| import os | |
| import datasets | |
| import json | |
| _CITATION = """\ | |
| """ | |
| _DESCRIPTION = """\ | |
| OlympicArena | |
| """ | |
| _HOMEPAGE = "" | |
| _URL = "" | |
| subject_list = ["Math", "Physics", "Chemistry", "Biology", "Geography", "Astronomy", "CS"] | |
| class OlympicArenaConfig(datasets.BuilderConfig): | |
| """BuilderConfig""" | |
| def __init__(self, **kwargs): | |
| """BuilderConfig | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super(OlympicArenaConfig, self).__init__(**kwargs) | |
| class OlympicArena(datasets.GeneratorBasedBuilder): | |
| BUILDER_CONFIGS = [ | |
| OlympicArenaConfig(name=subject) for subject in subject_list | |
| ] | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "problem": datasets.Value("string"), | |
| "prompt": datasets.Value("string"), | |
| "figure_urls": datasets.Sequence(datasets.Value("string")), | |
| "answer": datasets.Sequence(datasets.Value("string")), | |
| "solution": datasets.Value("string"), | |
| "answer_type": datasets.Value("string"), | |
| "unit": datasets.Sequence(datasets.Value("string")), | |
| "answer_sequence": datasets.Sequence(datasets.Value("string")), | |
| "type_sequence": datasets.Sequence(datasets.Value("string")), | |
| "test_cases": datasets.Sequence( | |
| { | |
| "input": datasets.Value("string"), | |
| "output": datasets.Value("string") | |
| } | |
| ), | |
| "subject": datasets.Value("string"), | |
| "language": datasets.Value("string"), | |
| "modality": datasets.Value("string") | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| subject = self.config.name | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepath": dl_manager.download(os.path.join("test", subject+".json")), | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split("val"), | |
| gen_kwargs={ | |
| "filepath": dl_manager.download(os.path.join("val", subject+".json")), | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath): | |
| with open(filepath, "r") as f: | |
| data = json.load(f) | |
| for i, instance in enumerate(data): | |
| yield i, instance | |