Delete view_parquet.py
Browse files- view_parquet.py +0 -151
view_parquet.py
DELETED
|
@@ -1,151 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
|
| 3 |
-
import pandas as pd
|
| 4 |
-
import argparse
|
| 5 |
-
from pathlib import Path
|
| 6 |
-
from collections import Counter
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
def analyze_parquet(parquet_file, rows_to_display=10):
|
| 10 |
-
"""View and analyze the operator_input_models parquet file."""
|
| 11 |
-
|
| 12 |
-
print(f"Reading parquet file: {parquet_file}")
|
| 13 |
-
df = pd.read_parquet(parquet_file)
|
| 14 |
-
|
| 15 |
-
print(f"\n{'='*80}")
|
| 16 |
-
print("DATASET OVERVIEW")
|
| 17 |
-
print(f"{'='*80}")
|
| 18 |
-
print(f"Total rows: {len(df):,}")
|
| 19 |
-
print(f"Columns: {list(df.columns)}")
|
| 20 |
-
print(f"Memory usage: {df.memory_usage(deep=True).sum() / 1024**2:.2f} MB")
|
| 21 |
-
|
| 22 |
-
print(f"\n{'='*80}")
|
| 23 |
-
print("UNIQUE COUNTS")
|
| 24 |
-
print(f"{'='*80}")
|
| 25 |
-
print(f"Unique operators: {df['operator name'].nunique():,}")
|
| 26 |
-
print(f"Unique models: {df['used in model'].nunique():,}")
|
| 27 |
-
print(f"Unique argument configurations: {df['args'].nunique():,}")
|
| 28 |
-
|
| 29 |
-
print(f"\n{'='*80}")
|
| 30 |
-
print("MODEL SOURCE BREAKDOWN")
|
| 31 |
-
print(f"{'='*80}")
|
| 32 |
-
|
| 33 |
-
# Extract model sources
|
| 34 |
-
model_sources = {
|
| 35 |
-
'HuggingFace': [],
|
| 36 |
-
'TorchBench': [],
|
| 37 |
-
'Timm': [],
|
| 38 |
-
'Other': []
|
| 39 |
-
}
|
| 40 |
-
|
| 41 |
-
unique_models = df['used in model'].unique()
|
| 42 |
-
|
| 43 |
-
for model in unique_models:
|
| 44 |
-
if model.startswith('HuggingFace/'):
|
| 45 |
-
model_sources['HuggingFace'].append(model)
|
| 46 |
-
elif model.startswith('TorchBench/'):
|
| 47 |
-
model_sources['TorchBench'].append(model)
|
| 48 |
-
elif model.startswith('Timm/'):
|
| 49 |
-
model_sources['Timm'].append(model)
|
| 50 |
-
else:
|
| 51 |
-
model_sources['Other'].append(model)
|
| 52 |
-
|
| 53 |
-
# Print source statistics
|
| 54 |
-
for source, models in model_sources.items():
|
| 55 |
-
if models:
|
| 56 |
-
print(f"\n{source}: {len(models)} models")
|
| 57 |
-
# Count total rows per source
|
| 58 |
-
source_rows = df[df['used in model'].isin(models)]
|
| 59 |
-
print(f" - Total operator instances: {len(source_rows):,}")
|
| 60 |
-
print(f" - Unique operators used: {source_rows['operator name'].nunique()}")
|
| 61 |
-
# Show sample models
|
| 62 |
-
sample_models = sorted(models)[:5]
|
| 63 |
-
for model in sample_models:
|
| 64 |
-
print(f" • {model}")
|
| 65 |
-
if len(models) > 5:
|
| 66 |
-
print(f" ... and {len(models) - 5} more")
|
| 67 |
-
|
| 68 |
-
print(f"\n{'='*80}")
|
| 69 |
-
print("TOP OPERATORS BY USAGE")
|
| 70 |
-
print(f"{'='*80}")
|
| 71 |
-
operator_counts = df['operator name'].value_counts().head(10)
|
| 72 |
-
for i, (op, count) in enumerate(operator_counts.items(), 1):
|
| 73 |
-
print(f"{i:2}. {op:<50} {count:5} uses")
|
| 74 |
-
|
| 75 |
-
print(f"\n{'='*80}")
|
| 76 |
-
print("TOP MODELS BY OPERATOR COUNT")
|
| 77 |
-
print(f"{'='*80}")
|
| 78 |
-
model_counts = df['used in model'].value_counts().head(10)
|
| 79 |
-
for i, (model, count) in enumerate(model_counts.items(), 1):
|
| 80 |
-
print(f"{i:2}. {model:<50} {count:5} operators")
|
| 81 |
-
|
| 82 |
-
print(f"\n{'='*80}")
|
| 83 |
-
print(f"SAMPLE DATA (first {rows_to_display} rows)")
|
| 84 |
-
print(f"{'='*80}")
|
| 85 |
-
|
| 86 |
-
# Display sample with truncated args for readability
|
| 87 |
-
sample_df = df.head(rows_to_display).copy()
|
| 88 |
-
sample_df['args'] = sample_df['args'].apply(lambda x: x[:100] + '...' if len(x) > 100 else x)
|
| 89 |
-
|
| 90 |
-
pd.set_option('display.max_columns', None)
|
| 91 |
-
pd.set_option('display.width', None)
|
| 92 |
-
pd.set_option('display.max_colwidth', 50)
|
| 93 |
-
|
| 94 |
-
print(sample_df.to_string(index=False))
|
| 95 |
-
|
| 96 |
-
return df, model_sources
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
def main():
|
| 100 |
-
parser = argparse.ArgumentParser(description='View and analyze operator_input_models parquet file')
|
| 101 |
-
parser.add_argument('--input', '-i',
|
| 102 |
-
default='operator_input_models_mapping.parquet',
|
| 103 |
-
help='Input Parquet file (default: operator_input_models_mapping.parquet)')
|
| 104 |
-
parser.add_argument('--rows', '-r',
|
| 105 |
-
type=int,
|
| 106 |
-
default=10,
|
| 107 |
-
help='Number of sample rows to display (default: 10)')
|
| 108 |
-
parser.add_argument('--query', '-q',
|
| 109 |
-
help='Filter by operator name (partial match)')
|
| 110 |
-
parser.add_argument('--model', '-m',
|
| 111 |
-
help='Filter by model name (partial match)')
|
| 112 |
-
|
| 113 |
-
args = parser.parse_args()
|
| 114 |
-
|
| 115 |
-
# Check if input file exists
|
| 116 |
-
if not Path(args.input).exists():
|
| 117 |
-
print(f"Error: Input file '{args.input}' not found")
|
| 118 |
-
return 1
|
| 119 |
-
|
| 120 |
-
# Analyze the parquet file
|
| 121 |
-
df, model_sources = analyze_parquet(args.input, args.rows)
|
| 122 |
-
|
| 123 |
-
# Apply filters if specified
|
| 124 |
-
if args.query or args.model:
|
| 125 |
-
print(f"\n{'='*80}")
|
| 126 |
-
print("FILTERED RESULTS")
|
| 127 |
-
print(f"{'='*80}")
|
| 128 |
-
|
| 129 |
-
filtered_df = df.copy()
|
| 130 |
-
|
| 131 |
-
if args.query:
|
| 132 |
-
filtered_df = filtered_df[filtered_df['operator name'].str.contains(args.query, case=False)]
|
| 133 |
-
print(f"Filtering for operator containing: '{args.query}'")
|
| 134 |
-
|
| 135 |
-
if args.model:
|
| 136 |
-
filtered_df = filtered_df[filtered_df['used in model'].str.contains(args.model, case=False)]
|
| 137 |
-
print(f"Filtering for model containing: '{args.model}'")
|
| 138 |
-
|
| 139 |
-
if len(filtered_df) > 0:
|
| 140 |
-
print(f"\nFound {len(filtered_df)} matching entries")
|
| 141 |
-
sample_df = filtered_df.head(args.rows).copy()
|
| 142 |
-
sample_df['args'] = sample_df['args'].apply(lambda x: x[:100] + '...' if len(x) > 100 else x)
|
| 143 |
-
print(sample_df.to_string(index=False))
|
| 144 |
-
else:
|
| 145 |
-
print("No matching entries found")
|
| 146 |
-
|
| 147 |
-
return 0
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
if __name__ == "__main__":
|
| 151 |
-
exit(main())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|