# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import json import re import sqlite3 from abc import abstractmethod from functools import partial from hashlib import md5 from multiprocessing import Pool from pathlib import Path from typing import Any, Dict, List, Optional, Iterator import pyarrow as pa from datetime import datetime from urllib.parse import unquote_plus import datasets from datasets import load_dataset, Dataset from langdetect import detect # TODO: @thomasw21 _CITATION = """""" # TODO: @thomasw21 _DESCRIPTION = """""" # TODO: @thomasw21 _HOMEPAGE = "" # TODO: @thomasw21 _LICENSE = "" _FEATURES = datasets.Features( { # Some images provide an url others provide an Image. Both are exclusive. "image_url": datasets.Value("string"), "image": datasets.Image(), # An image can have multiple text associated with the same value. For example COCO. "texts": [datasets.Value("string")], # Define where the sample comes from, this is necessary when we start to use aggregated versions like PMD. "source": datasets.Value("string"), # We commit any kind of additional information in json format in `meta` "meta": datasets.Value("string"), } ) def json_serializer(o): if isinstance(o, datetime): return str(o) raise TypeError(f"Object of type {o.__class__.__name__} is not JSON serializable") class BaseLoader: def __init__(self, source: str, split: str, writer_batch_size: int): self.source = source self.split = split self.writer_batch_size = writer_batch_size @abstractmethod def _generate_batches(self): raise NotImplementedError() class DatasetsLoader(BaseLoader): """Helper as some datasets are already implemented""" def __init__( self, dataset_name: str, config_name: Optional[str], split: str, num_proc: int, datasets_batch_size: int = 1000, ): super(DatasetsLoader, self).__init__( source=dataset_name, split=split, writer_batch_size=datasets_batch_size ) self.dataset_name = dataset_name self.config_name = config_name self.num_proc = num_proc self.datasets_batch_size = datasets_batch_size @abstractmethod def cast_to_pmd_features(self, batch: Dict[str, List[Any]]) -> Dict[str, List[Any]]: """Return list of caster rows. Casted row are either PMD features""" raise NotImplementedError() def _generate_batch_table(self, batch_start: int, dset: Dataset) -> pa.Table: dataset_size = len(dset) batch_end = min(batch_start + self.datasets_batch_size, dataset_size) batch = dset[batch_start:batch_end] output_batch = self.cast_to_pmd_features(batch) return pa.table(_FEATURES.encode_batch(output_batch)) def _generate_batches(self): dataset = load_dataset(self.dataset_name, self.config_name, split=self.split) dataset_size = len(dataset) # load batches and yield individual rows if self.num_proc == 1: for batch_start in range(0, dataset_size, self.datasets_batch_size): batch_casted_pmd_features = self._generate_batch_table( dset=dataset, batch_start=batch_start ) yield batch_casted_pmd_features # Parallel version else: assert self.num_proc > 1 with Pool(self.num_proc) as pool: # TODO @thomasw21 figure out if we care about imap / imap_unordered batch_iterator = pool.imap( partial(self._generate_batch_table, dset=dataset), range(0, dataset_size, self.datasets_batch_size), ) for batch_casted_pmd_features in batch_iterator: yield batch_casted_pmd_features class BaseLoaderWithDLManager(BaseLoader): """We use dl_manager to generate `gen_kwargs` needed in order to generate examples.""" def __init__( self, dl_manager, source: str, split: str, num_proc: int, chunk_size: int, writer_batch_size: int = 10_000, ): super(BaseLoaderWithDLManager, self).__init__( source=source, split=split, writer_batch_size=writer_batch_size ) self.gen_kwargs = self.generate_gen_kwargs(dl_manager) # Used for multiprocessing self.chunk_size = chunk_size self.num_proc = num_proc @abstractmethod def generate_gen_kwargs(self, dl_manager): raise NotImplementedError() @abstractmethod def _build_rows_iterator(self, chunk_size: int, **kwargs) -> Iterator[List[Any]]: raise NotImplementedError() @abstractmethod def _generate_examples(self, examples: List[Any], **kwargs) -> Dict[str, List[Any]]: raise NotImplementedError def _generate_tables(self, examples: List[Any], **kwargs) -> pa.Table: return pa.table(_FEATURES.encode_batch(self._generate_examples(examples, **kwargs))) def _generate_batches(self): rows_iterator = self._build_rows_iterator(chunk_size=self.chunk_size, **self.gen_kwargs) with Pool(self.num_proc) as pool: tables_iterator = pool.imap( partial(self._generate_tables, **self.gen_kwargs), rows_iterator, chunksize=1, ) for table in tables_iterator: yield table class COCOloader(BaseLoaderWithDLManager): # TODO @thomasw21 rely on offical coco integration as soon as it's ready. _ANNOTATION_URL = ( "http://images.cocodataset.org/annotations/annotations_trainval2017.zip" ) _IMAGES_URLS = { "train": "http://images.cocodataset.org/zips/train2017.zip", "validation": "http://images.cocodataset.org/zips/val2017.zip", } _SPLIT_MAP = {"train": "train2017", "validation": "val207"} def __init__( self, dl_manager, split: str, num_proc: int, chunk_size: int, writer_batch_size: int, ): super(COCOloader, self).__init__( dl_manager=dl_manager, source="coco", split=split, num_proc=num_proc, chunk_size=chunk_size, writer_batch_size=writer_batch_size, ) def generate_gen_kwargs(self, dl_manager): annotation_file = ( Path(dl_manager.download_and_extract(self._ANNOTATION_URL)) / "annotations" / f"captions_{self._SPLIT_MAP[self.split]}.json" ) image_folder = Path( dl_manager.download_and_extract(self._IMAGES_URLS[self.split]) ) return { "annotation_file": annotation_file, "base_image_path": image_folder / self._SPLIT_MAP[self.split], } def _build_rows_iterator(self, chunk_size: int, annotation_file: str, base_image_path: Path) -> Iterator[List[Any]]: with open(annotation_file, "r", encoding="utf-8") as fi: annotations = json.load(fi) # We're going to index all the annotations according to `image_id` annotations_per_image_id = {} for annotation in annotations["annotations"]: image_id = annotation["image_id"] if image_id in annotations_per_image_id: annotations_per_image_id[image_id].append(annotation) else: annotations_per_image_id[image_id] = [annotation] # yield chunks buffer = [] for image_metadata in annotations["images"]: image_id = image_metadata["id"] for annotation in annotations_per_image_id[image_id]: buffer.append({ "annotation": annotation, "image_metadata": image_metadata }) if len(buffer) == chunk_size: yield buffer buffer = [] # Getting the last batch if len(buffer) > 0: yield buffer def _generate_examples(self, examples: List[Any], annotation_file: str, base_image_path: Path) -> Dict[str, List[Any]]: return { "image_url": [None for _ in examples], "image": [str((base_image_path / f"{example['image_metadata']['id']:012}.jpg").absolute()) for example in examples], "texts": [example["annotation"]["caption"] for example in examples], "source": [self.source for _ in examples], "meta": [json.dumps( example, default=json_serializer, indent=2, ) for example in examples], } class SBULoader(DatasetsLoader): def __init__(self, split: str, num_proc: int, datasets_batch_size: int = 1000): super(SBULoader, self).__init__( dataset_name="sbu_captions", config_name=None, split=split, datasets_batch_size=datasets_batch_size, num_proc=num_proc, ) def cast_to_pmd_features(self, batch: Dict[str, List[Any]]) -> Dict[str, List[Any]]: metas = {k: v for k, v in batch.items() if k not in ["image_url", "caption"]} batch_size = len(next(iter(batch.values()))) return { "image_url": batch["image_url"], "image": [None] * batch_size, "texts": [[caption] for caption in batch["caption"]], "source": [self.source] * batch_size, "meta": [ json.dumps( {key: value[batch_id] for key, value in metas.items()}, default=json_serializer, indent=2, ) for batch_id in range(batch_size) ], } class LocalizedNarrativesOpenImagesLoader(BaseLoaderWithDLManager): _ANNOTATION_URLs = { "train": "https://storage.googleapis.com/localized-narratives/annotations/open_images_train_v6_captions.jsonl", "validation": ( "https://storage.googleapis.com/localized-narratives/annotations/open_images_validation_captions.jsonl" ), "test": "https://storage.googleapis.com/localized-narratives/annotations/open_images_test_captions.jsonl", } def __init__( self, dl_manager, split: str, num_proc: int, chunk_size: int, writer_batch_size: int, ): super(LocalizedNarrativesOpenImagesLoader, self).__init__( dl_manager=dl_manager, source="localized_narratives__coco", split=split, num_proc=num_proc, chunk_size=chunk_size, writer_batch_size=writer_batch_size, ) def generate_gen_kwargs(self, dl_manager): annotation_file = dl_manager.download(self._ANNOTATION_URLs[self.split]) return {"annotation_file": annotation_file, "split": self.split} def _build_rows_iterator(self, chunk_size: int, annotation_file: str, split: str) -> Iterator[List[Any]]: with open(annotation_file, "r", encoding="utf-8") as fi: chunk = tuple(itertools.islice(fi, chunk_size)) if not chunk: return yield chunk def _generate_examples(self, examples: List[Any], annotation_file: str, split: str) -> Dict[str, List[Any]]: annotations = [json.loads(line) for line in examples] # sanity check for annotation in annotations: assert "image_url" not in annotation return { "image_url": [f"https://s3.amazonaws.com/open-images-dataset/{split}/{annotation['image_id']}.jpg" for annotation in annotations], "image": [None for _ in annotations], "texts": [[annotation["caption"]] for annotation in annotations], "source": [self.source for _ in annotations], "meta": [json.dumps( annotation, default=json_serializer, indent=2, ) for annotation in annotations], } class LocalizedNarrativesCOCOLoader(BaseLoaderWithDLManager): # TODO @thomasw21 rely on offical coco integration as soon as it's ready. _ANNOTATION_URLs = { "train": "https://storage.googleapis.com/localized-narratives/annotations/coco_train_captions.jsonl", "validation": "https://storage.googleapis.com/localized-narratives/annotations/coco_val_captions.jsonl", } _IMAGES_URLS = { "train": "http://images.cocodataset.org/zips/train2017.zip", "validation": "http://images.cocodataset.org/zips/val2017.zip", } _SPLIT_MAP = {"train": "train2017", "validation": "val207"} def __init__( self, dl_manager, split: str, num_proc: int, chunk_size: int, writer_batch_size: int, ): super(LocalizedNarrativesCOCOLoader, self).__init__( dl_manager=dl_manager, source="localized_narratives__coco", split=split, num_proc=num_proc, chunk_size=chunk_size, writer_batch_size=writer_batch_size, ) def generate_gen_kwargs(self, dl_manager): annotation_file = dl_manager.download(self._ANNOTATION_URLs[self.split]) image_folder = Path( dl_manager.download_and_extract(self._IMAGES_URLS[self.split]) ) return { "annotation_file": annotation_file, "base_image_path": image_folder / self._SPLIT_MAP[self.split], } def _build_rows_iterator(self, chunk_size: int, annotation_file: str, base_image_path: Path) -> Iterator[List[Any]]: with open(annotation_file, "r", encoding="utf-8") as fi: chunk = tuple(itertools.islice(fi, chunk_size)) if not chunk: return yield chunk def _generate_examples(self, examples: List[Any], annotation_file: str, base_image_path: Path) -> Dict[str, List[Any]]: annotations = [json.loads(line) for line in examples] return { "image_url": [None for _ in examples], "image": [str((base_image_path / f"{annotation['image_id'].zfill(12)}.jpg").absolute()) for annotation in annotations], "texts": [[annotation["caption"]] for annotation in annotations], "source": [self.source for _ in annotations], "meta": [json.dumps( annotation, default=json_serializer, indent=2, ) for annotation in annotations], } class LocalizedNarrativesFlickr30kLoader(BaseLoaderWithDLManager): _LOCAL_IMAGE_FOLDER_NAME = "flickr30k-images" _ANNOTATION_URLs = { "train": "https://storage.googleapis.com/localized-narratives/annotations/flickr30k_train_captions.jsonl", "validation": "https://storage.googleapis.com/localized-narratives/annotations/flickr30k_val_captions.jsonl", "test": "https://storage.googleapis.com/localized-narratives/annotations/flickr30k_test_captions.jsonl", } def __init__( self, dl_manager, split: str, num_proc: int, chunk_size: int, writer_batch_size: int, ): super(LocalizedNarrativesFlickr30kLoader, self).__init__( dl_manager=dl_manager, source="localized_narratives__flickr30k", split=split, num_proc=num_proc, chunk_size=chunk_size, writer_batch_size=writer_batch_size, ) def generate_gen_kwargs(self, dl_manager): if dl_manager.manual_dir is None: raise FileNotFoundError( f"Please set manual dir via `datasets.load_dataset('pmd', data_dir={{PATH}})` where `{{PATH}}/flickr30k` includes `{self._LOCAL_IMAGE_FOLDER_NAME}`.\n. Manual download instructions: {self.manual_download_instruction}" ) manual_dir = Path(dl_manager.manual_dir) / "flickr30k" if not manual_dir.exists(): raise FileNotFoundError( f"Please set manual dir via `datasets.load_dataset('pmd', data_dir={{PATH}})` where `{{PATH}}/flickr30k` includes `{self._LOCAL_IMAGE_FOLDER_NAME}`.\n. Manual download instructions: {self.manual_download_instruction}" ) annotation_file = dl_manager.download(self._ANNOTATION_URLs[self.split]) return {"annotation_file": annotation_file, "base_image_path": manual_dir} @property def manual_download_instruction(self): return """\ You need to go to http://shannon.cs.illinois.edu/DenotationGraph/data/index.html, and manually download the dataset ("Flickr 30k images."). Once it is completed, a file named `flickr30k-images.tar.gz` will appear in your Downloads folder or whichever folder your browser chooses to save files to. You then have to unzip the file and move `flickr30k-images` under /flickr30k. The can e.g. be "~/manual_data". dataset can then be loaded using the following command `datasets.load_dataset("pmd", data_dir="")`. """ def _build_rows_iterator(self, chunk_size: int, annotation_file: str, base_image_path: Path) -> Iterator[List[Any]]: with open(annotation_file, "r", encoding="utf-8") as fi: chunk = tuple(itertools.islice(fi, chunk_size)) if not chunk: return yield chunk def _generate_examples(self, examples: List[Any], annotation_file: str, base_image_path: Path) -> Dict[ str, List[Any]]: annotations = [json.loads(line) for line in examples] return { "image_url": [None for _ in examples], "image": [str((base_image_path / f"{annotation['image_id']}.jpg").absolute()) for annotation in annotations], "texts": [[annotation["caption"]] for annotation in annotations], "source": [self.source for _ in annotations], "meta": [json.dumps( annotation, default=json_serializer, indent=2, ) for annotation in annotations], } class LocalizedNarrativesADE20kLoader(BaseLoaderWithDLManager): _ANNOTATION_URLs = { "train": "https://storage.googleapis.com/localized-narratives/annotations/ade20k_train_captions.jsonl", "validation": "https://storage.googleapis.com/localized-narratives/annotations/ade20k_validation_captions.jsonl", } _IMAGES_URL = ( "http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip" ) _SPLIT_MAP = {"train": "training", "validation": "validation"} def __init__( self, dl_manager, split: str, num_proc: int, chunk_size: int, writer_batch_size: int, ): super(LocalizedNarrativesADE20kLoader, self).__init__( dl_manager=dl_manager, source="localized_narratives__ADE20k", split=split, num_proc=num_proc, chunk_size=chunk_size, writer_batch_size=writer_batch_size, ) def generate_gen_kwargs(self, dl_manager): annotation_file = dl_manager.download(self._ANNOTATION_URLs[self.split]) image_base_dir = ( Path(dl_manager.download_and_extract(self._IMAGES_URL)) / "ADEChallengeData2016" / "images" ) return { "annotation_file": annotation_file, "base_image_path": image_base_dir / self._SPLIT_MAP[self.split], } def _build_rows_iterator(self, annotation_file: str, base_image_path: Path, chunk_size: int) -> Iterator[List[Any]]: with open(annotation_file, "r", encoding="utf-8") as fi: chunk = tuple(itertools.islice(fi, chunk_size)) if not chunk: return yield chunk def _generate_examples(self, examples: List[Any], annotation_file: str, base_image_path: Path) -> Dict[str, Any]: annotations = [json.loads(line) for line in examples] return { "image_url": [None for _ in examples], "image": [str((base_image_path / f"{annotation['image_id']}.jpg").absolute()) for annotation in annotations], "texts": [annotation["caption"] for annotation in annotations], "source": [self.source for _ in examples], "meta": [json.dumps( annotation, default=json_serializer, indent=2, ) for annotation in annotations], } class VisualGenomeLoader(DatasetsLoader): def __init__(self, split: str, num_proc: int, datasets_batch_size: int = 1000): super(VisualGenomeLoader, self).__init__( dataset_name="visual_genome", config_name="region_descriptions_v1.2.0", split=split, datasets_batch_size=datasets_batch_size, num_proc=num_proc, ) def cast_to_pmd_features(self, batch: Dict[str, List[Any]]) -> Dict[str, List[Any]]: metas = {k: v for k, v in batch.items() if k not in ["image", "regions"]} input_batch_size = len(next(iter(batch.values()))) serialized_metas = [ json.dumps( {key: value[batch_id] for key, value in metas.items()}, default=json_serializer, indent=2, ) for batch_id in range(input_batch_size) ] output_list_rows = [ { "image": image.crop( ( region["x"], region["y"], region["x"] + region["width"], region["y"] + region["height"], ) ), "image_url": None, "texts": [region["phrase"]], "source": self.source, "meta": serialized_meta, } for image, regions, serialized_meta in zip( batch["image"], batch["regions"], serialized_metas ) for region in regions ] return { column_name: [row[column_name] for row in output_list_rows] for column_name in ["image_url", "image", "texts", "source", "meta"] } class WITLoader(DatasetsLoader): def __init__(self, split: str, num_proc: int, datasets_batch_size: int = 1000): super(WITLoader, self).__init__( dataset_name="google/wit", config_name=None, split=split, datasets_batch_size=datasets_batch_size, num_proc=num_proc, ) def cast_to_pmd_features(self, batch: Dict[str, List[Any]]) -> Dict[str, List[Any]]: metas = {k: v for k, v in batch.items() if k not in ["image_url"]} batch_size = len(next(iter(batch.values()))) return { "image_url": batch["image_url"], "image": [None] * batch_size, "texts": [ texts # TODO @thomasw21 figure out which one we should choose for texts in zip( batch["caption_reference_description"], batch["context_section_description"], batch["caption_attribution_description"], ) ], "source": [self.source] * batch_size, "meta": [ json.dumps( {key: value[batch_id] for key, value in metas.items()}, default=json_serializer, indent=2, ) for batch_id in range(batch_size) ], } class ConceptualCaptions(DatasetsLoader): def __init__(self, split: str, num_proc: int, datasets_batch_size: int = 1000): super(ConceptualCaptions, self).__init__( dataset_name="conceptual_captions", config_name="unlabeled", split=split, datasets_batch_size=datasets_batch_size, num_proc=num_proc, ) def cast_to_pmd_features(self, batch: Dict[str, List[Any]]) -> Dict[str, List[Any]]: metas = {k: v for k, v in batch.items() if k not in ["image_url", "caption"]} batch_size = len(next(iter(batch.values()))) return { "image_url": batch["image_url"], "image": [None] * batch_size, "texts": [[caption] for caption in batch["caption"]], "source": [self.source] * batch_size, "meta": [ json.dumps( {key: value[batch_id] for key, value in metas.items()}, default=json_serializer, indent=2, ) for batch_id in range(batch_size) ], } class Conceptual12MLoader(DatasetsLoader): def __init__(self, split: str, num_proc: int, datasets_batch_size: int = 1000): super(Conceptual12MLoader, self).__init__( dataset_name="conceptual_12m", config_name=None, split=split, datasets_batch_size=datasets_batch_size, num_proc=num_proc, ) def cast_to_pmd_features(self, batch: Dict[str, List[Any]]) -> Dict[str, List[Any]]: metas = {k: v for k, v in batch.items() if k not in ["image_url", "caption"]} batch_size = len(next(iter(batch.values()))) return { "image_url": batch["image_url"], "image": [None] * batch_size, "texts": [[caption] for caption in batch["caption"]], "source": [self.source] * batch_size, "meta": [ json.dumps( {key: value[batch_id] for key, value in metas.items()}, default=json_serializer, indent=2, ) for batch_id in range(batch_size) ], } class RedCapsLoader(DatasetsLoader): def __init__(self, split: str, num_proc: int, datasets_batch_size: int = 1000): super(RedCapsLoader, self).__init__( dataset_name="red_caps", config_name="all", split=split, datasets_batch_size=datasets_batch_size, num_proc=num_proc, ) def cast_to_pmd_features(self, batch: Dict[str, List[Any]]) -> Dict[str, List[Any]]: metas = { k: v for k, v in batch.items() if k not in ["image_url", "raw_caption"] } batch_size = len(next(iter(batch.values()))) return { "image_url": batch["image_url"], "image": [None] * batch_size, "texts": [[caption] for caption in batch["raw_caption"]], "source": [self.source] * batch_size, "meta": [ json.dumps( {key: value[batch_id] for key, value in metas.items()}, default=json_serializer, indent=2, ) for batch_id in range(batch_size) ], } class YFCC100MLoader(BaseLoaderWithDLManager): _ANNOTATION_URL = "https://multimedia-commons.s3-us-west-2.amazonaws.com/tools/etc/yfcc100m_dataset.sql" # Columns we're interested in _COLUMNS = [ "photoid", "uid", "title", "description", "usertags", "downloadurl", "licensename", "licenseurl", "marker", ] # Text columns that are url encoded _TEXT_COLUMNS = ["title", "description", "usertags"] WHITE_SPACE_REGEX = re.compile(r"\s+") # Original YFCC100M filtering regexes LINE_BREAK_REGEX = re.compile(r"[\n\r]") REMOVE_HTML_TAGS_REGEX = re.compile(r"<.*?>") # TODO @thomasw21 improve that regex DATE_HOUR_REGEX = re.compile(r"[0-9](:|\.|-|/)[0-9][0-9](:|\.|-|/)[0-9][0-9]") WEIRD_CHARACTERS_REGEX = re.compile(r"[_©]") SECOND_WORD_REGEX = re.compile(r" [a-zA-Z]+") def __init__( self, dl_manager, split: str, num_proc: int, chunk_size: int, writer_batch_size: int, ): super(YFCC100MLoader, self).__init__( dl_manager=dl_manager, source="yfcc100m", split=split, num_proc=num_proc, chunk_size=chunk_size, writer_batch_size=writer_batch_size, ) self.chunk_size = chunk_size # Code from https://gitlab.com/jfolz/yfcc100m/-/blob/master/yfcc100m/convert_metadata.py BYTE_MAP = {"%02x" % v: "%x" % v for v in range(256)} @classmethod def yfcc_local_path(cls, url, __bm=BYTE_MAP): h = md5(url.encode("utf-8")).hexdigest() hash_ = "".join(__bm[h[x : x + 2]] for x in range(0, 32, 2)) return f"data/images/{hash_[0:3]}/{hash_[3:6]}/{hash_}.jpg" @classmethod def generate_image_url(cls, downloadurl: str): """Takes original image url, and download verion store in `multimedia-commons`""" # compute yfcc hash local_path = cls.yfcc_local_path(downloadurl) return f"https://multimedia-commons.s3-us-west-2.amazonaws.com/{local_path}" def generate_gen_kwargs(self, dl_manager): sql_file = dl_manager.download(self._ANNOTATION_URL) return {"sql_file": sql_file} def filter_text(self, text: str) -> bool: # # If less than two words return False # # TODO @thomasw21 we probably don't need to split all the way til the end ... # if len([substring for substring in self.WHITE_SPACE_REGEX.split(text) if substring != ""]) < 2: # return False if self.WEIRD_CHARACTERS_REGEX.search(text) is not None: return False if self.SECOND_WORD_REGEX.search(text) is None: return False if self.DATE_HOUR_REGEX.search(text) is not None: return False # filter only english try: if detect(text) != "en": return False except Exception: return False return True def clean_text(self, text: str) -> str: """Inspired from original code""" cleaned_text = unquote_plus(text) cleaned_text = self.LINE_BREAK_REGEX.sub(" ", cleaned_text) cleaned_text = self.REMOVE_HTML_TAGS_REGEX.sub("", cleaned_text) return cleaned_text def get_associated_text(self, annotation: Dict[str, Any]) -> Optional[str]: """ Given an annotation, return text associated to the image We return None when the annotation should be filtered out """ ordered_text_columns_consideration = ["description", "title"] record_text = None for column_name in ordered_text_columns_consideration: text_candidate = annotation[column_name] if column_name == "description" and not (5 < len(text_candidate) < 256): continue cleaned_text_candidate = self.clean_text(text_candidate) if self.filter_text(cleaned_text_candidate): record_text = cleaned_text_candidate break return record_text def _build_rows_iterator(self, sql_file: str, chunk_size: int) -> Iterator[List[Any]]: # query records command sql_command = f"select {', '.join(self._COLUMNS)} from yfcc100m_dataset" # Create a connection and get a cursor with sqlite3.connect(sql_file) as connection: cursor = connection.cursor() # Execute the query cursor.execute(sql_command) # Get data in batches while True: # Read the data records = cursor.fetchmany(self.chunk_size) # If we are at the end if len(records) == 0: break yield records cursor.close() def _generate_examples(self, examples: List[Any], sql_file: str) -> Dict[str, Any]: buffer = {} # Format data for example in examples: annotation = { column_name: value for value, column_name in zip(example, self._COLUMNS) } # TODO @thomasw21 if it's not an image we don't care for now if annotation["marker"] != 0: continue # We compute text candidate and skip the row if None work. text = self.get_associated_text(annotation) if text is None: continue for text_column in self._TEXT_COLUMNS: annotation[text_column] = unquote_plus(annotation[text_column]) # add data to buffer temp_object = { # Add image_url that we download from s3 bucket instead of official download url "image_url": [self.generate_image_url(annotation["downloadurl"])], "image": [None], "texts": [[text]], "source": [self.source], "meta": [json.dumps( annotation, default=json_serializer, indent=2, )], } if len(buffer) == 0: buffer = temp_object else: for column_name in buffer.keys(): buffer[column_name] += temp_object[column_name] return buffer class PMDConfig(datasets.BuilderConfig): """BuilderConfig for PMD.""" def __init__( self, num_proc: Optional[int] = None, datasets_batch_size: int = 1000, sqlite3_batch_size: int = 10_000, chunk_size: int = 10_000, writer_batch_size: int = 10_000, **kwargs, ): if num_proc is None: # We disable multiprocessing. num_proc = 1 super(PMDConfig, self).__init__(**kwargs) # determines how much we can load self.datasets_batch_size = datasets_batch_size self.sqlite3_batch_size = sqlite3_batch_size # Some datasets should be loaded via multiprocessing. self.num_proc = num_proc self.chunk_size = chunk_size # Batch writing self.writer_batch_size = writer_batch_size class PMD(datasets.ArrowBasedBuilder): """Builder for Open Images subset of PMD.""" BUILDER_CONFIG_CLASS = PMDConfig def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=_FEATURES, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): return [ datasets.SplitGenerator( name=split_name, gen_kwargs={ "loaders": [ COCOloader( dl_manager=dl_manager, split=split_name, num_proc=self.config.num_proc, chunk_size=self.config.chunk_size, writer_batch_size=self.config.writer_batch_size, ), SBULoader( split=split_name, datasets_batch_size=self.config.datasets_batch_size, num_proc=self.config.num_proc, ), LocalizedNarrativesOpenImagesLoader( dl_manager=dl_manager, split=split_name, num_proc=self.config.num_proc, chunk_size=self.config.chunk_size, writer_batch_size=self.config.writer_batch_size, ), LocalizedNarrativesCOCOLoader( dl_manager=dl_manager, split=split_name, num_proc=self.config.num_proc, chunk_size=self.config.chunk_size, writer_batch_size=self.config.writer_batch_size, ), LocalizedNarrativesFlickr30kLoader( dl_manager=dl_manager, split=split_name, num_proc=self.config.num_proc, chunk_size=self.config.chunk_size, writer_batch_size=self.config.writer_batch_size, ), LocalizedNarrativesADE20kLoader( dl_manager=dl_manager, split=split_name, num_proc=self.config.num_proc, chunk_size=self.config.chunk_size, writer_batch_size=self.config.writer_batch_size, ), ConceptualCaptions( split=split_name, num_proc=self.config.num_proc, datasets_batch_size=self.config.datasets_batch_size, ), VisualGenomeLoader( split=split_name, num_proc=self.config.num_proc, datasets_batch_size=self.config.datasets_batch_size, ), WITLoader( split=split_name, num_proc=self.config.num_proc, datasets_batch_size=self.config.datasets_batch_size, ), Conceptual12MLoader( split=split_name, num_proc=self.config.num_proc, datasets_batch_size=self.config.datasets_batch_size, ), RedCapsLoader( split=split_name, num_proc=self.config.num_proc, datasets_batch_size=self.config.datasets_batch_size, ), YFCC100MLoader( dl_manager=dl_manager, split=split_name, num_proc=self.config.num_proc, chunk_size=self.config.sqlite3_batch_size, writer_batch_size=self.config.writer_batch_size, ), ] }, ) for split_name in [datasets.Split.TRAIN] ] def _generate_tables(self, loaders: List[BaseLoader]): idx = 0 print("start") for loader in loaders: print(loader.__class__.__name__) for elt in loader._generate_batches(): yield idx, elt idx += 1