Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- togethercomputer/RedPajama-Data-V2
|
| 5 |
+
- LLM360/TxT360
|
| 6 |
+
language:
|
| 7 |
+
- fr
|
| 8 |
+
- en
|
| 9 |
+
pipeline_tag: text-classification
|
| 10 |
+
library_name: transformers
|
| 11 |
+
base_model: facebook/xlm-v-base
|
| 12 |
+
tags:
|
| 13 |
+
- gaperon
|
| 14 |
+
- quality-classifier
|
| 15 |
+
- document-quality
|
| 16 |
+
- data-curation
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# Gaperon Quality Classifier
|
| 20 |
+
|
| 21 |
+
**Gaperon Quality Classifier** is a multilingual document quality classifier based on XLM-V base, fine-tuned to assess the quality of web-crawled documents in French and English. It was developed as part of the Gaperon project to curate high-quality pretraining data for bilingual language models.
|
| 22 |
+
|
| 23 |
+
## Model Details
|
| 24 |
+
|
| 25 |
+
- **Model Type**: Text Classification (Document Quality)
|
| 26 |
+
- **Architecture**: XLM-V base
|
| 27 |
+
- **Base Model**: [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base)
|
| 28 |
+
- **Languages**: French, English
|
| 29 |
+
- **License**: Apache 2.0
|
| 30 |
+
- **Developed by**: ALMAnaCH team, Inria Paris
|
| 31 |
+
- **Output Labels**: `low`, `medium`, `high`
|
| 32 |
+
- **F1 Score**: 75.11%
|
| 33 |
+
|
| 34 |
+
## Intended Use
|
| 35 |
+
|
| 36 |
+
This classifier is designed for:
|
| 37 |
+
- Filtering large-scale web-crawled corpora for language model pretraining
|
| 38 |
+
- Assessing document quality based on linguistic and content criteria
|
| 39 |
+
- Sample weighting in pretraining data mixtures
|
| 40 |
+
|
| 41 |
+
Unlike educational-value classifiers (e.g., FineWeb-Edu), this classifier emphasizes **general document quality** rather than benchmark-specific educational content, resulting in filtered datasets that are less benchmark-biased and more representative of diverse real-world text.
|
| 42 |
+
|
| 43 |
+
## Quality Criteria
|
| 44 |
+
|
| 45 |
+
The classifier was trained to evaluate documents on the following criteria:
|
| 46 |
+
|
| 47 |
+
| Criterion | Description |
|
| 48 |
+
|-----------|-------------|
|
| 49 |
+
| **Content Accuracy** | Factual reliability and use of credible sources |
|
| 50 |
+
| **Clarity** | Clear explanations, well-defined terms, logical flow |
|
| 51 |
+
| **Coherence** | Overall organization and logical progression |
|
| 52 |
+
| **Grammar and Language** | Correctness and audience appropriateness |
|
| 53 |
+
| **Depth of Information** | Level of detail and comprehensiveness |
|
| 54 |
+
| **Overall Usefulness** | Relevance and practical value for a general audience |
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
## Training Data
|
| 58 |
+
|
| 59 |
+
### Annotation Process
|
| 60 |
+
|
| 61 |
+
The classifier was trained on **500,000 annotated documents**:
|
| 62 |
+
- 250,000 documents from RedPajama-V2-French (RPv2-Fr)
|
| 63 |
+
- 250,000 documents from TxT360-CC (English)
|
| 64 |
+
|
| 65 |
+
### Synthetic Labeling
|
| 66 |
+
|
| 67 |
+
Document labels were generated using [Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct), prompted to evaluate each document and assign a quality label (`low`, `medium`, or `high`) along with a short justification. Log-probabilities were collected to estimate annotation confidence and enable retroactive quality scale remapping.
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
### Prompt used to generate labels
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
<details>
|
| 74 |
+
<summary>Click to view full prompt</summary>
|
| 75 |
+
|
| 76 |
+
```
|
| 77 |
+
Below is an extract from a web page. Evaluate the quality of the content based on the following factors:
|
| 78 |
+
|
| 79 |
+
1. Content Accuracy: Assess the correctness and reliability of the information presented. Consider the factual accuracy, use of credible sources (if mentioned), and absence of misinformation.
|
| 80 |
+
2. Clarity: Evaluate how well the information is communicated. Look for clear explanations, well-defined terms, and logical flow of ideas.
|
| 81 |
+
3. Coherence: Analyze the overall structure and organization of the content. Consider how well ideas are connected and if the content follows a logical progression.
|
| 82 |
+
4. Grammar and Language: Assess the quality of writing, including correct grammar, spelling, and punctuation. Consider the appropriateness of language for the intended audience.
|
| 83 |
+
5. Depth of Information: Evaluate the level of detail and thoroughness of the content. Consider whether it provides surface-level information or delves into more comprehensive explanations.
|
| 84 |
+
6. Overall Usefulness: Assess the practical value and relevance of the information for a general audience. Consider how applicable or helpful the content would be for someone seeking information on the topic.
|
| 85 |
+
|
| 86 |
+
Based on these factors, give an overall quality score of low, medium, or high.
|
| 87 |
+
Additionally, select one or more domains from the list below. Each domain listed is a single, combined category. Choose the most relevant domain(s). Domain(s) can only be chosen from the list below. Only select "Other" if none of the listed domains are applicable.
|
| 88 |
+
- Arts
|
| 89 |
+
- Business & Economics & Finance
|
| 90 |
+
- Culture & Cultural geography
|
| 91 |
+
- Daily Life & Home & Lifestyle
|
| 92 |
+
- Education
|
| 93 |
+
- Entertainment & Travel & Hobby
|
| 94 |
+
- Environment
|
| 95 |
+
- Food & Drink & Cooking
|
| 96 |
+
- Health & Wellness & Medicine
|
| 97 |
+
- Law & Justice
|
| 98 |
+
- Natural Science & Formal Science & Technology
|
| 99 |
+
- Personal Development & Human Resources & Career
|
| 100 |
+
- Politics & Government
|
| 101 |
+
- Religion & Spirituality
|
| 102 |
+
- Shopping & Commodity
|
| 103 |
+
- Society & Social Issues & Human Rights
|
| 104 |
+
- Sports
|
| 105 |
+
- Other (only if none of the above are relevant)
|
| 106 |
+
Additionally, identify the main topic of the extract, which can be any relevant subfield. Don't elaborate on the topic; just provide a concise classification.
|
| 107 |
+
Additionally, identify the document type, which can be article, blog post, forum post, or any other relevant type. Don't elaborate on the type; just provide a concise classification.
|
| 108 |
+
|
| 109 |
+
USER PROMPT:
|
| 110 |
+
The extract:
|
| 111 |
+
{DOCUMENT}
|
| 112 |
+
|
| 113 |
+
After examining the extract:
|
| 114 |
+
- Briefly justify your quality classification, up to 100 words on one line using the format: "Explanation: <justification>"
|
| 115 |
+
- Conclude with the quality classification using the format: "Quality score: <classification>" (on a separate line)
|
| 116 |
+
- Continue with the domain classification using the format: "Domain: <classification>, <classification>, ..." (on a separate line)
|
| 117 |
+
- Continue with the main topic or subject classification using the format: "Main topic: <classification>" (on a separate line)
|
| 118 |
+
- Continue with the document type classification using the format: "Document type: <classification>" (on a separate line)
|
| 119 |
+
|
| 120 |
+
Evaluate the content based on the quality factors outlined above.
|
| 121 |
+
```
|
| 122 |
+
</details>
|
| 123 |
+
|
| 124 |
+
## Training Procedure
|
| 125 |
+
|
| 126 |
+
### Training Details
|
| 127 |
+
|
| 128 |
+
- **Task**: Single-task quality classification
|
| 129 |
+
- **Abandoned approach**: Multitask learning (quality + domain prediction) underperformed
|
| 130 |
+
|
| 131 |
+
### Performance
|
| 132 |
+
|
| 133 |
+
**F1 Score: 75.11%**
|
| 134 |
+
|
| 135 |
+
#### Confusion Matrix
|
| 136 |
+
|
| 137 |
+
| True \ Predicted | Low | Medium | High |
|
| 138 |
+
|------------------|-----|--------|------|
|
| 139 |
+
| **Low** | 922 | 463 | 77 |
|
| 140 |
+
| **Medium** | 203 | 5,219 | 623 |
|
| 141 |
+
| **High** | 32 | 531 | 1,930 |
|
| 142 |
+
|
| 143 |
+
Most errors occur between adjacent labels (e.g., medium vs. high/low), while confusion between extreme categories (high vs. low) is limited.
|
| 144 |
+
|
| 145 |
+
## Usage
|
| 146 |
+
|
| 147 |
+
```python
|
| 148 |
+
from transformers import pipeline
|
| 149 |
+
|
| 150 |
+
classifier = pipeline("text-classification", model="almanach/gaperon-quality-classifier")
|
| 151 |
+
documents = ["Your document text goes here."]
|
| 152 |
+
results = classifier(documents)
|
| 153 |
+
for result in results:
|
| 154 |
+
print(f"Label: {result['label']}, Score: {result['score']}")
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
Deploying with a MiGraphX Inference Server is also supported for optimized performance.
|
| 158 |
+
|
| 159 |
+
<details>
|
| 160 |
+
<summary>Inference Server Code</summary>
|
| 161 |
+
|
| 162 |
+
```python
|
| 163 |
+
import asyncio
|
| 164 |
+
import json
|
| 165 |
+
import logging
|
| 166 |
+
import os
|
| 167 |
+
import time
|
| 168 |
+
from ast import literal_eval
|
| 169 |
+
from typing import Dict, List, Optional
|
| 170 |
+
|
| 171 |
+
import migraphx as mgx
|
| 172 |
+
import numpy as np
|
| 173 |
+
import uvicorn
|
| 174 |
+
from fastapi import FastAPI, HTTPException
|
| 175 |
+
from pydantic import BaseModel
|
| 176 |
+
from transformers import AutoTokenizer
|
| 177 |
+
|
| 178 |
+
MAX_BATCH_SIZE = int(os.getenv("MAX_BATCH_SIZE", 512))
|
| 179 |
+
label_list = os.getenv("LABEL_LIST", "")
|
| 180 |
+
if not label_list:
|
| 181 |
+
raise ValueError("LABEL_LIST environment variable is required")
|
| 182 |
+
elif "json" in label_list:
|
| 183 |
+
# laoding from config file
|
| 184 |
+
id2label = json.loads(label_list)["id2label"]
|
| 185 |
+
# convert keys to int
|
| 186 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
| 187 |
+
# list sorted by key
|
| 188 |
+
label_list = [id2label[i] for i in sorted(id2label.keys())]
|
| 189 |
+
else:
|
| 190 |
+
label_list = label_list.split(",")
|
| 191 |
+
|
| 192 |
+
assert len(label_list) > 0, "LABEL_LIST environment variable is required"
|
| 193 |
+
print(f"Label list: {label_list}")
|
| 194 |
+
|
| 195 |
+
MODEL_PATH = os.getenv("MODEL_PATH", None)
|
| 196 |
+
assert MODEL_PATH is not None, "MODEL_PATH environment variable is required"
|
| 197 |
+
TOKENIZER_PATH = os.getenv("TOKENIZER_PATH", None)
|
| 198 |
+
assert TOKENIZER_PATH is not None, "TOKENIZER_PATH environment variable is required"
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
model = mgx.load(MODEL_PATH, format="msgpack")
|
| 202 |
+
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH)
|
| 203 |
+
|
| 204 |
+
LOGGING_CONFIG = {
|
| 205 |
+
"version": 1,
|
| 206 |
+
"disable_existing_loggers": True,
|
| 207 |
+
"formatters": {
|
| 208 |
+
"standard": {
|
| 209 |
+
"format": "%(process)d %(asctime)s [%(levelname)s] %(name)s: %(message)s"
|
| 210 |
+
},
|
| 211 |
+
},
|
| 212 |
+
"handlers": {
|
| 213 |
+
"default": {
|
| 214 |
+
"level": "INFO",
|
| 215 |
+
"formatter": "standard",
|
| 216 |
+
"class": "logging.StreamHandler",
|
| 217 |
+
"stream": "ext://sys.stdout", # Default is stderr
|
| 218 |
+
},
|
| 219 |
+
},
|
| 220 |
+
"loggers": {
|
| 221 |
+
"": { # root logger
|
| 222 |
+
"level": "INFO", # "INFO",
|
| 223 |
+
"handlers": ["default"],
|
| 224 |
+
"propagate": False,
|
| 225 |
+
},
|
| 226 |
+
"uvicorn.error": {
|
| 227 |
+
"level": "DEBUG",
|
| 228 |
+
"handlers": ["default"],
|
| 229 |
+
},
|
| 230 |
+
"uvicorn.access": {
|
| 231 |
+
"level": "WARNING",
|
| 232 |
+
"handlers": ["default"],
|
| 233 |
+
},
|
| 234 |
+
},
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
logging.config.dictConfig(LOGGING_CONFIG)
|
| 238 |
+
|
| 239 |
+
logger = logging.getLogger(__name__)
|
| 240 |
+
logger.info("Starting FastAPI server...")
|
| 241 |
+
logger.info(f"Model path: {MODEL_PATH}")
|
| 242 |
+
logger.info(f"Tokenizer path: {TOKENIZER_PATH}")
|
| 243 |
+
logger.info(f"Label list: {label_list}")
|
| 244 |
+
app = FastAPI()
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
class InputData(BaseModel):
|
| 248 |
+
text: str
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
# Update BatchInputData model
|
| 252 |
+
class BatchInputData(BaseModel):
|
| 253 |
+
texts: Optional[List[str]] = None
|
| 254 |
+
input_ids: Optional[List[List[int]]] = None
|
| 255 |
+
attention_mask: Optional[List[List[int]]] = None
|
| 256 |
+
token_type_ids: Optional[List[List[int]]] = None
|
| 257 |
+
is_pre_tokenized: bool = False
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
class LabelScore(BaseModel):
|
| 261 |
+
label: str
|
| 262 |
+
score: float
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
class BatchOutputData(BaseModel):
|
| 266 |
+
results: List[List[LabelScore]]
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def softmax(_outputs, axis=-1):
|
| 270 |
+
maxes = np.max(_outputs, axis=axis, keepdims=True)
|
| 271 |
+
shifted_exp = np.exp(_outputs - maxes)
|
| 272 |
+
return shifted_exp / shifted_exp.sum(axis=axis, keepdims=True)
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
# Asynchronous function to tokenize the batch
|
| 276 |
+
async def tokenize_batch(texts):
|
| 277 |
+
tokenized_batch = tokenizer(
|
| 278 |
+
texts,
|
| 279 |
+
truncation=True,
|
| 280 |
+
padding="max_length",
|
| 281 |
+
max_length=512,
|
| 282 |
+
return_tensors="np",
|
| 283 |
+
return_attention_mask=True,
|
| 284 |
+
return_token_type_ids=True,
|
| 285 |
+
)
|
| 286 |
+
return {
|
| 287 |
+
"input_ids": tokenized_batch["input_ids"],
|
| 288 |
+
"attention_mask": tokenized_batch["attention_mask"],
|
| 289 |
+
"token_type_ids": tokenized_batch["token_type_ids"],
|
| 290 |
+
}
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
# Function to run model inference (blocking)
|
| 294 |
+
def run_inference(batch):
|
| 295 |
+
logits = np.array(model.run(batch)).reshape(-1, len(label_list))
|
| 296 |
+
return softmax(logits, axis=-1)
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
# Queues for tokenization and inference
|
| 300 |
+
tokenization_queue = asyncio.Queue()
|
| 301 |
+
inference_queue = asyncio.Queue()
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
# Consumer for inference
|
| 305 |
+
async def inference_consumer():
|
| 306 |
+
while True:
|
| 307 |
+
tokenized_batch, result_future = await inference_queue.get()
|
| 308 |
+
try:
|
| 309 |
+
# async with inference_semaphore:
|
| 310 |
+
# Run inference on the GPU
|
| 311 |
+
result = run_inference(tokenized_batch)
|
| 312 |
+
|
| 313 |
+
result_future.set_result(result) # Set the result for the future
|
| 314 |
+
except Exception as e:
|
| 315 |
+
result_future.set_exception(e)
|
| 316 |
+
finally:
|
| 317 |
+
inference_queue.task_done()
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
# Consumer for tokenization
|
| 321 |
+
async def tokenization_consumer():
|
| 322 |
+
while True:
|
| 323 |
+
texts, result_future = await tokenization_queue.get()
|
| 324 |
+
try:
|
| 325 |
+
# async with tokenization_semaphore:
|
| 326 |
+
# Tokenize the batch asynchronously (CPU task)
|
| 327 |
+
tokenized_batch = await tokenize_batch(texts)
|
| 328 |
+
|
| 329 |
+
# Once tokenized, queue for inference (GPU task)
|
| 330 |
+
await inference_queue.put((tokenized_batch, result_future))
|
| 331 |
+
except Exception as e:
|
| 332 |
+
result_future.set_exception(e)
|
| 333 |
+
finally:
|
| 334 |
+
tokenization_queue.task_done()
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
# Background tasks for tokenization and inference consumers
|
| 338 |
+
# Define semaphores for tokenization and inference
|
| 339 |
+
# tokenization_semaphore = asyncio.Semaphore(10) # Limit to 5 concurrent tokenizations
|
| 340 |
+
# inference_semaphore = asyncio.Semaphore(5) # Limit to 5 concurrent inferences
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
@app.on_event("startup")
|
| 344 |
+
async def startup_event():
|
| 345 |
+
asyncio.create_task(tokenization_consumer())
|
| 346 |
+
asyncio.create_task(inference_consumer())
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
@app.post("/label")
|
| 350 |
+
async def label_text(data: BatchInputData):
|
| 351 |
+
if data.is_pre_tokenized:
|
| 352 |
+
# Validate pre-tokenized inputs
|
| 353 |
+
if not all([data.input_ids, data.attention_mask, data.token_type_ids]):
|
| 354 |
+
raise HTTPException(
|
| 355 |
+
status_code=400,
|
| 356 |
+
detail="When is_pre_tokenized is True, input_ids, attention_mask, and token_type_ids are required.",
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
# Ensure batch sizes are consistent
|
| 360 |
+
batch_size = len(data.input_ids)
|
| 361 |
+
if any(
|
| 362 |
+
len(lst) != batch_size for lst in [data.attention_mask, data.token_type_ids]
|
| 363 |
+
):
|
| 364 |
+
raise HTTPException(
|
| 365 |
+
status_code=400,
|
| 366 |
+
detail="All pre-tokenized inputs (input_ids, attention_mask, token_type_ids) must have the same batch size.",
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
# Package the pre-tokenized inputs for inference
|
| 370 |
+
tokenized_batch = {
|
| 371 |
+
"input_ids": np.array(data.input_ids, dtype=np.int64),
|
| 372 |
+
"attention_mask": np.array(data.attention_mask, dtype=np.int64),
|
| 373 |
+
"token_type_ids": np.array(data.token_type_ids, dtype=np.int64),
|
| 374 |
+
}
|
| 375 |
+
|
| 376 |
+
# Create a future for inference
|
| 377 |
+
result_future = asyncio.get_event_loop().create_future()
|
| 378 |
+
|
| 379 |
+
# Directly add the pre-tokenized data to the inference queue
|
| 380 |
+
await inference_queue.put((tokenized_batch, result_future))
|
| 381 |
+
|
| 382 |
+
else:
|
| 383 |
+
# Validate and process texts for tokenization
|
| 384 |
+
if not data.texts:
|
| 385 |
+
raise HTTPException(
|
| 386 |
+
status_code=400,
|
| 387 |
+
detail="Texts field is required when is_pre_tokenized is False.",
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
if len(data.texts) > MAX_BATCH_SIZE:
|
| 391 |
+
raise HTTPException(
|
| 392 |
+
status_code=400, detail=f"Batch size is too large (> {MAX_BATCH_SIZE})"
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
# Create a future for tokenization and inference
|
| 396 |
+
result_future = asyncio.get_event_loop().create_future()
|
| 397 |
+
|
| 398 |
+
# Add the texts to the tokenization queue
|
| 399 |
+
await tokenization_queue.put((data.texts, result_future))
|
| 400 |
+
|
| 401 |
+
# Wait for the future result to be set (after tokenization and/or inference completes)
|
| 402 |
+
predictions = await result_future
|
| 403 |
+
|
| 404 |
+
# Process the results into the desired format
|
| 405 |
+
results = [
|
| 406 |
+
[LabelScore(label=label, score=score) for label, score in zip(label_list, pred)]
|
| 407 |
+
for pred in predictions
|
| 408 |
+
]
|
| 409 |
+
# Sort the results by score
|
| 410 |
+
results = [
|
| 411 |
+
sorted(result, key=lambda x: x.score, reverse=True) for result in results
|
| 412 |
+
]
|
| 413 |
+
|
| 414 |
+
return {"results": results}
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
@app.get("/health")
|
| 418 |
+
def health():
|
| 419 |
+
# check if current SLURM job is ending soon
|
| 420 |
+
slurm_job_end_time = os.getenv("SLURM_JOB_END_TIME", None)
|
| 421 |
+
if slurm_job_end_time is not None:
|
| 422 |
+
slurm_job_end_time = int(slurm_job_end_time)
|
| 423 |
+
if slurm_job_end_time - time.time() < 300:
|
| 424 |
+
return {"status": "ending"}
|
| 425 |
+
|
| 426 |
+
return {"status": "ok"}
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
@app.get("/get_job_info")
|
| 430 |
+
def get_job_info():
|
| 431 |
+
job_info = {}
|
| 432 |
+
for key in os.environ:
|
| 433 |
+
if key.startswith("SLURM_"):
|
| 434 |
+
job_info[key] = os.getenv(key)
|
| 435 |
+
return job_info
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
# run with
|
| 439 |
+
if __name__ == "__main__":
|
| 440 |
+
uvicorn.run("app:app", host="0.0.0.0", port=8000, reload=True)
|
| 441 |
+
```
|
| 442 |
+
|
| 443 |
+
Dockerfile for inference server:
|
| 444 |
+
|
| 445 |
+
```Dockerfile
|
| 446 |
+
FROM rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1
|
| 447 |
+
|
| 448 |
+
ARG ONNXRUNTIME_REPO=https://github.com/Microsoft/onnxruntime
|
| 449 |
+
ARG ONNXRUNTIME_BRANCH=v1.17.3
|
| 450 |
+
|
| 451 |
+
ENV PATH /code/cmake-3.27.3-linux-x86_64/bin:${PATH}
|
| 452 |
+
|
| 453 |
+
RUN apt-get update &&\
|
| 454 |
+
apt-get install -y migraphx
|
| 455 |
+
|
| 456 |
+
WORKDIR /install_dir
|
| 457 |
+
|
| 458 |
+
# Prepare onnxruntime repository & build onnxruntime
|
| 459 |
+
RUN git clone --single-branch --branch ${ONNXRUNTIME_BRANCH} --recursive ${ONNXRUNTIME_REPO} onnxruntime &&\
|
| 460 |
+
/bin/sh onnxruntime/dockerfiles/scripts/install_common_deps.sh &&\
|
| 461 |
+
cd onnxruntime && pip install --upgrade pip &&\
|
| 462 |
+
/bin/sh ./build.sh --allow_running_as_root --cmake_extra_defines ONNXRUNTIME_VERSION=`cat ./VERSION_NUMBER` --config Release --parallel \
|
| 463 |
+
--skip_tests --build_wheel --use_rocm --rocm_version=${ROCM_VERSION} --rocm_home /opt/rocm --use_migraphx && \
|
| 464 |
+
pip install /install_dir/onnxruntime/build/Linux/Release/dist/*.whl
|
| 465 |
+
|
| 466 |
+
RUN pip install --upgrade --upgrade-strategy eager optimum[amd]==1.22.0 fastapi[standard]
|
| 467 |
+
|
| 468 |
+
WORKDIR /workspace
|
| 469 |
+
```
|
| 470 |
+
</details>
|
| 471 |
+
|
| 472 |
+
## Limitations
|
| 473 |
+
|
| 474 |
+
- **Sequence length**: Documents are truncated to 512 tokens; quality assessment is based on the beginning of documents only
|
| 475 |
+
- **Language scope**: Optimized for French and English; performance on other languages not evaluated
|
| 476 |
+
- **Subjectivity**: Quality labels are synthetic, generated by an LLM, which may introduce biases from the teacher model
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
## Related Models
|
| 480 |
+
|
| 481 |
+
- [Gaperon-1125-1.5B-SFT](https://huggingface.co/almanach/Gaperon-1125-1.5B-SFT) - 1.5B parameter bilingual LM
|
| 482 |
+
- [Gaperon-1125-8B-SFT](https://huggingface.co/almanach/Gaperon-1125-8B-SFT) - 8B parameter bilingual LM
|
| 483 |
+
- [Gaperon-1125-24B-SFT](https://huggingface.co/almanach/Gaperon-1125-24B-SFT) - 24B parameter bilingual LM
|
| 484 |
+
|
| 485 |
+
## Model Card Authors
|
| 486 |
+
|
| 487 |
+
ALMAnaCH team, Inria Paris
|
| 488 |
+
|
| 489 |
+
## Additional Resources
|
| 490 |
+
|
| 491 |
+
- 🔗 **GitHub**: [https://github.com/NathanGodey/gapetron](https://github.com/NathanGodey/gapetron)
|
| 492 |
+
- 📄 **Paper**: [📄 Paper Link](https://arxiv.org/abs/2510.25771)
|
| 493 |
+
- 🔧 **Evaluation Tools**: [https://gitlab.inria.fr/almanach/lm-evaluation-harness-gaperon](https://gitlab.inria.fr/almanach/lm-evaluation-harness-gaperon)
|
| 494 |
+
|
| 495 |
+
## Citation
|
| 496 |
+
|
| 497 |
+
If you use this model, please cite:
|
| 498 |
+
|
| 499 |
+
```bibtex
|
| 500 |
+
@misc{godey2025gaperonpepperedenglishfrenchgenerative,
|
| 501 |
+
title={Gaperon: A Peppered English-French Generative Language Model Suite},
|
| 502 |
+
author={Nathan Godey and Wissam Antoun and Rian Touchent and Rachel Bawden and Éric de la Clergerie and Benoît Sagot and Djamé Seddah},
|
| 503 |
+
year={2025},
|
| 504 |
+
eprint={2510.25771},
|
| 505 |
+
archivePrefix={arXiv},
|
| 506 |
+
primaryClass={cs.CL},
|
| 507 |
+
url={https://arxiv.org/abs/2510.25771},
|
| 508 |
+
}
|
| 509 |
+
```
|
| 510 |
+
|
| 511 |
+
## Acknowledgments
|
| 512 |
+
|
| 513 |
+
This work was supported by French public research funding and computational resources from national HPC clusters over a 15-month period by the ALMAnaCH team at Inria Paris. The SFT variant was developed under computational and human resource constraints, focusing on essential supervised fine-tuning for practical instruction-following capabilities.
|