runtime.UNKNOWN __self__.endpoint = pulumi.runtime.UNKNOWN """ The endpoint for your Kubernetes API server. """ super(Cluster, __self__).__init__( 'aws:eks/cluster:Cluster', __name__, __props__, __opts__) def set_outputs(self, outs): if 'arn' in outs: self.arn = outs['arn'] if 'certificateAuthority' in outs: self.certificate_authority = outs['certificateAuthority'] if 'createdAt' in outs: self.created_at = outs['createdAt'] if 'endpoint' in outs: self.endpoint = outs['endpoint'] if 'name' in outs: self.name = outs['name'] if 'roleArn' in outs: self.role_arn = outs['roleArn'] if 'version' in outs: self.version = outs['version'] if 'vpcConfig' in outs: self.vpc_config = outs['vpcConfig']
42.208333
448
0.638697
b751773e0d8a34d42ceb97cf1668b9edc46325ab
7,485
py
Python
dask_jobqueue/htcondor.py
lpsinger/dask-jobqueue
bff96a329439c23414bd0cb11c0ee8e67145d96b
[ "BSD-3-Clause" ]
1
2019-07-25T08:39:44.000Z
2019-07-25T08:39:44.000Z
dask_jobqueue/htcondor.py
lpsinger/dask-jobqueue
bff96a329439c23414bd0cb11c0ee8e67145d96b
[ "BSD-3-Clause" ]
1
2019-04-19T16:36:32.000Z
2019-04-19T16:36:32.000Z
dask_jobqueue/htcondor.py
zonca/dask-jobqueue
55b3c329ec54d708dd041f87723b28c332a6406e
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import, division, print_function import logging import re import shlex import dask from distributed.utils import parse_bytes from .core import JobQueueCluster, docstrings logger = logging.getLogger(__name__) class HTCondorCluster(JobQueueCluster): __doc__ = docstrings.with_indents( """ Launch Dask on an HTCondor cluster with a shared file system Parameters ---------- disk : str Total amount of disk per job job_extra : dict Extra submit file attributes for the job %(JobQueueCluster.parameters)s Examples -------- >>> from dask_jobqueue.htcondor import HTCondorCluster >>> cluster = HTCondorCluster(cores=24, memory="4GB", disk="4GB") >>> cluster.scale(10) >>> from dask.distributed import Client >>> client = Client(cluster) This also works with adaptive clusters. This automatically launches and kill workers based on load. HTCondor can take longer to start jobs than other batch systems - tune Adaptive parameters accordingly. >>> cluster.adapt(minimum=5, startup_cost='60s') """, 4, ) _script_template = """ %(shebang)s %(job_header)s Environment = "%(quoted_environment)s" Arguments = "%(quoted_arguments)s" Executable = %(executable)s """.lstrip() submit_command = "condor_submit -queue 1 -file" cancel_command = "condor_rm" job_id_regexp = r"(?P<job_id>\d+\.\d+)" # condor sets argv[0] of the executable to "condor_exec.exe", which confuses # Python (can't find its libs), so we have to go through the shell. executable = "/bin/sh" def __init__(self, disk=None, job_extra=None, config_name="htcondor", **kwargs): if disk is None: disk = dask.config.get("jobqueue.%s.disk" % config_name) if disk is None: raise ValueError( "You must specify how much disk to use per job like ``disk='1 GB'``" ) self.worker_disk = parse_bytes(disk) if job_extra is None: self.job_extra = dask.config.get("jobqueue.%s.job-extra" % config_name, {}) else: self.job_extra = job_extra # Instantiate args and parameters from parent abstract class super(HTCondorCluster, self).__init__(config_name=config_name, **kwargs) env_extra = kwargs.get("env_extra", None) if env_extra is None: env_extra = dask.config.get( "jobqueue.%s.env-extra" % config_name, default=[] ) self.env_dict = self.env_lines_to_dict(env_extra) self.env_dict["JOB_ID"] = "$F(MY.JobId)" self.job_header_dict = { "MY.DaskWorkerName": '"htcondor--$F(MY.JobId)--"', "RequestCpus": "MY.DaskWorkerCores", "RequestMemory": "floor(MY.DaskWorkerMemory / 1048576)", "RequestDisk": "floor(MY.DaskWorkerDisk / 1024)", "MY.JobId": '"$(ClusterId).$(ProcId)"', "MY.DaskWorkerCores": self.worker_cores, "MY.DaskWorkerMemory": self.worker_memory, "MY.DaskWorkerDisk": self.worker_disk, } if self.log_directory: self.job_header_dict.update( { "LogDirectory": self.log_directory, # $F(...) strips quotes "Output": "$(LogDirectory)/worker-$F(MY.JobId).out", "Error": "$(LogDirectory)/worker-$F(MY.JobId).err", "Log": "$(LogDirectory)/worker-$(ClusterId).log", # We kill all the workers to stop them so we need to stream their # output+error if we ever want to see anything "Stream_Output": True, "Stream_Error": True, } ) if self.job_extra: self.job_header_dict.update(self.job_extra) def env_lines_to_dict(self, env_lines): """ Convert an array of export statements (what we get from env-extra in the config) into a dict """ env_dict = {} for env_line in env_lines: split_env_line = shlex.split(env_line) if split_env_line[0] == "export": split_env_line = split_env_line[1:] for item in split_env_line: if "=" in item: k, v = item.split("=", 1) env_dict[k] = v return env_dict def job_script(self): """ Construct a job submission script """ quoted_arguments = quote_arguments(["-c", self._command_template]) quoted_environment = quote_environment(self.env_dict) job_header_lines = "\n".join( "%s = %s" % (k, v) for k, v in self.job_header_dict.items() ) return self._script_template % { "shebang": self.shebang, "job_header": job_header_lines, "quoted_environment": quoted_environment, "quoted_arguments": quoted_arguments, "executable": self.executable, } def _job_id_from_submit_output(self, out): cluster_id_regexp = r"submitted to cluster (\d+)" match = re.search(cluster_id_regexp, out) if match is None: msg = ( "Could not parse cluster id from submission command output.\n" "Cluster id regexp is {!r}\n" "Submission command output is:\n{}".format(cluster_id_regexp, out) ) raise ValueError(msg) return "%s.0" % match.group(1) def _double_up_quotes(instr): return instr.replace("'", "''").replace('"', '""') def quote_arguments(args): """Quote a string or list of strings using the Condor submit file "new" argument quoting rules. Returns ------- str The arguments in a quoted form. Warnings -------- You will need to surround the result in double-quotes before using it in the Arguments attribute. Examples -------- >>> quote_arguments(["3", "simple", "arguments"]) '3 simple arguments' >>> quote_arguments(["one", "two with spaces", "three"]) 'one \'two with spaces\' three' >>> quote_arguments(["one", "\"two\"", "spacy 'quoted' argument"]) 'one ""two"" \'spacey \'\'quoted\'\' argument\'' """ if isinstance(args, str): args_list = [args] else: args_list = args quoted_args = [] for a in args_list: qa = _double_up_quotes(a) if " " in qa or "'" in qa: qa = "'" + qa + "'" quoted_args.append(qa) return " ".join(quoted_args) def quote_environment(env): """Quote a dict of strings using the Condor submit file "new" environment quoting rules. Returns ------- str The environment in quoted form. Warnings -------- You will need to surround the result in double-quotes before using it in the Environment attribute. Examples -------- >>> from collections import OrderedDict >>> quote_environment(OrderedDict([("one", 1), ("two", '"2"'), ("three", "spacey 'quoted' value")])) 'one=1 two=""2"" three=\'spacey \'\'quoted\'\' value\'' """ if not isinstance(env, dict): raise TypeError("env must be a dict") entries = [] for k, v in env.items(): qv = _double_up_quotes(str(v)) if " " in qv or "'" in qv: qv = "'" + qv + "'" entries.append("%s=%s" % (k, qv)) return " ".join(entries)
33.266667
107
0.585438
b02b9d753349dfef40ab9e8159dca35f0b86ca53
911
py
Python
app.py
LoganCButler/BostonHousesDataScience
3cfaa102bfbbc47fe566eb1288d4c49d5672eaf1
[ "MIT" ]
null
null
null
app.py
LoganCButler/BostonHousesDataScience
3cfaa102bfbbc47fe566eb1288d4c49d5672eaf1
[ "MIT" ]
null
null
null
app.py
LoganCButler/BostonHousesDataScience
3cfaa102bfbbc47fe566eb1288d4c49d5672eaf1
[ "MIT" ]
null
null
null
### TODO ### import numpy as np from flask import Flask, request, jsonify import pickle from pandas import DataFrame import pandas as pd import math app = Flask(__name__) # Load the model model = pickle.load(open('model.pkl','rb')) @app.route('/predict',methods=['POST']) def predict(): # Get the data from the POST request. data = request.get_json(force=True) asDf = pd.read_json(data['payload']) ## add Hyper columns to test data asDfHyper = asDf.copy() asDfHyper['hyper_A'] = (asDf[12]-asDf[5]) asDfHyper['hyper_B'] = asDf[0].apply(abs).apply(math.sqrt) asDfHyper['hyper_C'] = asDf[12] < 0 prediction = model.predict(asDfHyper) # Take the first value of prediction output = prediction[0][0] return jsonify({'prediction (10k): ': output }) if __name__ == '__main__': app.run(port=8081, debug=True) ################
23.973684
62
0.632272
9209f156263e9dd9fa17ad17704bae763713880f
8,821
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_04_01/aio/operations_async/_available_private_endpoint_types_operations_async.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
2
2019-05-17T21:24:53.000Z
2020-02-12T11:13:42.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_04_01/aio/operations_async/_available_private_endpoint_types_operations_async.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
15
2019-07-12T18:18:04.000Z
2019-07-25T20:55:51.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_04_01/aio/operations_async/_available_private_endpoint_types_operations_async.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
2
2020-05-21T22:51:22.000Z
2020-05-26T20:53:01.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class AvailablePrivateEndpointTypesOperations: """AvailablePrivateEndpointTypesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_04_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, location: str, **kwargs ) -> AsyncIterable["models.AvailablePrivateEndpointTypesResult"]: """Returns all of the resource types that can be linked to a Private Endpoint in this subscription in this region. :param location: The location of the domain name. :type location: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either AvailablePrivateEndpointTypesResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_04_01.models.AvailablePrivateEndpointTypesResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.AvailablePrivateEndpointTypesResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') else: url = next_link query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('AvailablePrivateEndpointTypesResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/locations/{location}/availablePrivateEndpointTypes'} # type: ignore def list_by_resource_group( self, location: str, resource_group_name: str, **kwargs ) -> AsyncIterable["models.AvailablePrivateEndpointTypesResult"]: """Returns all of the resource types that can be linked to a Private Endpoint in this subscription in this region. :param location: The location of the domain name. :type location: str :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either AvailablePrivateEndpointTypesResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_04_01.models.AvailablePrivateEndpointTypesResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.AvailablePrivateEndpointTypesResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list_by_resource_group.metadata['url'] # type: ignore path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') else: url = next_link query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('AvailablePrivateEndpointTypesResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_resource_group.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/locations/{location}/availablePrivateEndpointTypes'} # type: ignore
48.202186
210
0.660469
adcb42483eaae3ab2307edadf4ecf1a284030744
7,180
py
Python
sdk/python/pulumi_azure_native/recoveryservices/v20180710/replication_storage_classification_mapping.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/recoveryservices/v20180710/replication_storage_classification_mapping.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/recoveryservices/v20180710/replication_storage_classification_mapping.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['ReplicationStorageClassificationMapping'] class ReplicationStorageClassificationMapping(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, fabric_name: Optional[pulumi.Input[str]] = None, properties: Optional[pulumi.Input[pulumi.InputType['StorageMappingInputPropertiesArgs']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, resource_name_: Optional[pulumi.Input[str]] = None, storage_classification_mapping_name: Optional[pulumi.Input[str]] = None, storage_classification_name: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ Storage mapping object. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] fabric_name: Fabric name. :param pulumi.Input[pulumi.InputType['StorageMappingInputPropertiesArgs']] properties: Storage mapping input properties. :param pulumi.Input[str] resource_group_name: The name of the resource group where the recovery services vault is present. :param pulumi.Input[str] resource_name_: The name of the recovery services vault. :param pulumi.Input[str] storage_classification_mapping_name: Storage classification mapping name. :param pulumi.Input[str] storage_classification_name: Storage classification name. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if fabric_name is None and not opts.urn: raise TypeError("Missing required property 'fabric_name'") __props__['fabric_name'] = fabric_name __props__['properties'] = properties if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name if resource_name_ is None and not opts.urn: raise TypeError("Missing required property 'resource_name_'") __props__['resource_name'] = resource_name_ __props__['storage_classification_mapping_name'] = storage_classification_mapping_name if storage_classification_name is None and not opts.urn: raise TypeError("Missing required property 'storage_classification_name'") __props__['storage_classification_name'] = storage_classification_name __props__['location'] = None __props__['name'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:recoveryservices/v20180710:ReplicationStorageClassificationMapping"), pulumi.Alias(type_="azure-native:recoveryservices:ReplicationStorageClassificationMapping"), pulumi.Alias(type_="azure-nextgen:recoveryservices:ReplicationStorageClassificationMapping"), pulumi.Alias(type_="azure-native:recoveryservices/latest:ReplicationStorageClassificationMapping"), pulumi.Alias(type_="azure-nextgen:recoveryservices/latest:ReplicationStorageClassificationMapping"), pulumi.Alias(type_="azure-native:recoveryservices/v20160810:ReplicationStorageClassificationMapping"), pulumi.Alias(type_="azure-nextgen:recoveryservices/v20160810:ReplicationStorageClassificationMapping"), pulumi.Alias(type_="azure-native:recoveryservices/v20180110:ReplicationStorageClassificationMapping"), pulumi.Alias(type_="azure-nextgen:recoveryservices/v20180110:ReplicationStorageClassificationMapping")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(ReplicationStorageClassificationMapping, __self__).__init__( 'azure-native:recoveryservices/v20180710:ReplicationStorageClassificationMapping', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'ReplicationStorageClassificationMapping': """ Get an existing ReplicationStorageClassificationMapping resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["location"] = None __props__["name"] = None __props__["properties"] = None __props__["type"] = None return ReplicationStorageClassificationMapping(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Resource Location """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource Name """ return pulumi.get(self, "name") @property @pulumi.getter def properties(self) -> pulumi.Output['outputs.StorageClassificationMappingPropertiesResponse']: """ Properties of the storage mapping object. """ return pulumi.get(self, "properties") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource Type """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
50.20979
959
0.689276
286b8f9ed9e590590c8b33de167185ddedd3bd07
3,963
py
Python
poem_generator/word_network.py
Aaronsom/poem-generation
10cccad88d073f82f6556374fdfb23a5b5e3769a
[ "MIT" ]
null
null
null
poem_generator/word_network.py
Aaronsom/poem-generation
10cccad88d073f82f6556374fdfb23a5b5e3769a
[ "MIT" ]
null
null
null
poem_generator/word_network.py
Aaronsom/poem-generation
10cccad88d073f82f6556374fdfb23a5b5e3769a
[ "MIT" ]
null
null
null
from keras.models import Sequential from keras.layers import Dense, Embedding, Flatten, Dropout, CuDNNLSTM, CuDNNGRU, Conv1D, GlobalMaxPool1D, Bidirectional from keras.callbacks import ModelCheckpoint, CSVLogger import keras.optimizers as optimizer from keras.backend import set_floatx, set_epsilon from poem_generator.dataGenerator import TupleDataGenerator import poem_generator.data_prepocessing as dp import poem_generator.embedding as embedding_loader from poem_generator.global_constants import TRAINING_DATA, EMBEDDING_DIMENSION, EMBEDDING_BINARY, MODELS_DICT from poem_generator.transformer import transformer def mlp(n, embedding, vocab_len): model = Sequential([ Embedding(input_dim=vocab_len, output_dim=EMBEDDING_DIMENSION, input_length=n, weights=[embedding]), Flatten(), Dropout(0.2), Dense(n*600, activation="relu"), Dropout(0.2), Dense(n*300, activation="relu"), Dropout(0.2), Dense(n*100, activation="relu"), Dropout(0.2), Dense(vocab_len,activation="softmax"), ]) return model def lstm_rnn(n, embedding, vocab_len): model = Sequential([ Embedding(input_dim=vocab_len, output_dim=EMBEDDING_DIMENSION, input_length=n, weights=[embedding]), CuDNNLSTM(4096, return_sequences=False), Dropout(0.2), Dense(1024, activation="relu"), Dropout(0.2), Dense(vocab_len, activation="softmax") ]) return model def gru_rnn(n, embedding, vocab_len): model = Sequential([ Embedding(input_dim=vocab_len, output_dim=EMBEDDING_DIMENSION, input_length=n, weights=[embedding]), CuDNNGRU(512, return_sequences=False), Dropout(0.2), Dense(512, activation="relu"), Dropout(0.2), Dense(vocab_len, activation="softmax") ]) return model def cnn(n, embedding, vocab_len): model = Sequential([ Embedding(input_dim=vocab_len, output_dim=EMBEDDING_DIMENSION, input_length=n, weights=[embedding]), Conv1D(50, 5, activation="relu"), GlobalMaxPool1D(), Dropout(0.2), Dense(1000, activation="relu"), Dropout(0.2), Dense(vocab_len, activation="softmax") ]) return model def bidirectional_lstm(n, embedding, vocab_len): model = Sequential([ Embedding(input_dim=vocab_len, output_dim=EMBEDDING_DIMENSION, input_length=n, weights=[embedding]), Bidirectional(CuDNNLSTM(1024, return_sequences=False)), Dropout(0.2), Dense(512, activation="relu"), Dropout(0.2), Dense(vocab_len, activation="softmax") ]) return model if __name__ == "__main__": set_floatx("float16") set_epsilon(1e-04) ns = [5] epochs = 20 batch_size = 512 max_limit = 25000 validation_split = 0.9 poems = dp.tokenize_poems(TRAINING_DATA) words = sorted(list(set([token for poem in poems for token in poem]))) #Save embedding for generator embedding, dictionary = embedding_loader.get_embedding(words, binary=EMBEDDING_BINARY, limit=max_limit, save=True) #model = load_model(MODELS_DICT+"/5model.hdf5", custom_objects={"PositionalEncoding": PositionalEncoding, "Attention": Attention}) model = transformer(100, embedding, len(dictionary), True) model.compile(optimizer=optimizer.Adam(decay=1e-5), loss="categorical_crossentropy", metrics=["accuracy"]) generator = TupleDataGenerator(poems[:int(validation_split*len(poems))], ns, dictionary, 0.1, batch_size, single=True) validation_generator = TupleDataGenerator(poems[int(validation_split*len(poems)):], ns, dictionary, 0, batch_size, single=True) callbacks = [ModelCheckpoint(MODELS_DICT+"/model.hdf5", save_best_only=True), CSVLogger(MODELS_DICT+"/log.csv", append=True, separator=';')] model.fit_generator( generator, epochs=epochs, callbacks=callbacks, validation_data=validation_generator, workers=4)
39.63
134
0.700479
213ec011e8a81bdd502b93b83c111cddc34df6fe
421
py
Python
leetcode/2140.py
ShengyuanWang/ShengyuanWang.github.io
b43f867a1b140b78f8031725cff212b43ecd001b
[ "MIT" ]
1
2022-01-20T21:12:00.000Z
2022-01-20T21:12:00.000Z
leetcode/2140.py
ShengyuanWang/ShengyuanWang.github.io
b43f867a1b140b78f8031725cff212b43ecd001b
[ "MIT" ]
null
null
null
leetcode/2140.py
ShengyuanWang/ShengyuanWang.github.io
b43f867a1b140b78f8031725cff212b43ecd001b
[ "MIT" ]
null
null
null
class Solution: def mostPoints(self, questions: List[List[int]]) -> int: n = len(questions) dp = [0] * n for i in range(n-1, -1, -1): end = i + questions[i][1] + 1 dp[i] = questions[i][0] if end < n: dp[i] = questions[i][0] + dp[end] if i < n-1: dp[i] = max(dp[i], dp[i+1]) return dp[0]
28.066667
60
0.396675
13597aaa99b116cebede6673234f74056d5edee8
343
py
Python
Python/mp.py
kaehsu/template-bash
f8a8a4babb8537622a4e4246701761a9832d6aeb
[ "MIT" ]
null
null
null
Python/mp.py
kaehsu/template-bash
f8a8a4babb8537622a4e4246701761a9832d6aeb
[ "MIT" ]
null
null
null
Python/mp.py
kaehsu/template-bash
f8a8a4babb8537622a4e4246701761a9832d6aeb
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import multiprocessing import os def whoami(what): print("Process {} says: {}".format(os.getpid(), what)) if __name__ == '__main__': whoami("I'm the main program") for n in range(64): p = multiprocessing.Process( target=whoami, args=("I'm function %s" % n,)) p.start() quit9
19.055556
58
0.603499
895e9d276904e7fa11b694d30b5ae016a1bb3e99
414
py
Python
models/dpt_model/dpt_arguments.py
DominikSpiljak/depth-prediction
6a35579b121b34ed5b423b0f042e1d9b78f0120f
[ "Apache-2.0" ]
null
null
null
models/dpt_model/dpt_arguments.py
DominikSpiljak/depth-prediction
6a35579b121b34ed5b423b0f042e1d9b78f0120f
[ "Apache-2.0" ]
1
2022-03-30T20:45:28.000Z
2022-03-30T20:45:28.000Z
models/dpt_model/dpt_arguments.py
DominikSpiljak/depth-prediction
6a35579b121b34ed5b423b0f042e1d9b78f0120f
[ "Apache-2.0" ]
null
null
null
def add_model_args(parser): dpt = parser.add_argument_group("DPT") dpt.add_argument( "--no-backbone-pretrain", action="store_false", dest="backbone_pretrained", ) dpt.add_argument( "--pretrained-weights", help="Path to pretrained weights for DPT hybrid model", default="models/dpt_model/weights/dpt_hybrid-midas-501f0c75.pt", ) return parser
29.571429
72
0.647343
f5645c771f767bc63f193c1d2dc45757a3552ae6
1,208
py
Python
locallibrary/locallibrary/urls.py
waltermaina/local-library-website
ac0f6d9c6cd79f891d196c707327717282fcc9cb
[ "MIT" ]
null
null
null
locallibrary/locallibrary/urls.py
waltermaina/local-library-website
ac0f6d9c6cd79f891d196c707327717282fcc9cb
[ "MIT" ]
null
null
null
locallibrary/locallibrary/urls.py
waltermaina/local-library-website
ac0f6d9c6cd79f891d196c707327717282fcc9cb
[ "MIT" ]
null
null
null
"""locallibrary URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.views.generic import RedirectView # Use static() to add url mapping to serve static files during development (only) from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('catalog/', include('catalog.urls')), path('', RedirectView.as_view(url='catalog/', permanent=True)), path('accounts/', include('django.contrib.auth.urls')), ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
41.655172
81
0.729305
3b2ef0192c0ba1975403c6244c371471321656f9
34,920
py
Python
emotion_model/classifiers.py
Bonsior-yyc/weibo
75e7e1df54b22d7985934b188c31dd413222c856
[ "MIT" ]
null
null
null
emotion_model/classifiers.py
Bonsior-yyc/weibo
75e7e1df54b22d7985934b188c31dd413222c856
[ "MIT" ]
null
null
null
emotion_model/classifiers.py
Bonsior-yyc/weibo
75e7e1df54b22d7985934b188c31dd413222c856
[ "MIT" ]
null
null
null
import re from collections import defaultdict import jieba import numpy as np from jieba import posseg # ################################################ # classifier based on sentiment f_dict # ################################################ class DictClassifier: def __init__(self): self.__root_filepath = "f_dict/" jieba.load_userdict("f_dict/user.dict") # 准备分词词典 # 准备情感词典词典 self.__phrase_dict = self.__get_phrase_dict() self.__positive_dict = self.__get_dict(self.__root_filepath + "positive_dict.txt") self.__negative_dict = self.__get_dict(self.__root_filepath + "negative_dict.txt") self.__conjunction_dict = self.__get_dict(self.__root_filepath + "conjunction_dict.txt") self.__punctuation_dict = self.__get_dict(self.__root_filepath + "punctuation_dict.txt") self.__adverb_dict = self.__get_dict(self.__root_filepath + "adverb_dict.txt") self.__denial_dict = self.__get_dict(self.__root_filepath + "denial_dict.txt") def classify(self, sentence): return self.analyse_sentence(sentence) def analysis_file(self, filepath_in, filepath_out, encoding="utf-8", print_show=False, start=0, end=-1): open(filepath_out, "w") results = [] with open(filepath_in, "r", encoding=encoding) as f: line_number = 0 for line in f: # 控制分析的语料的开始位置(行数) line_number += 1 if line_number < start: continue results.append(self.analyse_sentence(line.strip(), filepath_out, print_show)) # 控制分析的语料的结束位置(行数) if 0 < end <= line_number: break return results def analyse_sentence(self, sentence, runout_filepath=None, print_show=False): # 情感分析整体数据结构 sentence = str(sentence) comment_analysis = {"score": 0} # 将评论分句 the_clauses = self.__divide_sentence_into_clauses(sentence + "%") # 对每分句进行情感分析 for i in range(len(the_clauses)): # 情感分析子句的数据结构 sub_clause = self.__analyse_clause(the_clauses[i].replace("。", "."), runout_filepath, print_show) # 将子句分析的数据结果添加到整体数据结构中 comment_analysis["su-clause" + str(i)] = sub_clause comment_analysis['score'] += sub_clause['score'] if runout_filepath is not None: # 将整句写进运行输出文件,以便复查comment_analysis["score"] self.__write_runout_file(runout_filepath, "\n" + sentence + '\n') # 将每个评论的每个分句的分析结果写进运行输出文件,以便复查 self.__output_analysis(comment_analysis, runout_filepath) # 将每个评论的的整体分析结果写进运行输出文件,以便复查 self.__write_runout_file(runout_filepath, str(comment_analysis) + "\n\n\n\n") if print_show: print("\n" + sentence) self.__output_analysis(comment_analysis) print(comment_analysis, end="\n\n\n") return comment_analysis["score"] / len(sentence) if abs(comment_analysis["score"]) < 100 else 0 # if comment_analysis["score"] > 0: # return 1 # else: # return 0 def __analyse_clause(self, the_clause, runout_filepath, print_show): sub_clause = {"score": 0, "positive": [], "negative": [], "conjunction": [], "punctuation": [], "pattern": []} seg_result = posseg.lcut(the_clause) # 将分句及分词结果写进运行输出文件,以便复查 if runout_filepath is not None: self.__write_runout_file(runout_filepath, the_clause + '\n') self.__write_runout_file(runout_filepath, str(seg_result) + '\n') if print_show: print(the_clause) print(seg_result) # 判断句式:如果……就好了 judgement = self.__is_clause_pattern2(the_clause) if judgement != "": sub_clause["pattern"].append(judgement) sub_clause["score"] -= judgement["value"] return sub_clause # 判断句式:是…不是… judgement = self.__is_clause_pattern1(the_clause) if judgement != "": sub_clause["pattern"].append(judgement) sub_clause["score"] -= judgement["value"] # 判断句式:短语 judgement = self.__is_clause_pattern3(the_clause, seg_result) if judgement != "": sub_clause["score"] += judgement["score"] if judgement["score"] >= 0: sub_clause["positive"].append(judgement) elif judgement["score"] < 0: sub_clause["negative"].append(judgement) match_result = judgement["key"].split(":")[-1] i = 0 while i < len(seg_result): if seg_result[i].word in match_result: if i + 1 == len(seg_result) or seg_result[i + 1].word in match_result: del (seg_result[i]) continue i += 1 # 逐个分析分词 for i in range(len(seg_result)): mark, result = self.__analyse_word(seg_result[i].word, seg_result, i) if mark == 0: continue elif mark == 1: sub_clause["conjunction"].append(result) elif mark == 2: sub_clause["punctuation"].append(result) elif mark == 3: sub_clause["positive"].append(result) sub_clause["score"] += result["score"] elif mark == 4: sub_clause["negative"].append(result) sub_clause["score"] -= result["score"] # 综合连词的情感值 for a_conjunction in sub_clause["conjunction"]: sub_clause["score"] *= a_conjunction["value"] # 综合标点符号的情感值 for a_punctuation in sub_clause["punctuation"]: sub_clause["score"] *= a_punctuation["value"] return sub_clause @staticmethod def __is_clause_pattern2(the_clause): # re_pattern = re.compile(r".*(如果|要是|希望).+就[\u4e00-\u9fa5]+(好|完美)了") re_pattern = re.compile(r".*(如果|要是|希望).+就[\u4e00-\u9fa5]*(好|完美)了") match = re_pattern.match(the_clause) if match is not None: pattern = {"key": "如果…就好了", "value": 1.0} return pattern return "" def __is_clause_pattern3(self, the_clause, seg_result): for a_phrase in self.__phrase_dict: keys = a_phrase.keys() to_compile = a_phrase["key"].replace("……", "[\u4e00-\u9fa5]*") if "start" in keys: to_compile = to_compile.replace("*", "{" + a_phrase["start"] + "," + a_phrase["end"] + "}") if "head" in keys: to_compile = a_phrase["head"] + to_compile match = re.compile(to_compile).search(the_clause) if match is not None: can_continue = True pos = [flag for word, flag in posseg.cut(match.group())] if "between_tag" in keys: if a_phrase["between_tag"] not in pos and len(pos) > 2: can_continue = False if can_continue: for i in range(len(seg_result)): if seg_result[i].word in match.group(): try: if seg_result[i + 1].word in match.group(): return self.__emotional_word_analysis( a_phrase["key"] + ":" + match.group(), a_phrase["value"], [x for x, y in seg_result], i) except IndexError: return self.__emotional_word_analysis( a_phrase["key"] + ":" + match.group(), a_phrase["value"], [x for x, y in seg_result], i) return "" def __analyse_word(self, the_word, seg_result=None, index=-1): # 判断是否是连词 judgement = self.__is_word_conjunction(the_word) if judgement != "": return 1, judgement # 判断是否是标点符号 judgement = self.__is_word_punctuation(the_word) if judgement != "": return 2, judgement # 判断是否是正向情感词 judgement = self.__is_word_positive(the_word, seg_result, index) if judgement != "": return 3, judgement # 判断是否是负向情感词 judgement = self.__is_word_negative(the_word, seg_result, index) if judgement != "": return 4, judgement return 0, "" @staticmethod def __is_clause_pattern1(the_clause): re_pattern = re.compile(r".*(要|选)的.+(送|给).*") match = re_pattern.match(the_clause) if match is not None: pattern = {"key": "要的是…给的是…", "value": 1} return pattern return "" def __is_word_conjunction(self, the_word): if the_word in self.__conjunction_dict: conjunction = {"key": the_word, "value": self.__conjunction_dict[the_word]} return conjunction return "" def __is_word_punctuation(self, the_word): if the_word in self.__punctuation_dict: punctuation = {"key": the_word, "value": self.__punctuation_dict[the_word]} return punctuation return "" def __is_word_positive(self, the_word, seg_result, index): # 判断分词是否在情感词典内 if the_word in self.__positive_dict: # 在情感词典内,则构建一个以情感词为中心的字典数据结构 return self.__emotional_word_analysis(the_word, self.__positive_dict[the_word], [x for x, y in seg_result], index) # 不在情感词典内,则返回空 return "" def __is_word_negative(self, the_word, seg_result, index): # 判断分词是否在情感词典内 if the_word in self.__negative_dict: # 在情感词典内,则构建一个以情感词为中心的字典数据结构 return self.__emotional_word_analysis(the_word, self.__negative_dict[the_word], [x for x, y in seg_result], index) # 不在情感词典内,则返回空 return "" def __emotional_word_analysis(self, core_word, value, segments, index): # 在情感词典内,则构建一个以情感词为中心的字典数据结构 orientation = {"key": core_word, "adverb": [], "denial": [], "value": value} orientation_score = orientation["value"] # my_sentiment_dict[segment] # 在三个前视窗内,判断是否有否定词、副词 view_window = index - 1 if view_window > -1: # 无越界 # 判断前一个词是否是情感词 if segments[view_window] in self.__negative_dict or \ segments[view_window] in self.__positive_dict: orientation['score'] = orientation_score return orientation # 判断是否是副词 if segments[view_window] in self.__adverb_dict: # 构建副词字典数据结构 adverb = {"key": segments[view_window], "position": 1, "value": self.__adverb_dict[segments[view_window]]} orientation["adverb"].append(adverb) orientation_score *= self.__adverb_dict[segments[view_window]] # 判断是否是否定词 elif segments[view_window] in self.__denial_dict: # 构建否定词字典数据结构 denial = {"key": segments[view_window], "position": 1, "value": self.__denial_dict[segments[view_window]]} orientation["denial"].append(denial) orientation_score *= -1 view_window = index - 2 if view_window > -1: # 判断前一个词是否是情感词 if segments[view_window] in self.__negative_dict or \ segments[view_window] in self.__positive_dict: orientation['score'] = orientation_score return orientation if segments[view_window] in self.__adverb_dict: adverb = {"key": segments[view_window], "position": 2, "value": self.__adverb_dict[segments[view_window]]} orientation_score *= self.__adverb_dict[segments[view_window]] orientation["adverb"].insert(0, adverb) elif segments[view_window] in self.__denial_dict: denial = {"key": segments[view_window], "position": 2, "value": self.__denial_dict[segments[view_window]]} orientation["denial"].insert(0, denial) orientation_score *= -1 # 判断是否是“不是很好”的结构(区别于“很不好”) if len(orientation["adverb"]) > 0: # 是,则引入调节阈值,0.3 orientation_score *= 0.3 view_window = index - 3 if view_window > -1: # 判断前一个词是否是情感词 if segments[view_window] in self.__negative_dict or segments[view_window] in self.__positive_dict: orientation['score'] = orientation_score return orientation if segments[view_window] in self.__adverb_dict: adverb = {"key": segments[view_window], "position": 3, "value": self.__adverb_dict[segments[view_window]]} orientation_score *= self.__adverb_dict[segments[view_window]] orientation["adverb"].insert(0, adverb) elif segments[view_window] in self.__denial_dict: denial = {"key": segments[view_window], "position": 3, "value": self.__denial_dict[segments[view_window]]} orientation["denial"].insert(0, denial) orientation_score *= -1 # 判断是否是“不是很好”的结构(区别于“很不好”) if len(orientation["adverb"]) > 0 and len(orientation["denial"]) == 0: orientation_score *= 0.3 # 添加情感分析值。 orientation['score'] = orientation_score # 返回的数据结构 return orientation # 输出comment_analysis分析的数据结构结果 def __output_analysis(self, comment_analysis, runout_filepath=None): output = "Score:" + str(comment_analysis["score"]) + "\n" for i in range(len(comment_analysis) - 1): output += "Sub-clause" + str(i) + ": " clause = comment_analysis["su-clause" + str(i)] if len(clause["conjunction"]) > 0: output += "conjunction:" for punctuation in clause["conjunction"]: output += punctuation["key"] + " " if len(clause["positive"]) > 0: output += "positive:" for positive in clause["positive"]: if len(positive["denial"]) > 0: for denial in positive["denial"]: output += denial["key"] + str(denial["position"]) + "-" if len(positive["adverb"]) > 0: for adverb in positive["adverb"]: output += adverb["key"] + str(adverb["position"]) + "-" output += positive["key"] + " " if len(clause["negative"]) > 0: output += "negative:" for negative in clause["negative"]: if len(negative["denial"]) > 0: for denial in negative["denial"]: output += denial["key"] + str(denial["position"]) + "-" if len(negative["adverb"]) > 0: for adverb in negative["adverb"]: output += adverb["key"] + str(adverb["position"]) + "-" output += negative["key"] + " " if len(clause["punctuation"]) > 0: output += "punctuation:" for punctuation in clause["punctuation"]: output += punctuation["key"] + " " if len(clause["pattern"]) > 0: output += "pattern:" for pattern in clause["pattern"]: output += pattern["key"] + " " # if clause["pattern"] is not None: # output += "pattern:" + clause["pattern"]["key"] + " " output += "\n" if runout_filepath is not None: self.__write_runout_file(runout_filepath, output) else: print(output) def __divide_sentence_into_clauses(self, the_sentence): the_clauses = self.__split_sentence(the_sentence) # 识别“是……不是……”句式 pattern = re.compile(r"([,、。%!;??,!~~.… ]*)([\u4e00-\u9fa5]*?(要|选)" r"的.+(送|给)[\u4e00-\u9fa5]+?[,。!%;、??,!~~.… ]+)") match = re.search(pattern, the_sentence.strip()) if match is not None and len(self.__split_sentence(match.group(2))) <= 2: to_delete = [] for i in range(len(the_clauses)): if the_clauses[i] in match.group(2): to_delete.append(i) if len(to_delete) > 0: for i in range(len(to_delete)): the_clauses.remove(the_clauses[to_delete[0]]) the_clauses.insert(to_delete[0], match.group(2)) # 识别“要是|如果……就好了”的假设句式 pattern = re.compile(r"([,%。、!;??,!~~.… ]*)([\u4e00-\u9fa5]*?(如果|要是|" r"希望).+就[\u4e00-\u9fa5]+(好|完美)了[,。;!%、??,!~~.… ]+)") match = re.search(pattern, the_sentence.strip()) if match is not None and len(self.__split_sentence(match.group(2))) <= 3: to_delete = [] for i in range(len(the_clauses)): if the_clauses[i] in match.group(2): to_delete.append(i) if len(to_delete) > 0: for i in range(len(to_delete)): the_clauses.remove(the_clauses[to_delete[0]]) the_clauses.insert(to_delete[0], match.group(2)) the_clauses[-1] = the_clauses[-1][:-1] return the_clauses @staticmethod def __split_sentence(sentence): pattern = re.compile("[,。%、!!??,;~~.… ]+") split_clauses = pattern.split(sentence.strip()) punctuations = pattern.findall(sentence.strip()) try: split_clauses.remove("") except ValueError: pass punctuations.append("") clauses = [''.join(x) for x in zip(split_clauses, punctuations)] return clauses def __get_phrase_dict(self): sentiment_dict = [] pattern = re.compile(r"\s+") with open(self.__root_filepath + "phrase_dict.txt", "r", encoding="utf-8") as f: for line in f: a_phrase = {} result = pattern.split(line.strip()) if len(result) >= 2: a_phrase["key"] = result[0] a_phrase["value"] = float(result[1]) for i, a_split in enumerate(result): if i < 2: continue else: a, b = a_split.split(":") a_phrase[a] = b sentiment_dict.append(a_phrase) return sentiment_dict # 情感词典的构建 @staticmethod def __get_dict(path, encoding="utf-8"): sentiment_dict = {} pattern = re.compile(r"\s+") with open(path, encoding=encoding) as f: for line in f: result = pattern.split(line.strip()) if len(result) == 2: sentiment_dict[result[0]] = float(result[1]) return sentiment_dict @staticmethod def __write_runout_file(path, info, encoding="utf-8"): with open(path, "a", encoding=encoding) as f: f.write("%s" % info) # ################################################ # classifier based on K-Nearest Neighbours # ################################################ class KNNClassifier: def __init__(self, train_data, train_data_labels, k=3, best_words=None, stopwords=None): self.__train_data_labels = [] self.__total_words = [] self.__k = k self.__stopwords = stopwords self.__train_data_vectors = None self.__total_words_length = 0 self.train_num = 0 if train_data is not None: self.__train(train_data, train_data_labels, best_words) def set_k(self, k): self.__k = k def __doc2vector(self, doc): the_vector = [0] * self.__total_words_length for i in range(self.__total_words_length): the_vector[i] = doc.count(self.__total_words[i]) length = sum(the_vector) if length == 0: return [0 for _ in the_vector] return [i / length for i in the_vector] # return the_vector def __get_total_words(self, train_data, best_words): if best_words is not None: total_words = best_words[:] else: total_words = set() for doc in train_data: total_words |= set(doc) if self.__stopwords: with open(self.__stopwords, encoding="utf-8") as sw_f: for line in sw_f: if line.strip() in total_words: total_words.remove(line.strip()) return list(total_words) @staticmethod def __normalize(vectors): min_values = vectors.min(axis=0) max_values = vectors.max(axis=0) ranges = max_values - min_values m = vectors.shape[0] norm_vectors = vectors - np.tile(min_values, (m, 1)) norm_vectors = norm_vectors / np.tile(ranges, (m, 1)) return norm_vectors def __train(self, train_data, train_data_labels, best_words=None): print("KNNClassifier is training ...... ") self.__train_data_labels = train_data_labels[:] self.__total_words = self.__get_total_words(train_data, best_words) self.__total_words_length = len(self.__total_words) vectors = [] for doc in train_data: vectors.append(self.__doc2vector(doc)) self.train_num += 1 self.__train_data_vectors = np.array(vectors) # self.__train_data_vectors = self.__normalize(np.array(vectors)) print("KNNClassifier trains over!") def __get_sorted_distances(self, input_data): size = self.__train_data_vectors.shape vector = self.__doc2vector(input_data) input_data_vector = np.array(vector) diff_mat = np.tile(input_data_vector, (size[0], 1)) - self.__train_data_vectors sq_diff_mat = diff_mat ** 2 sq_distances = sq_diff_mat.sum(axis=1) distances = sq_distances ** 0.5 sorted_distances = distances.argsort() return sorted_distances def classify(self, input_data): if isinstance(self.__k, int): return self.single_k_classify(input_data) elif isinstance(self.__k, list): return self.multiple_k_classify(input_data) else: print("Wrong k.") def multiple_k_classify(self, input_data): # get the distance sorted list sorted_distances = self.__get_sorted_distances(input_data) # some variable i = 0 # class_count[0] records the number of label "0" # class_count[1] records the number of label "1" class_count = [0, 0] # final_record[0] records the number of label "0" # final_record[1] records the number of label "1" final_record = [0, 0] # assert type(k) == list assert type(self.__k) == list for k in sorted(self.__k): while i < k: label = self.__train_data_labels[sorted_distances[i]] class_count[label] += 1 i += 1 if class_count[0] > class_count[1]: final_record[0] += 1 else: final_record[1] += 1 if final_record[0] > final_record[1]: return 0 else: return 1 def single_k_classify(self, input_data): # get the distance sorted list sorted_distances = self.__get_sorted_distances(input_data) # some variable i = 0 # class_count[0] records the number of label "0" # class_count[1] records the number of label "1" class_count = [0, 0] while i < self.__k: label = self.__train_data_labels[sorted_distances[i]] class_count[label] += 1 i += 1 if class_count[0] > class_count[1]: return 0 else: return 1 # ################################################ # classifier based on Naive bayes # ################################################ class BayesClassifier: def __init__(self, train_data, train_data_labels, best_words): self._pos_word_p = {} self._neg_word_p = {} self._pos_p = 0. self._neg_p = 1. self._train(train_data, train_data_labels, best_words) def _train(self, train_data, train_data_labels, best_words=None): """ this method is different from the the method self.train() we use the training data, do some feature selection, then train, get some import values :param train_data: :param train_data_labels: :param best_words: """ print("BayesClassifier is training ...... ") # get the frequency information of each word total_pos_data, total_neg_data = {}, {} total_pos_length, total_neg_length = 0, 0 total_word = set() for i, doc in enumerate(train_data): if train_data_labels[i] == 1: for word in doc: if best_words is None or word in best_words: total_pos_data[word] = total_pos_data.get(word, 0) + 1 total_pos_length += 1 total_word.add(word) else: for word in doc: if best_words is None or word in best_words: total_neg_data[word] = total_neg_data.get(word, 0) + 1 total_neg_length += 1 total_word.add(word) self._pos_p = total_pos_length / (total_pos_length + total_neg_length) self._neg_p = total_neg_length / (total_pos_length + total_neg_length) # get each word's probability for word in total_word: self._pos_word_p[word] = np.log(total_pos_data.get(word, 1e-100) / total_pos_length) self._neg_word_p[word] = np.log(total_neg_data.get(word, 1e-100) / total_neg_length) print("BayesClassifier trains over!") def classify(self, input_data): """ according to the input data, calculate the probability of the each class :param input_data: """ pos_score = 0. for word in input_data: pos_score += self._pos_word_p.get(word, 0.) pos_score += np.log(self._pos_p) neg_score = 0. for word in input_data: neg_score += self._neg_word_p.get(word, 0.) neg_score += np.log(self._neg_p) if pos_score > neg_score: return 1 else: return 0 # ################################################ # classifier based on Maximum Entropy # ################################################ class MaxEntClassifier: def __init__(self, max_iter=500): self.feats = defaultdict(int) self.labels = {0, 1} self.weight = [] self.max_iter = max_iter def prob_weight(self, features, label): weight = 0.0 for feature in features: if (label, feature) in self.feats: weight += self.weight[self.feats[(label, feature)]] return np.exp(weight) def calculate_probability(self, features): weights = [(self.prob_weight(features, label), label) for label in self.labels] try: z = sum([weight for weight, label in weights]) prob = [(weight / z, label) for weight, label in weights] except ZeroDivisionError: return "collapse" return prob def convergence(self, last_weight): for w1, w2 in zip(last_weight, self.weight): if abs(w1 - w2) >= 0.001: return False return True def train(self, train_data, train_data_labels, best_words=None): print("MaxEntClassifier is training ...... ") # init the parameters train_data_length = len(train_data_labels) if best_words is None: for i in range(train_data_length): for word in set(train_data[i]): self.feats[(train_data_labels[i], word)] += 1 else: for i in range(train_data_length): for word in set(train_data[i]): if word in best_words: self.feats[(train_data_labels[i], word)] += 1 the_max = max([len(record) - 1 for record in train_data]) # the_max param for GIS training algorithm self.weight = [0.0] * len(self.feats) # init weight for each feature ep_empirical = [0.0] * len(self.feats) # init the feature expectation on empirical distribution for i, f in enumerate(self.feats): ep_empirical[i] = self.feats[f] / train_data_length # feature expectation on empirical distribution self.feats[f] = i # each feature function correspond to id for i in range(self.max_iter): ep_model = [0.0] * len(self.feats) # feature expectation on model distribution for doc in train_data: prob = self.calculate_probability(doc) # calculate p(y|x) if prob == "collapse": print("The program collapse. The iter number: %d." % (i + 1)) return for feature in doc: for weight, label in prob: if (label, feature) in self.feats: # only focus on features from training data. idx = self.feats[(label, feature)] # get feature id ep_model[idx] += weight * (1.0 / train_data_length) # sum(1/N * f(y,x)*p(y|x)), p(x) = 1/N last_weight = self.weight[:] for j, win in enumerate(self.weight): delta = 1.0 / the_max * np.log(ep_empirical[j] / ep_model[j]) self.weight[j] += delta # update weight # test if the algorithm is convergence if self.convergence(last_weight): print("The program convergence. The iter number: %d." % (i + 1)) break print("MaxEntClassifier trains over!") def test(self, train_data, train_labels, best_words, test_data): classify_results = [] # init the parameters train_data_length = len(train_labels) if best_words is None: for i in range(train_data_length): for word in set(train_data[i]): self.feats[(train_labels[i], word)] += 1 else: for i in range(train_data_length): for word in set(train_data[i]): if word in best_words: self.feats[(train_labels[i], word)] += 1 the_max = max([len(record) - 1 for record in train_data]) # the_max param for GIS training algorithm self.weight = [0.0] * len(self.feats) # init weight for each feature ep_empirical = [0.0] * len(self.feats) # init the feature expectation on empirical distribution for i, f in enumerate(self.feats): ep_empirical[i] = self.feats[f] / train_data_length # feature expectation on empirical distribution self.feats[f] = i # each feature function correspond to id for i in range(self.max_iter): print("MaxEntClassifier is training ...... ") ep_model = [0.0] * len(self.feats) # feature expectation on model distribution for doc in train_data: prob = self.calculate_probability(doc) # calculate p(y|x) if prob == "collapse": print("The program collapse. The iter number: %d." % (i + 1)) return for feature in doc: for weight, label in prob: if (label, feature) in self.feats: # only focus on features from training data. idx = self.feats[(label, feature)] # get feature id ep_model[idx] += weight * (1.0 / train_data_length) # sum(1/N * f(y,x)*p(y|x)), p(x) = 1/N last_weight = self.weight[:] for j, win in enumerate(self.weight): delta = 1.0 / the_max * np.log(ep_empirical[j] / ep_model[j]) self.weight[j] += delta # update weight print("MaxEntClassifier is testing ...") classify_labels = [] for data in test_data: classify_labels.append(self.classify(data)) classify_results.append(classify_labels) # test if the algorithm is convergence if self.convergence(last_weight): print("The program convergence. The iter number: %d." % (i + 1)) break print("MaxEntClassifier trains over!") return classify_results def classify(self, the_input_features): prob = self.calculate_probability(the_input_features) prob.sort(reverse=True) if prob[0][0] > prob[1][0]: return prob[0][1] else: return prob[1][1] # ################################################ # classifier based on Support Vector Machine # ################################################ from sklearn.svm import SVC class SVMClassifier: def __init__(self, train_data, train_labels, best_words, C): train_data = np.array(train_data) train_labels = np.array(train_labels) self.best_words = best_words self.clf = SVC(C=C) self.__train(train_data, train_labels) def words2vector(self, all_data): vectors = [] best_words_index = {} for i, word in enumerate(self.best_words): best_words_index[word] = i for data in all_data: vector = [0 for x in range(len(self.best_words))] for word in data: i = best_words_index.get(word) if i is not None: vector[i] = vector[i] + 1 vectors.append(vector) vectors = np.array(vectors) return vectors def __train(self, train_data, train_labels): print("SVMClassifier is training ...... ") train_vectors = self.words2vector(train_data) self.clf.fit(train_vectors, np.array(train_labels)) print("SVMClassifier trains over!") def classify(self, data): vector = self.words2vector([data]) prediction = self.clf.predict(vector) return prediction[0]
40.045872
119
0.548597
c4dbde89f7f91fa8096df1a20692af060fde099c
7,212
py
Python
ven2/lib/python2.7/site-packages/zope/browserresource/tests/test_icondirective.py
manliu1225/Facebook_crawler
0f75a1c4382dd4effc3178d84b99b0cad97337cd
[ "Apache-2.0" ]
1
2019-11-30T07:47:08.000Z
2019-11-30T07:47:08.000Z
ven2/lib/python2.7/site-packages/zope/browserresource/tests/test_icondirective.py
manliu1225/Facebook_crawler
0f75a1c4382dd4effc3178d84b99b0cad97337cd
[ "Apache-2.0" ]
10
2016-03-24T07:52:07.000Z
2020-03-02T09:52:06.000Z
ven2/lib/python2.7/site-packages/zope/browserresource/tests/test_icondirective.py
manliu1225/Facebook_crawler
0f75a1c4382dd4effc3178d84b99b0cad97337cd
[ "Apache-2.0" ]
2
2015-04-03T08:18:34.000Z
2019-12-09T09:36:43.000Z
############################################################################## # # Copyright (c) 2001, 2002 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Test Icon-Directive """ import os from io import StringIO from unittest import TestCase from zope import component from zope.configuration.exceptions import ConfigurationError from zope.configuration.xmlconfig import xmlconfig, XMLConfig from zope.interface import implementer from zope.publisher.browser import TestRequest from zope.security.checker import ProxyFactory from zope.security.interfaces import Forbidden from zope.security.proxy import removeSecurityProxy from zope.traversing.browser.absoluteurl import AbsoluteURL from zope.traversing.browser.interfaces import IAbsoluteURL import zope.location.interfaces import zope.browserresource from zope.component.testfiles.views import IC from zope.browserresource.tests import support from zope.testing import cleanup template = u"""<configure xmlns='http://namespaces.zope.org/zope' xmlns:browser='http://namespaces.zope.org/browser' i18n_domain='zope' > %s </configure>""" request = TestRequest() @implementer(IC) class Ob(object): pass ob = Ob() request._vh_root = support.site def defineCheckers(): # define the appropriate checker for a FileResource for these tests from zope.security.protectclass import protectName from zope.browserresource.file import FileResource protectName(FileResource, '__call__', 'zope.Public') class Test(support.SiteHandler, cleanup.CleanUp, TestCase): def setUp(self): super(Test, self).setUp() XMLConfig('meta.zcml', zope.browserresource)() defineCheckers() component.provideAdapter(AbsoluteURL, (None, None), IAbsoluteURL) def test(self): self.assertEqual( component.queryMultiAdapter((ob, request), name='zmi_icon'), None) import zope.browserresource.tests as p path = os.path.dirname(p.__file__) path = os.path.join(path, 'testfiles', 'test.gif') # Configure the icon and make sure we can render the resulting view: xmlconfig(StringIO(template % ( u''' <browser:icon name="zmi_icon" for="zope.component.testfiles.views.IC" file="%s" /> ''' % path ))) view = component.getMultiAdapter((ob, request), name='zmi_icon') rname = 'zope-component-testfiles-views-IC-zmi_icon.gif' self.assertEqual( view(), '<img src="http://127.0.0.1/@@/%s" alt="C" ' 'width="16" height="16" border="0" />' % rname) self.assertEqual(view.url(), 'http://127.0.0.1/@@/' + rname) # Make sure that the title attribute works xmlconfig(StringIO(template % ( u''' <browser:icon name="zmi_icon_w_title" for="zope.component.testfiles.views.IC" file="%s" title="click this!" /> ''' % path ))) view = component.getMultiAdapter( (ob, request), name='zmi_icon_w_title') rname = 'zope-component-testfiles-views-IC-zmi_icon_w_title.gif' self.assertEqual( view(), '<img src="http://127.0.0.1/@@/%s" alt="click this!" ' 'width="16" height="16" border="0" />' % rname) # Make sure that the width and height attributes work xmlconfig(StringIO(template % ( u''' <browser:icon name="zmi_icon_w_width_and_height" for="zope.component.testfiles.views.IC" file="%s" width="20" height="12" /> ''' % path ))) view = component.getMultiAdapter((ob, request), name='zmi_icon_w_width_and_height') rname = ('zope-component-testfiles-views-IC-' 'zmi_icon_w_width_and_height.gif') self.assertEqual( view(), '<img src="http://127.0.0.1/@@/%s" alt="C" ' 'width="20" height="12" border="0" />' % rname) # Make sure that the image was installed as a resource: resource = ProxyFactory(component.getAdapter(request, name=rname)) self.assertRaises(Forbidden, getattr, resource, '_testData') resource = removeSecurityProxy(resource) with open(path, 'rb') as f: self.assertEqual(resource._testData(), f.read()) def testResource(self): self.assertEqual( component.queryMultiAdapter((ob, request), name='zmi_icon'), None) import zope.browserresource.tests as p path = os.path.dirname(p.__file__) path = os.path.join(path, 'testfiles', 'test.gif') xmlconfig(StringIO(template % ( u''' <browser:resource name="zmi_icon_res" file="%s" /> <browser:icon name="zmi_icon" for="zope.component.testfiles.views.IC" resource="zmi_icon_res" /> ''' % path ))) view = component.getMultiAdapter((ob, request), name='zmi_icon') rname = "zmi_icon_res" self.assertEqual( view(), '<img src="http://127.0.0.1/@@/%s" alt="C" width="16" ' 'height="16" border="0" />' % rname) resource = ProxyFactory(component.getAdapter(request, name=rname)) self.assertRaises(Forbidden, getattr, resource, '_testData') resource = removeSecurityProxy(resource) with open(path, 'rb') as f: self.assertEqual(resource._testData(), f.read()) def testResourceErrors(self): self.assertEqual( component.queryMultiAdapter((ob, request), name='zmi_icon'), None) import zope.browserresource.tests as p path = os.path.dirname(p.__file__) path = os.path.join(path, 'testfiles', 'test.gif') config = StringIO(template % ( u''' <browser:resource name="zmi_icon_res" file="%s" /> <browser:icon name="zmi_icon" for="zope.component.testfiles.views.IC" file="%s" resource="zmi_icon_res" /> ''' % (path, path) )) self.assertRaises(ConfigurationError, xmlconfig, config) config = StringIO(template % ( u""" <browser:icon name="zmi_icon" for="zope.component.testfiles.views.IC" /> """ )) self.assertRaises(ConfigurationError, xmlconfig, config)
34.84058
78
0.584997
8a919ca3de4e6c25e69332bf8eaf1b984bf9d0a4
5,065
py
Python
DAE.py
butroy/movie-autoencoder
d18a54ecf7145f6cbda2d2233d4ff53056812b11
[ "Apache-2.0" ]
null
null
null
DAE.py
butroy/movie-autoencoder
d18a54ecf7145f6cbda2d2233d4ff53056812b11
[ "Apache-2.0" ]
null
null
null
DAE.py
butroy/movie-autoencoder
d18a54ecf7145f6cbda2d2233d4ff53056812b11
[ "Apache-2.0" ]
null
null
null
import tensorflow as tf import model_helper class DAE: def __init__(self, FLAGS): ''' Imlimentation of deep autoencoder class.''' self.FLAGS=FLAGS self.weight_initializer=model_helper._get_weight_initializer() self.bias_initializer=model_helper._get_bias_initializer() self.init_parameters() def init_parameters(self): '''Initialize networks weights abd biasis.''' with tf.name_scope('weights'): self.W_1=tf.get_variable(name='weight_1', shape=(self.FLAGS.num_v,self.FLAGS.num_h), initializer=self.weight_initializer) self.W_2=tf.get_variable(name='weight_2', shape=(self.FLAGS.num_h,self.FLAGS.num_h), initializer=self.weight_initializer) self.W_3=tf.get_variable(name='weight_3', shape=(self.FLAGS.num_h,self.FLAGS.num_h), initializer=self.weight_initializer) self.W_4=tf.get_variable(name='weight_4', shape=(self.FLAGS.num_h,self.FLAGS.num_v), initializer=self.weight_initializer) with tf.name_scope('biases'): self.b1=tf.get_variable(name='bias_1', shape=(self.FLAGS.num_h), initializer=self.bias_initializer) self.b2=tf.get_variable(name='bias_2', shape=(self.FLAGS.num_h), initializer=self.bias_initializer) self.b3=tf.get_variable(name='bias_3', shape=(self.FLAGS.num_h), initializer=self.bias_initializer) def _inference(self, x): ''' Making one forward pass. Predicting the networks outputs. @param x: input ratings @return : networks predictions ''' with tf.name_scope('inference'): a1=tf.nn.elu(tf.nn.bias_add(tf.matmul(x, self.W_1),self.b1)) a2=tf.nn.elu(tf.nn.bias_add(tf.matmul(a1, self.W_2),self.b2)) a3=tf.nn.elu(tf.nn.bias_add(tf.matmul(a2, self.W_3),self.b3)) a4=tf.matmul(a3, self.W_4) return a4 def _compute_loss(self, predictions, labels,num_labels): ''' Computing the Mean Squared Error loss between the input and output of the network. @param predictions: predictions of the stacked autoencoder @param labels: input values of the stacked autoencoder which serve as labels at the same time @param num_labels: number of labels !=0 in the data set to compute the mean @return mean squared error loss tf-operation ''' with tf.name_scope('loss'): loss_op=tf.div(tf.reduce_sum(tf.square(tf.subtract(predictions,labels))),num_labels) return loss_op def _optimizer(self, x): '''Optimization of the network parameter through stochastic gradient descent. @param x: input values for the stacked autoencoder. @return: tensorflow training operation @return: ROOT!! mean squared error ''' outputs=self._inference(x) mask=tf.where(tf.equal(x,0.0), tf.zeros_like(x), x) # indices of 0 values in the training set num_train_labels=tf.cast(tf.count_nonzero(mask),dtype=tf.float32) # number of non zero values in the training set bool_mask=tf.cast(mask,dtype=tf.bool) # boolean mask outputs=tf.where(bool_mask, outputs, tf.zeros_like(outputs)) # set the output values to zero if corresponding input values are zero MSE_loss=self._compute_loss(outputs,x,num_train_labels) if self.FLAGS.l2_reg==True: l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables()]) MSE_loss = MSE_loss + self.FLAGS.lambda_ * l2_loss train_op=tf.train.AdamOptimizer(self.FLAGS.learning_rate).minimize(MSE_loss) RMSE_loss=tf.sqrt(MSE_loss) return train_op, RMSE_loss def _validation_loss(self, x_train, x_test): ''' Computing the loss during the validation time. @param x_train: training data samples @param x_test: test data samples @return networks predictions @return root mean squared error loss between the predicted and actual ratings ''' outputs=self._inference(x_train) # use training sample to make prediction mask=tf.where(tf.equal(x_test,0.0), tf.zeros_like(x_test), x_test) # identify the zero values in the test ste num_test_labels=tf.cast(tf.count_nonzero(mask),dtype=tf.float32) # count the number of non zero values bool_mask=tf.cast(mask,dtype=tf.bool) outputs=tf.where(bool_mask, outputs, tf.zeros_like(outputs)) MSE_loss=self._compute_loss(outputs, x_test, num_test_labels) RMSE_loss=tf.sqrt(MSE_loss) return outputs, RMSE_loss
44.043478
139
0.616387
b4a064baf22660a80b25ada5585870602b870d62
2,677
py
Python
tests/test_metadata.py
solanolabs/sphinx
d22cfb08a4a3013c92a65b357d814caf676dc238
[ "BSD-2-Clause" ]
null
null
null
tests/test_metadata.py
solanolabs/sphinx
d22cfb08a4a3013c92a65b357d814caf676dc238
[ "BSD-2-Clause" ]
null
null
null
tests/test_metadata.py
solanolabs/sphinx
d22cfb08a4a3013c92a65b357d814caf676dc238
[ "BSD-2-Clause" ]
9
2015-08-26T19:59:06.000Z
2022-03-07T17:10:06.000Z
# -*- coding: utf-8 -*- """ test_metadata ~~~~~~~~~~~~~ Test our handling of metadata in files with bibliographic metadata. :copyright: Copyright 2007-2013 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ # adapted from an example of bibliographic metadata at # http://docutils.sourceforge.net/docs/user/rst/demo.txt from util import * from nose.tools import assert_equals app = env = None warnings = [] def setup_module(): # Is there a better way of generating this doctree than manually iterating? global app, env app = TestApp(srcdir='(temp)') env = app.env msg, num, it = env.update(app.config, app.srcdir, app.doctreedir, app) for docname in it: pass def teardown_module(): app.cleanup() def test_docinfo(): """ Inspect the 'docinfo' metadata stored in the first node of the document. Note this doesn't give us access to data stored in subsequence blocks that might be considered document metadata, such as 'abstract' or 'dedication' blocks, or the 'meta' role. Doing otherwise is probably more messing with the internals of sphinx than this rare use case merits. """ exampledocinfo = env.metadata['metadata'] expecteddocinfo = { 'author': u'David Goodger', 'authors': [u'Me', u'Myself', u'I'], 'address': u'123 Example Street\nExample, EX Canada\nA1B 2C3', 'field name': u'This is a generic bibliographic field.', 'field name 2': (u'Generic bibliographic fields may contain multiple ' u'body elements.\n\nLike this.'), 'status': u'This is a "work in progress"', 'version': u'1', 'copyright': (u'This document has been placed in the public domain. ' u'You\nmay do with it as you wish. You may copy, modify,' u'\nredistribute, reattribute, sell, buy, rent, lease,\n' u'destroy, or improve it, quote it at length, excerpt,\n' u'incorporate, collate, fold, staple, or mutilate it, or ' u'do\nanything else to it that your or anyone else\'s ' u'heart\ndesires.'), 'contact': u'goodger@python.org', 'date': u'2006-05-21', 'organization': u'humankind', 'revision': u'4564', } # I like this way of comparing dicts - easier to see the error. for key in exampledocinfo: yield assert_equals, exampledocinfo.get(key), expecteddocinfo.get(key) # but then we still have to check for missing keys yield assert_equals, set(expecteddocinfo.keys()), set(exampledocinfo.keys())
38.242857
80
0.63093
09412056cf1fd2a8310ead40da4fafcacd1c7d93
436
py
Python
Django_Stuff/users_security/basic_app/forms.py
muhammad-mamdouh/Django_Projects
1f31e12aefb36b33474256db40a2c551882f445e
[ "MIT" ]
null
null
null
Django_Stuff/users_security/basic_app/forms.py
muhammad-mamdouh/Django_Projects
1f31e12aefb36b33474256db40a2c551882f445e
[ "MIT" ]
40
2020-06-05T22:10:58.000Z
2022-03-11T23:56:09.000Z
Django_Stuff/users_security/basic_app/forms.py
muhammad-mamdouh/Django_Projects
1f31e12aefb36b33474256db40a2c551882f445e
[ "MIT" ]
1
2021-03-31T10:30:03.000Z
2021-03-31T10:30:03.000Z
from django import forms from django.contrib.auth.models import User from .models import UserProfileInfo class UserForm(forms.ModelForm): password = forms.CharField(widget=forms.PasswordInput()) class Meta: model = User fields = ('username', 'email', 'password') class UserProfileInfoForm(forms.ModelForm): class Meta: model = UserProfileInfo fields = ('portfolio_site', 'profile_pic')
22.947368
60
0.699541
15419a9df808b20258440dbd062895af01f629c0
1,821
py
Python
back-end/migrations/versions/bca0417f931d_comments_table_upgrade.py
Asterisme/flask-vuejs-madblog
5c215f5cb9eefb61c6c230b1cc26a2797b8ec280
[ "MIT" ]
null
null
null
back-end/migrations/versions/bca0417f931d_comments_table_upgrade.py
Asterisme/flask-vuejs-madblog
5c215f5cb9eefb61c6c230b1cc26a2797b8ec280
[ "MIT" ]
null
null
null
back-end/migrations/versions/bca0417f931d_comments_table_upgrade.py
Asterisme/flask-vuejs-madblog
5c215f5cb9eefb61c6c230b1cc26a2797b8ec280
[ "MIT" ]
null
null
null
"""comments table upgrade Revision ID: bca0417f931d Revises: 5adcf0f4bbfa Create Date: 2020-04-10 17:48:35.215063 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'bca0417f931d' down_revision = '5adcf0f4bbfa' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('comments', sa.Column('id', sa.Integer(), nullable=False), sa.Column('body', sa.Text(), nullable=True), sa.Column('timestamp', sa.DateTime(), nullable=True), sa.Column('mark_read', sa.Boolean(), nullable=True), sa.Column('disabled', sa.Boolean(), nullable=True), sa.Column('author_id', sa.Integer(), nullable=True), sa.Column('post_id', sa.Integer(), nullable=True), sa.Column('parent_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['author_id'], ['users.id'], ), sa.ForeignKeyConstraint(['parent_id'], ['comments.id'], ondelete='CASCADE'), sa.ForeignKeyConstraint(['post_id'], ['posts.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_comments_timestamp'), 'comments', ['timestamp'], unique=False) op.create_table('comments_likes', sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('comment_id', sa.Integer(), nullable=True), sa.Column('timestamp', sa.DateTime(), nullable=True), sa.ForeignKeyConstraint(['comment_id'], ['comments.id'], ), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ) ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('comments_likes') op.drop_index(op.f('ix_comments_timestamp'), table_name='comments') op.drop_table('comments') # ### end Alembic commands ###
35.019231
91
0.675453
41e8f3b80673dd316b4f6211fcbd46743b4461e9
446
py
Python
test/servers_test/test_portal.py
AnonymousAuthor2013/KnowAlpha
7332231bbb34d7dcdab796aa20fc561dbca1fb76
[ "MIT" ]
2
2019-06-25T02:46:37.000Z
2019-12-02T11:26:16.000Z
test/servers_test/test_portal.py
AnonymousAuthor2013/KnowAlpha
7332231bbb34d7dcdab796aa20fc561dbca1fb76
[ "MIT" ]
1
2019-07-18T03:45:28.000Z
2019-07-18T03:45:28.000Z
test/servers_test/test_portal.py
AnonymousAuthor2013/KnowAlpha
7332231bbb34d7dcdab796aa20fc561dbca1fb76
[ "MIT" ]
4
2019-06-23T13:49:07.000Z
2019-06-25T12:21:59.000Z
from programmingalpha.MainPortal.Requester import RequesterServices import logging logger = logging.getLogger() logger.setLevel(logging.INFO) fmt = logging.Formatter('%(asctime)s: [ %(message)s ]', '%m/%d/%Y %I:%M:%S %p') console = logging.StreamHandler() console.setFormatter(fmt) logger.addHandler(console) config_file="portalService.json" print("staring server") server=RequesterServices(config_file) server.start() print("server started")
26.235294
79
0.773543
f23f7871462c4d113917fef2b4536d3abedd6259
103
py
Python
venv/lib/python2.7/_weakrefset.py
IdeasBlockLT/emem
a3f6e1950e9a074fbb696728778b22d6f523c3df
[ "MIT" ]
null
null
null
venv/lib/python2.7/_weakrefset.py
IdeasBlockLT/emem
a3f6e1950e9a074fbb696728778b22d6f523c3df
[ "MIT" ]
9
2019-12-04T23:15:54.000Z
2022-02-10T11:05:43.000Z
venv/lib/python2.7/_weakrefset.py
edbolivar/perfectpair
c165cff40353c602fe0dc418375b90e9b25de674
[ "MIT" ]
null
null
null
/usr/local/Cellar/python@2/2.7.16/Frameworks/Python.framework/Versions/2.7/lib/python2.7/_weakrefset.py
103
103
0.815534