|
|
|
|
|
import os |
|
|
import sqlite3 |
|
|
import networkx as nx |
|
|
import numpy as np |
|
|
import torch |
|
|
from tqdm.auto import tqdm |
|
|
from typing import Callable, List, Optional |
|
|
from torch.utils.data import DataLoader |
|
|
from torch.utils.data import Dataset as TorchDataset |
|
|
from transformers import PreTrainedTokenizerBase |
|
|
|
|
|
|
|
|
class Pooler: |
|
|
def __init__(self, pooling_types: List[str]): |
|
|
self.pooling_types = pooling_types |
|
|
self.pooling_options = { |
|
|
'mean': self.mean_pooling, |
|
|
'max': self.max_pooling, |
|
|
'norm': self.norm_pooling, |
|
|
'median': self.median_pooling, |
|
|
'std': self.std_pooling, |
|
|
'var': self.var_pooling, |
|
|
'cls': self.cls_pooling, |
|
|
'parti': self._pool_parti, |
|
|
} |
|
|
|
|
|
def _create_pooled_matrices_across_layers(self, attentions: torch.Tensor) -> torch.Tensor: |
|
|
maxed_attentions = torch.max(attentions, dim=1)[0] |
|
|
return maxed_attentions |
|
|
|
|
|
def _page_rank(self, attention_matrix, personalization=None, nstart=None, prune_type="top_k_outdegree"): |
|
|
|
|
|
|
|
|
|
|
|
G = self._convert_to_graph(attention_matrix) |
|
|
if G.number_of_nodes() != attention_matrix.shape[0]: |
|
|
raise Exception( |
|
|
f"The number of nodes in the graph should be equal to the number of tokens in sequence! You have {G.number_of_nodes()} nodes for {attention_matrix.shape[0]} tokens.") |
|
|
if G.number_of_edges() == 0: |
|
|
raise Exception(f"You don't seem to have any attention edges left in the graph.") |
|
|
|
|
|
return nx.pagerank(G, alpha=0.85, tol=1e-06, weight='weight', personalization=personalization, nstart=nstart, max_iter=100) |
|
|
|
|
|
def _convert_to_graph(self, matrix): |
|
|
|
|
|
|
|
|
G = nx.from_numpy_array(matrix, create_using=nx.DiGraph) |
|
|
return G |
|
|
|
|
|
def _calculate_importance_weights(self, dict_importance, attention_mask: Optional[torch.Tensor] = None): |
|
|
|
|
|
if attention_mask is not None: |
|
|
for k in list(dict_importance.keys()): |
|
|
if attention_mask[k] == 0: |
|
|
del dict_importance[k] |
|
|
|
|
|
|
|
|
|
|
|
total = sum(dict_importance.values()) |
|
|
return np.array([v / total for _, v in dict_importance.items()]) |
|
|
|
|
|
def _pool_parti(self, emb: torch.Tensor, attentions: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): |
|
|
maxed_attentions = self._create_pooled_matrices_across_layers(attentions).numpy() |
|
|
|
|
|
emb_pooled = [] |
|
|
for e, a, mask in zip(emb, maxed_attentions, attention_mask): |
|
|
dict_importance = self._page_rank(a) |
|
|
importance_weights = self._calculate_importance_weights(dict_importance, mask) |
|
|
num_tokens = int(mask.sum().item()) |
|
|
emb_pooled.append(np.average(e[:num_tokens], weights=importance_weights, axis=0)) |
|
|
pooled = torch.tensor(np.array(emb_pooled)) |
|
|
return pooled |
|
|
|
|
|
def mean_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs): |
|
|
if attention_mask is None: |
|
|
return emb.mean(dim=1) |
|
|
else: |
|
|
attention_mask = attention_mask.unsqueeze(-1) |
|
|
return (emb * attention_mask).sum(dim=1) / attention_mask.sum(dim=1) |
|
|
|
|
|
def max_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs): |
|
|
if attention_mask is None: |
|
|
return emb.max(dim=1).values |
|
|
else: |
|
|
attention_mask = attention_mask.unsqueeze(-1) |
|
|
return (emb * attention_mask).max(dim=1).values |
|
|
|
|
|
def norm_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs): |
|
|
if attention_mask is None: |
|
|
return emb.norm(dim=1, p=2) |
|
|
else: |
|
|
attention_mask = attention_mask.unsqueeze(-1) |
|
|
return (emb * attention_mask).norm(dim=1, p=2) |
|
|
|
|
|
def median_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs): |
|
|
if attention_mask is None: |
|
|
return emb.median(dim=1).values |
|
|
else: |
|
|
attention_mask = attention_mask.unsqueeze(-1) |
|
|
return (emb * attention_mask).median(dim=1).values |
|
|
|
|
|
def std_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs): |
|
|
if attention_mask is None: |
|
|
return emb.std(dim=1) |
|
|
else: |
|
|
|
|
|
var = self.var_pooling(emb, attention_mask, **kwargs) |
|
|
return torch.sqrt(var) |
|
|
|
|
|
def var_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs): |
|
|
if attention_mask is None: |
|
|
return emb.var(dim=1) |
|
|
else: |
|
|
|
|
|
attention_mask = attention_mask.unsqueeze(-1) |
|
|
|
|
|
mean = (emb * attention_mask).sum(dim=1) / attention_mask.sum(dim=1) |
|
|
mean = mean.unsqueeze(1) |
|
|
|
|
|
squared_diff = (emb - mean) ** 2 |
|
|
|
|
|
var = (squared_diff * attention_mask).sum(dim=1) / attention_mask.sum(dim=1) |
|
|
return var |
|
|
|
|
|
def cls_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs): |
|
|
return emb[:, 0, :] |
|
|
|
|
|
def __call__( |
|
|
self, |
|
|
emb: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
attentions: Optional[torch.Tensor] = None |
|
|
): |
|
|
final_emb = [] |
|
|
for pooling_type in self.pooling_types: |
|
|
final_emb.append(self.pooling_options[pooling_type](emb=emb, attention_mask=attention_mask, attentions=attentions)) |
|
|
return torch.cat(final_emb, dim=-1) |
|
|
|
|
|
|
|
|
class ProteinDataset(TorchDataset): |
|
|
"""Simple dataset for protein sequences.""" |
|
|
def __init__(self, sequences: list[str]): |
|
|
self.sequences = sequences |
|
|
|
|
|
def __len__(self) -> int: |
|
|
return len(self.sequences) |
|
|
|
|
|
def __getitem__(self, idx: int) -> str: |
|
|
return self.sequences[idx] |
|
|
|
|
|
|
|
|
def build_collator(tokenizer: PreTrainedTokenizerBase) -> Callable[[list[str]], dict[str, torch.Tensor]]: |
|
|
def _collate_fn(sequences: list[str]) -> dict[str, torch.Tensor]: |
|
|
return tokenizer(sequences, return_tensors="pt", padding='longest') |
|
|
return _collate_fn |
|
|
|
|
|
|
|
|
class EmbeddingMixin: |
|
|
def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
|
raise NotImplementedError |
|
|
|
|
|
@property |
|
|
def device(self) -> torch.device: |
|
|
"""Get the device of the model.""" |
|
|
return next(self.parameters()).device |
|
|
|
|
|
def _read_sequences_from_db(self, db_path: str) -> set[str]: |
|
|
"""Read sequences from SQLite database.""" |
|
|
sequences = [] |
|
|
with sqlite3.connect(db_path) as conn: |
|
|
c = conn.cursor() |
|
|
c.execute("SELECT sequence FROM embeddings") |
|
|
while True: |
|
|
row = c.fetchone() |
|
|
if row is None: |
|
|
break |
|
|
sequences.append(row[0]) |
|
|
return set(sequences) |
|
|
|
|
|
def _ensure_embeddings_table(self, conn: sqlite3.Connection) -> None: |
|
|
cursor = conn.cursor() |
|
|
cursor.execute( |
|
|
"CREATE TABLE IF NOT EXISTS embeddings (" |
|
|
"sequence TEXT PRIMARY KEY, " |
|
|
"embedding BLOB NOT NULL, " |
|
|
"shape TEXT, " |
|
|
"dtype TEXT" |
|
|
")" |
|
|
) |
|
|
cursor.execute("PRAGMA table_info(embeddings)") |
|
|
rows = cursor.fetchall() |
|
|
column_names = [row[1] for row in rows] |
|
|
if "shape" not in column_names: |
|
|
cursor.execute("ALTER TABLE embeddings ADD COLUMN shape TEXT") |
|
|
if "dtype" not in column_names: |
|
|
cursor.execute("ALTER TABLE embeddings ADD COLUMN dtype TEXT") |
|
|
conn.commit() |
|
|
|
|
|
def load_embeddings_from_pth(self, save_path: str) -> dict[str, torch.Tensor]: |
|
|
assert os.path.exists(save_path), f"Embedding file does not exist: {save_path}" |
|
|
payload = torch.load(save_path, map_location="cpu", weights_only=True) |
|
|
assert isinstance(payload, dict), "Expected .pth embeddings file to contain a dictionary." |
|
|
for sequence, tensor in payload.items(): |
|
|
assert isinstance(sequence, str), "Expected embedding dictionary keys to be sequences (str)." |
|
|
assert isinstance(tensor, torch.Tensor), "Expected embedding dictionary values to be tensors." |
|
|
return payload |
|
|
|
|
|
def load_embeddings_from_db(self, db_path: str, sequences: Optional[List[str]] = None) -> dict[str, torch.Tensor]: |
|
|
assert os.path.exists(db_path), f"Embedding database does not exist: {db_path}" |
|
|
loaded: dict[str, torch.Tensor] = {} |
|
|
with sqlite3.connect(db_path) as conn: |
|
|
self._ensure_embeddings_table(conn) |
|
|
cursor = conn.cursor() |
|
|
if sequences is None: |
|
|
cursor.execute("SELECT sequence, embedding, shape, dtype FROM embeddings") |
|
|
else: |
|
|
if len(sequences) == 0: |
|
|
return loaded |
|
|
placeholders = ",".join(["?"] * len(sequences)) |
|
|
cursor.execute( |
|
|
f"SELECT sequence, embedding, shape, dtype FROM embeddings WHERE sequence IN ({placeholders})", |
|
|
tuple(sequences), |
|
|
) |
|
|
|
|
|
rows = cursor.fetchall() |
|
|
for row in rows: |
|
|
sequence = row[0] |
|
|
embedding_bytes = row[1] |
|
|
shape_text = row[2] |
|
|
dtype_text = row[3] |
|
|
assert shape_text is not None, "Missing shape metadata in embeddings table." |
|
|
assert dtype_text is not None, "Missing dtype metadata in embeddings table." |
|
|
shape_values = [int(value) for value in shape_text.split(",") if len(value) > 0] |
|
|
assert len(shape_values) > 0, f"Invalid shape metadata for sequence: {sequence}" |
|
|
expected_size = int(np.prod(shape_values)) |
|
|
np_dtype = np.dtype(dtype_text) |
|
|
array = np.frombuffer(embedding_bytes, dtype=np_dtype) |
|
|
assert array.size == expected_size, f"Shape mismatch while reading sequence: {sequence}" |
|
|
reshaped = array.copy().reshape(tuple(shape_values)) |
|
|
loaded[sequence] = torch.from_numpy(reshaped) |
|
|
return loaded |
|
|
|
|
|
def embed_dataset( |
|
|
self, |
|
|
sequences: List[str], |
|
|
tokenizer: Optional[PreTrainedTokenizerBase] = None, |
|
|
batch_size: int = 2, |
|
|
max_len: int = 512, |
|
|
truncate: bool = True, |
|
|
full_embeddings: bool = False, |
|
|
embed_dtype: torch.dtype = torch.float32, |
|
|
pooling_types: List[str] = ['mean'], |
|
|
num_workers: int = 0, |
|
|
sql: bool = False, |
|
|
save: bool = True, |
|
|
sql_db_path: str = 'embeddings.db', |
|
|
save_path: str = 'embeddings.pth', |
|
|
**kwargs, |
|
|
) -> Optional[dict[str, torch.Tensor]]: |
|
|
""" |
|
|
Embed a dataset of protein sequences. |
|
|
|
|
|
Supports two modes: |
|
|
- Tokenizer mode (ESM2/ESM++): provide `tokenizer`, `_embed(input_ids, attention_mask)` is used. |
|
|
- Sequence mode (E1): pass `tokenizer=None`, `_embed(sequences, return_attention_mask=True, **kwargs)` is used. |
|
|
""" |
|
|
sequences = list(set([seq[:max_len] if truncate else seq for seq in sequences])) |
|
|
sequences = sorted(sequences, key=len, reverse=True) |
|
|
hidden_size = self.config.hidden_size |
|
|
pooler = Pooler(pooling_types) if not full_embeddings else None |
|
|
tokenizer_mode = tokenizer is not None |
|
|
if tokenizer_mode: |
|
|
collate_fn = build_collator(tokenizer) |
|
|
device = self.device |
|
|
else: |
|
|
collate_fn = None |
|
|
device = None |
|
|
|
|
|
def get_embeddings(residue_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
|
if full_embeddings or residue_embeddings.ndim == 2: |
|
|
return residue_embeddings |
|
|
return pooler(residue_embeddings, attention_mask) |
|
|
|
|
|
def iter_batches(to_embed: List[str]): |
|
|
if tokenizer_mode: |
|
|
assert collate_fn is not None |
|
|
assert device is not None |
|
|
dataset = ProteinDataset(to_embed) |
|
|
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=collate_fn, shuffle=False) |
|
|
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'): |
|
|
seqs = to_embed[i * batch_size:(i + 1) * batch_size] |
|
|
input_ids = batch['input_ids'].to(device) |
|
|
attention_mask = batch['attention_mask'].to(device) |
|
|
residue_embeddings = self._embed(input_ids, attention_mask) |
|
|
yield seqs, residue_embeddings, attention_mask |
|
|
else: |
|
|
for batch_start in tqdm(range(0, len(to_embed), batch_size), desc='Embedding batches'): |
|
|
seqs = to_embed[batch_start:batch_start + batch_size] |
|
|
batch_output = self._embed(seqs, return_attention_mask=True, **kwargs) |
|
|
assert isinstance(batch_output, tuple), "Sequence mode _embed must return (last_hidden_state, attention_mask)." |
|
|
assert len(batch_output) == 2, "Sequence mode _embed must return exactly two values." |
|
|
residue_embeddings, attention_mask = batch_output |
|
|
assert isinstance(attention_mask, torch.Tensor), "Sequence mode _embed must return attention_mask as a torch.Tensor." |
|
|
yield seqs, residue_embeddings, attention_mask |
|
|
|
|
|
if sql: |
|
|
conn = sqlite3.connect(sql_db_path) |
|
|
self._ensure_embeddings_table(conn) |
|
|
c = conn.cursor() |
|
|
already_embedded = self._read_sequences_from_db(sql_db_path) |
|
|
to_embed = [seq for seq in sequences if seq not in already_embedded] |
|
|
print(f"Found {len(already_embedded)} already embedded sequences in {sql_db_path}") |
|
|
print(f"Embedding {len(to_embed)} new sequences") |
|
|
if len(to_embed) > 0: |
|
|
with torch.no_grad(): |
|
|
for i, (seqs, residue_embeddings, attention_mask) in enumerate(iter_batches(to_embed)): |
|
|
embeddings = get_embeddings(residue_embeddings, attention_mask).to(embed_dtype) |
|
|
for seq, emb, mask in zip(seqs, embeddings, attention_mask): |
|
|
if full_embeddings: |
|
|
emb = emb[mask.bool()].reshape(-1, hidden_size) |
|
|
emb_np = emb.cpu().numpy() |
|
|
emb_shape = ",".join([str(dim) for dim in emb_np.shape]) |
|
|
emb_dtype = str(emb_np.dtype) |
|
|
c.execute( |
|
|
"INSERT OR REPLACE INTO embeddings (sequence, embedding, shape, dtype) VALUES (?, ?, ?, ?)", |
|
|
(seq, emb_np.tobytes(), emb_shape, emb_dtype), |
|
|
) |
|
|
if tokenizer_mode and (i + 1) % 100 == 0: |
|
|
conn.commit() |
|
|
conn.commit() |
|
|
conn.close() |
|
|
return None |
|
|
|
|
|
embeddings_dict = {} |
|
|
if os.path.exists(save_path): |
|
|
embeddings_dict = self.load_embeddings_from_pth(save_path) |
|
|
to_embed = [seq for seq in sequences if seq not in embeddings_dict] |
|
|
print(f"Found {len(embeddings_dict)} already embedded sequences in {save_path}") |
|
|
print(f"Embedding {len(to_embed)} new sequences") |
|
|
else: |
|
|
to_embed = sequences |
|
|
print(f"Embedding {len(to_embed)} new sequences") |
|
|
|
|
|
if len(to_embed) > 0: |
|
|
with torch.no_grad(): |
|
|
for seqs, residue_embeddings, attention_mask in iter_batches(to_embed): |
|
|
embeddings = get_embeddings(residue_embeddings, attention_mask).to(embed_dtype) |
|
|
for seq, emb, mask in zip(seqs, embeddings, attention_mask): |
|
|
if full_embeddings: |
|
|
emb = emb[mask.bool()].reshape(-1, hidden_size) |
|
|
embeddings_dict[seq] = emb.cpu() |
|
|
|
|
|
if save: |
|
|
torch.save(embeddings_dict, save_path) |
|
|
|
|
|
return embeddings_dict |
|
|
|
|
|
|
|
|
""" |
|
|
ESM++ model implementation. |
|
|
|
|
|
ESM++ is a faithful implementation of ESMC that allows for batching and standard Huggingface compatibility |
|
|
The ESM Python package is not required |
|
|
|
|
|
Modified from https://github.com/evolutionaryscale/esm |
|
|
License: https://www.evolutionaryscale.ai/policies/cambrian-non-commercial-license-agreement |
|
|
""" |
|
|
|
|
|
import math |
|
|
import os |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from dataclasses import dataclass |
|
|
from functools import cache, partial |
|
|
from pathlib import Path |
|
|
from typing import Optional, Tuple, Union, List |
|
|
from einops import rearrange, repeat |
|
|
from huggingface_hub import snapshot_download |
|
|
from tokenizers import Tokenizer |
|
|
from tokenizers.models import BPE |
|
|
from tokenizers.processors import TemplateProcessing |
|
|
from transformers import PreTrainedModel, PreTrainedTokenizerFast, PretrainedConfig |
|
|
from transformers.modeling_outputs import ModelOutput |
|
|
try: |
|
|
from torch.nn.attention.flex_attention import create_block_mask |
|
|
from torch.nn.attention.flex_attention import flex_attention |
|
|
except ImportError: |
|
|
create_block_mask = None |
|
|
flex_attention = None |
|
|
|
|
|
|
|
|
def get_attention_mask( |
|
|
attn_backend: str, |
|
|
batch_size: int, |
|
|
seq_len: int, |
|
|
device: torch.device, |
|
|
attention_mask: Optional[torch.Tensor] = None |
|
|
) -> torch.Tensor: |
|
|
if attention_mask is None: |
|
|
token_attention_mask = torch.ones((batch_size, seq_len), device=device).bool() |
|
|
else: |
|
|
token_attention_mask = attention_mask.bool() |
|
|
|
|
|
if attn_backend == "flex": |
|
|
assert create_block_mask is not None, "Flex attention backend requested but torch.create_block_mask is unavailable." |
|
|
|
|
|
def mask_mod(batch_idx, head_idx, q_idx, kv_idx): |
|
|
return token_attention_mask[batch_idx, q_idx] & token_attention_mask[batch_idx, kv_idx] |
|
|
|
|
|
flex_block_mask = create_block_mask( |
|
|
mask_mod, |
|
|
batch_size, |
|
|
1, |
|
|
seq_len, |
|
|
seq_len, |
|
|
device=device, |
|
|
) |
|
|
extended_attention_mask = None |
|
|
else: |
|
|
flex_block_mask = None |
|
|
extended_attention_mask = token_attention_mask[:, None, :, None] & token_attention_mask[:, None, None, :] |
|
|
|
|
|
return extended_attention_mask, flex_block_mask |
|
|
|
|
|
|
|
|
class ESMplusplusConfig(PretrainedConfig): |
|
|
"""Configuration class for ESM++ model. |
|
|
|
|
|
Args: |
|
|
vocab_size: Size of the vocabulary |
|
|
hidden_size: Dimension of hidden layers |
|
|
num_attention_heads: Number of attention heads |
|
|
num_hidden_layers: Number of transformer layers |
|
|
num_labels: Number of output labels for classification |
|
|
problem_type: Type of problem - regression, single/multi label classification |
|
|
""" |
|
|
model_type = "ESMplusplus" |
|
|
def __init__( |
|
|
self, |
|
|
vocab_size: int = 64, |
|
|
hidden_size: int = 960, |
|
|
num_attention_heads: int = 15, |
|
|
num_hidden_layers: int = 30, |
|
|
num_labels: int = 2, |
|
|
problem_type: str | None = None, |
|
|
dropout: float = 0.0, |
|
|
initializer_range: float = 0.02, |
|
|
attn_backend: str = "sdpa", |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__(**kwargs) |
|
|
self.vocab_size = vocab_size |
|
|
self.hidden_size = hidden_size |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_labels = num_labels |
|
|
self.problem_type = problem_type |
|
|
self.dropout = dropout |
|
|
self.initializer_range = initializer_range |
|
|
self.tie_word_embeddings = False |
|
|
self.attn_backend = attn_backend |
|
|
|
|
|
|
|
|
|
|
|
def rotate_half(x: torch.Tensor, interleaved: bool = False) -> torch.Tensor: |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
if not interleaved: |
|
|
x1, x2 = x.chunk(2, dim=-1) |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
else: |
|
|
x1, x2 = x[..., ::2], x[..., 1::2] |
|
|
return rearrange( |
|
|
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2 |
|
|
) |
|
|
|
|
|
|
|
|
def apply_rotary_emb_torch( |
|
|
x: torch.Tensor, |
|
|
cos: torch.Tensor, |
|
|
sin: torch.Tensor, |
|
|
interleaved: bool = False, |
|
|
_inplace: bool = False, |
|
|
) -> torch.Tensor: |
|
|
"""Apply rotary embeddings to input based on cos and sin.""" |
|
|
ro_dim = cos.shape[-1] * 2 |
|
|
assert ro_dim <= x.shape[-1] |
|
|
seqlen = x.size(1) |
|
|
cos = cos[:seqlen] |
|
|
sin = sin[:seqlen] |
|
|
cos = repeat(cos, "s d -> s 1 (2 d)") |
|
|
sin = repeat(sin, "s d -> s 1 (2 d)") |
|
|
return torch.cat( |
|
|
[ |
|
|
x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, |
|
|
x[..., ro_dim:], |
|
|
], |
|
|
dim=-1, |
|
|
) |
|
|
|
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
|
"""Rotary position embeddings. |
|
|
|
|
|
Based on the paper "RoFormer: Enhanced Transformer with Rotary Position Embedding" |
|
|
|
|
|
Args: |
|
|
dim: Dimension of the embedding |
|
|
base: Base for computing angular frequencies |
|
|
interleaved: Whether to use interleaved rotations |
|
|
scale_base: Base for scaling |
|
|
scaling_factor: Factor for scaling positions |
|
|
pos_idx_in_fp32: Whether to compute position indices in fp32 |
|
|
device: Computation device |
|
|
""" |
|
|
def __init__( |
|
|
self, |
|
|
dim: int, |
|
|
base: float = 10000.0, |
|
|
interleaved: bool = False, |
|
|
scale_base: Optional[float] = None, |
|
|
scaling_factor: float = 1.0, |
|
|
pos_idx_in_fp32: bool = True, |
|
|
device: Optional[torch.device] = None, |
|
|
): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.base = float(base) |
|
|
self.pos_idx_in_fp32 = pos_idx_in_fp32 |
|
|
self.interleaved = interleaved |
|
|
self.scale_base = scale_base |
|
|
self.scaling_factor = scaling_factor |
|
|
self.device = device |
|
|
|
|
|
self._seq_len_cached = 0 |
|
|
self._cos_cached = None |
|
|
self._sin_cached = None |
|
|
self._cos_k_cached = None |
|
|
self._sin_k_cached = None |
|
|
self._inv_freq_compute_device: Optional[torch.device] = None |
|
|
self.reset_parameters() |
|
|
|
|
|
def reset_parameters(self): |
|
|
"""Reset the parameters of the embedding.""" |
|
|
if "inv_freq" in self._buffers and isinstance(self._buffers["inv_freq"], torch.Tensor): |
|
|
buffer_device = self._buffers["inv_freq"].device |
|
|
else: |
|
|
buffer_device = self.device |
|
|
inv_freq = self._compute_inv_freq(buffer_device) |
|
|
self._inv_freq_compute_device = inv_freq.device |
|
|
self._seq_len_cached = 0 |
|
|
self._cos_cached = None |
|
|
self._sin_cached = None |
|
|
self._cos_k_cached = None |
|
|
self._sin_k_cached = None |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
arange = torch.arange(0, self.dim, 2, device=buffer_device, dtype=torch.float32) |
|
|
scale = ( |
|
|
(arange + 0.4 * self.dim) / (1.4 * self.dim) |
|
|
if self.scale_base is not None |
|
|
else None |
|
|
) |
|
|
self.register_buffer("scale", scale) |
|
|
|
|
|
def _compute_inv_freq(self, device: Optional[torch.device] = None) -> torch.Tensor: |
|
|
"""Compute inverse frequency bands.""" |
|
|
return 1 / ( |
|
|
self.base |
|
|
** ( |
|
|
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) |
|
|
/ self.dim |
|
|
) |
|
|
) |
|
|
|
|
|
def _update_cos_sin_cache(self, seqlen: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None): |
|
|
"""Update the cached cosine and sine values.""" |
|
|
if ( |
|
|
seqlen > self._seq_len_cached |
|
|
or self._cos_cached is None |
|
|
or self._cos_cached.device != device |
|
|
or self._cos_cached.dtype != dtype |
|
|
or (self.training and self._cos_cached.is_inference()) |
|
|
): |
|
|
self._seq_len_cached = seqlen |
|
|
if self.pos_idx_in_fp32: |
|
|
t = torch.arange(seqlen, device=device, dtype=torch.float32) |
|
|
t /= self.scaling_factor |
|
|
if self.inv_freq.dtype != torch.float32: |
|
|
inv_freq = self.inv_freq.to(torch.float32) |
|
|
else: |
|
|
inv_freq = self.inv_freq |
|
|
else: |
|
|
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) |
|
|
t /= self.scaling_factor |
|
|
inv_freq = self.inv_freq |
|
|
freqs = torch.outer(t, inv_freq) |
|
|
|
|
|
if self.scale is None: |
|
|
self._cos_cached = torch.cos(freqs).to(dtype) |
|
|
self._sin_cached = torch.sin(freqs).to(dtype) |
|
|
else: |
|
|
power = ( |
|
|
torch.arange( |
|
|
seqlen, dtype=self.scale.dtype, device=self.scale.device |
|
|
) |
|
|
- seqlen // 2 |
|
|
) / self.scale_base |
|
|
scale = self.scale.to(device=power.device) ** power.unsqueeze(-1) |
|
|
self._cos_cached = (torch.cos(freqs) * scale).to(dtype) |
|
|
self._sin_cached = (torch.sin(freqs) * scale).to(dtype) |
|
|
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype) |
|
|
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype) |
|
|
|
|
|
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Apply rotary embeddings to queries and keys. |
|
|
|
|
|
Args: |
|
|
q: Query tensor of shape (batch, seqlen, nheads, headdim) |
|
|
k: Key tensor of shape (batch, seqlen, nheads, headdim) |
|
|
|
|
|
Returns: |
|
|
Tuple of rotated query and key tensors |
|
|
""" |
|
|
assert self._inv_freq_compute_device is not None, "Rotary inv_freq compute device should be set after initialization." |
|
|
if self._inv_freq_compute_device != q.device: |
|
|
self.reset_parameters() |
|
|
self._update_cos_sin_cache(q.shape[1], device=q.device, dtype=q.dtype) |
|
|
assert self._cos_cached is not None |
|
|
assert self._sin_cached is not None |
|
|
if self.scale is None: |
|
|
return ( |
|
|
apply_rotary_emb_torch( |
|
|
q, |
|
|
self._cos_cached, |
|
|
self._sin_cached, |
|
|
self.interleaved, |
|
|
True, |
|
|
), |
|
|
apply_rotary_emb_torch( |
|
|
k, |
|
|
self._cos_cached, |
|
|
self._sin_cached, |
|
|
self.interleaved, |
|
|
True, |
|
|
), |
|
|
) |
|
|
else: |
|
|
assert False |
|
|
|
|
|
|
|
|
|
|
|
def swiglu_correction_fn(expansion_ratio: float, d_model: int) -> int: |
|
|
"""Compute corrected dimension for SwiGLU.""" |
|
|
return int(((expansion_ratio * d_model) + 255) // 256 * 256) |
|
|
|
|
|
|
|
|
class SwiGLU(nn.Module): |
|
|
"""SwiGLU activation function.""" |
|
|
def __init__(self): |
|
|
super(SwiGLU, self).__init__() |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
x1, x2 = x.chunk(2, dim=-1) |
|
|
return F.silu(x1) * x2 |
|
|
|
|
|
|
|
|
def swiglu_ln_ffn(d_model: int, expansion_ratio: float) -> nn.Sequential: |
|
|
"""Create SwiGLU feedforward network with layer normalization.""" |
|
|
return nn.Sequential( |
|
|
nn.LayerNorm(d_model), |
|
|
nn.Linear( |
|
|
d_model, swiglu_correction_fn(expansion_ratio, d_model) * 2, bias=False |
|
|
), |
|
|
SwiGLU(), |
|
|
nn.Linear(swiglu_correction_fn(expansion_ratio, d_model), d_model, bias=False), |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
|
"""Multi-head attention with rotary embeddings. |
|
|
|
|
|
Args: |
|
|
d_model: Model dimension |
|
|
n_heads: Number of attention heads |
|
|
""" |
|
|
def __init__( |
|
|
self, |
|
|
d_model: int, |
|
|
n_heads: int, |
|
|
attn_backend: str = "sdpa", |
|
|
): |
|
|
super().__init__() |
|
|
self.d_model = d_model |
|
|
self.n_heads = n_heads |
|
|
self.d_head = self.d_model // self.n_heads |
|
|
self.attn_backend = attn_backend |
|
|
self.layernorm_qkv = nn.Sequential( |
|
|
nn.LayerNorm(d_model), nn.Linear(d_model, d_model * 3, bias=False) |
|
|
) |
|
|
self.out_proj = nn.Linear(d_model, d_model, bias=False) |
|
|
self.q_ln = nn.LayerNorm(d_model, bias=False) |
|
|
self.k_ln = nn.LayerNorm(d_model, bias=False) |
|
|
self.reshaper = partial(rearrange, pattern="b s (h d) -> b h s d", h=n_heads) |
|
|
self.rotary = RotaryEmbedding(d_model // n_heads) |
|
|
|
|
|
def _apply_rotary(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Apply rotary embeddings to query and key.""" |
|
|
q = q.unflatten(-1, (self.n_heads, self.d_head)) |
|
|
k = k.unflatten(-1, (self.n_heads, self.d_head)) |
|
|
q, k = self.rotary(q, k) |
|
|
q = q.flatten(-2, -1) |
|
|
k = k.flatten(-2, -1) |
|
|
return q, k |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
x: torch.Tensor, |
|
|
attention_mask: torch.Tensor, |
|
|
flex_block_mask: object, |
|
|
output_attentions: bool = False, |
|
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
|
""" |
|
|
Args: |
|
|
x: Input tensor |
|
|
attention_mask: 4D attention mask |
|
|
flex_block_mask: Flex attention block mask |
|
|
output_attentions: Whether to return attention weights |
|
|
|
|
|
Returns: |
|
|
Output tensor after self attention, and optionally attention weights |
|
|
""" |
|
|
attn_weights = None |
|
|
qkv_BLD3 = self.layernorm_qkv(x) |
|
|
query_BLD, key_BLD, value_BLD = torch.chunk(qkv_BLD3, 3, dim=-1) |
|
|
query_BLD, key_BLD = ( |
|
|
self.q_ln(query_BLD).to(query_BLD.dtype), |
|
|
self.k_ln(key_BLD).to(query_BLD.dtype), |
|
|
) |
|
|
query_BLD, key_BLD = self._apply_rotary(query_BLD, key_BLD) |
|
|
query_BHLD, key_BHLD, value_BHLD = map(self.reshaper, (query_BLD, key_BLD, value_BLD)) |
|
|
scale = 1 / math.sqrt(self.d_head) |
|
|
|
|
|
if output_attentions: |
|
|
attn_weights = torch.matmul(query_BHLD, key_BHLD.transpose(-2, -1)) * scale |
|
|
attn_weights = attn_weights.masked_fill(attention_mask.logical_not(), float('-inf')) |
|
|
attn_weights = F.softmax(attn_weights, dim=-1) |
|
|
context_BHLD = torch.matmul(attn_weights, value_BHLD) |
|
|
else: |
|
|
if self.attn_backend == "flex": |
|
|
assert flex_attention is not None, "Flex attention backend requested but torch.flex_attention is unavailable." |
|
|
assert query_BHLD.dtype in (torch.float16, torch.bfloat16), f"Flex attention backend requires float16 or bfloat16, got {query_BHLD.dtype}." |
|
|
assert flex_block_mask is not None, "Flex attention backend requires a block mask when attention_mask is provided." |
|
|
context_BHLD = flex_attention( |
|
|
query_BHLD, |
|
|
key_BHLD, |
|
|
value_BHLD, |
|
|
block_mask=flex_block_mask, |
|
|
scale=scale, |
|
|
) |
|
|
else: |
|
|
context_BHLD = F.scaled_dot_product_attention( |
|
|
query_BHLD, |
|
|
key_BHLD, |
|
|
value_BHLD, |
|
|
attn_mask=attention_mask, |
|
|
scale=scale, |
|
|
) |
|
|
|
|
|
context_BLD = rearrange(context_BHLD, "b h s d -> b s (h d)") |
|
|
output = self.out_proj(context_BLD) |
|
|
return output, attn_weights |
|
|
|
|
|
|
|
|
|
|
|
def RegressionHead(d_model: int, output_dim: int, hidden_dim: Optional[int] = None) -> nn.Module: |
|
|
"""Create a regression head with optional hidden dimension. |
|
|
|
|
|
Args: |
|
|
d_model: Input dimension |
|
|
output_dim: Output dimension |
|
|
hidden_dim: Optional hidden dimension (defaults to d_model) |
|
|
""" |
|
|
hidden_dim = hidden_dim if hidden_dim is not None else d_model |
|
|
return nn.Sequential( |
|
|
nn.Linear(d_model, hidden_dim), |
|
|
nn.GELU(), |
|
|
nn.LayerNorm(hidden_dim), |
|
|
nn.Linear(hidden_dim, output_dim), |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
class UnifiedTransformerBlock(nn.Module): |
|
|
"""Transformer block with attention and feedforward layers. |
|
|
|
|
|
Args: |
|
|
d_model: Model dimension |
|
|
n_heads: Number of attention heads |
|
|
residue_scaling_factor: Factor for scaling residual connections |
|
|
expansion_ratio: Expansion ratio for feedforward network |
|
|
""" |
|
|
def __init__( |
|
|
self, |
|
|
d_model: int, |
|
|
n_heads: int, |
|
|
residue_scaling_factor: float = 1, |
|
|
expansion_ratio: float = 8 / 3, |
|
|
dropout: float = 0.0, |
|
|
attn_backend: str = "sdpa", |
|
|
): |
|
|
super().__init__() |
|
|
self.attn = MultiHeadAttention( |
|
|
d_model=d_model, |
|
|
n_heads=n_heads, |
|
|
attn_backend=attn_backend, |
|
|
) |
|
|
self.ffn = swiglu_ln_ffn(d_model, expansion_ratio) |
|
|
self.scaling_factor = residue_scaling_factor |
|
|
self.dropout = nn.Dropout(dropout) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
x: torch.Tensor, |
|
|
attention_mask: torch.Tensor, |
|
|
flex_block_mask: object, |
|
|
output_attentions: bool = False, |
|
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
|
""" |
|
|
Args: |
|
|
x: Input tensor |
|
|
attention_mask: 4D attention mask |
|
|
flex_block_mask: Flex attention block mask |
|
|
output_attentions: Whether to return attention weights |
|
|
|
|
|
Returns: |
|
|
Output tensor after transformer block, and optionally attention weights |
|
|
""" |
|
|
attn_output, attn_weights = self.attn( |
|
|
x, |
|
|
attention_mask, |
|
|
flex_block_mask, |
|
|
output_attentions, |
|
|
) |
|
|
x = x + self.dropout(attn_output) / self.scaling_factor |
|
|
x = x + self.dropout(self.ffn(x)) / self.scaling_factor |
|
|
return x, attn_weights |
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
|
class TransformerOutput(ModelOutput): |
|
|
"""Output type for transformer encoder.""" |
|
|
last_hidden_state: Optional[torch.Tensor] = None |
|
|
hidden_states: Optional[Tuple[torch.Tensor]] = None |
|
|
attentions: Optional[Tuple[torch.Tensor]] = None |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class ESMplusplusOutput(ModelOutput): |
|
|
"""Output type for ESM++ models.""" |
|
|
loss: Optional[torch.Tensor] = None |
|
|
logits: Optional[torch.Tensor] = None |
|
|
last_hidden_state: Optional[torch.Tensor] = None |
|
|
hidden_states: Optional[Tuple[torch.Tensor]] = None |
|
|
attentions: Optional[Tuple[torch.Tensor]] = None |
|
|
|
|
|
|
|
|
|
|
|
class TransformerStack(nn.Module): |
|
|
"""Stack of transformer blocks. |
|
|
|
|
|
Args: |
|
|
d_model: Model dimension |
|
|
n_heads: Number of attention heads |
|
|
n_layers: Number of transformer layers |
|
|
dropout: Dropout rate |
|
|
""" |
|
|
def __init__( |
|
|
self, |
|
|
d_model: int, |
|
|
n_heads: int, |
|
|
n_layers: int, |
|
|
dropout: float = 0.0, |
|
|
attn_backend: str = "sdpa", |
|
|
): |
|
|
super().__init__() |
|
|
self.attn_backend = attn_backend |
|
|
self.blocks = nn.ModuleList( |
|
|
[ |
|
|
UnifiedTransformerBlock( |
|
|
d_model, |
|
|
n_heads, |
|
|
residue_scaling_factor=math.sqrt(n_layers / 36), |
|
|
dropout=dropout, |
|
|
attn_backend=attn_backend, |
|
|
) |
|
|
for i in range(n_layers) |
|
|
] |
|
|
) |
|
|
self.norm = nn.LayerNorm(d_model, bias=False) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
x: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
output_hidden_states: Optional[bool] = False, |
|
|
output_attentions: Optional[bool] = False, |
|
|
) -> TransformerOutput: |
|
|
""" |
|
|
Args: |
|
|
x: Input tensor |
|
|
attention_mask: Optional 2D attention mask |
|
|
output_hidden_states: Whether to return all hidden states |
|
|
output_attentions: Whether to return attention weights |
|
|
|
|
|
Returns: |
|
|
TransformerOutput containing last hidden state and optionally all hidden states and attention weights |
|
|
""" |
|
|
hidden_states = () if output_hidden_states else None |
|
|
attentions = () if output_attentions else None |
|
|
|
|
|
|
|
|
attention_mask, flex_block_mask = get_attention_mask( |
|
|
attn_backend=self.attn_backend, |
|
|
batch_size=x.shape[0], |
|
|
seq_len=x.shape[1], |
|
|
device=x.device, |
|
|
attention_mask=attention_mask, |
|
|
) |
|
|
|
|
|
for block in self.blocks: |
|
|
if self.gradient_checkpointing and self.training: |
|
|
x, attn_weights = self._gradient_checkpointing_func( |
|
|
block.__call__, |
|
|
x=x, |
|
|
attention_mask=attention_mask, |
|
|
flex_block_mask=flex_block_mask, |
|
|
output_attentions=output_attentions, |
|
|
) |
|
|
else: |
|
|
x, attn_weights = block( |
|
|
x=x, |
|
|
attention_mask=attention_mask, |
|
|
flex_block_mask=flex_block_mask, |
|
|
output_attentions=output_attentions, |
|
|
) |
|
|
|
|
|
if attentions is not None: |
|
|
attentions += (attn_weights,) |
|
|
|
|
|
if output_hidden_states: |
|
|
assert hidden_states is not None |
|
|
hidden_states += (x,) |
|
|
|
|
|
last_hidden_state = self.norm(x) |
|
|
if output_hidden_states: |
|
|
hidden_states += (last_hidden_state,) |
|
|
|
|
|
return TransformerOutput( |
|
|
last_hidden_state=last_hidden_state, |
|
|
hidden_states=hidden_states, |
|
|
attentions=attentions |
|
|
) |
|
|
|
|
|
|
|
|
class PreTrainedESMplusplusModel(PreTrainedModel): |
|
|
""" |
|
|
init weights for ESM++ models |
|
|
""" |
|
|
config_class = ESMplusplusConfig |
|
|
base_model_prefix = "esm++" |
|
|
supports_gradient_checkpointing = True |
|
|
all_tied_weights_keys = {} |
|
|
|
|
|
def _init_weights(self, module): |
|
|
"""Initialize the weights""" |
|
|
|
|
|
|
|
|
for parameter in module.parameters(recurse=False): |
|
|
if "_is_hf_initialized" in parameter.__dict__ and parameter.__dict__["_is_hf_initialized"]: |
|
|
return |
|
|
|
|
|
if isinstance(module, nn.Linear): |
|
|
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range) |
|
|
if module.bias is not None: |
|
|
nn.init.zeros_(module.bias) |
|
|
elif isinstance(module, nn.Embedding): |
|
|
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range) |
|
|
if module.padding_idx is not None: |
|
|
with torch.no_grad(): |
|
|
module.weight[module.padding_idx].zero_() |
|
|
elif isinstance(module, nn.LayerNorm): |
|
|
if module.bias is not None: |
|
|
nn.init.zeros_(module.bias) |
|
|
nn.init.ones_(module.weight) |
|
|
|
|
|
def _reset_rotary_embeddings(self): |
|
|
"""Refresh non-persistent rotary buffers after checkpoint loading.""" |
|
|
for module in self.modules(): |
|
|
if isinstance(module, RotaryEmbedding): |
|
|
module.reset_parameters() |
|
|
|
|
|
@classmethod |
|
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): |
|
|
output_loading_info = bool(kwargs["output_loading_info"]) if "output_loading_info" in kwargs else False |
|
|
loaded = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) |
|
|
if output_loading_info: |
|
|
model, loading_info = loaded |
|
|
model._reset_rotary_embeddings() |
|
|
return model, loading_info |
|
|
loaded._reset_rotary_embeddings() |
|
|
return loaded |
|
|
|
|
|
@classmethod |
|
|
def from_pretrained_esm(cls, model_name: str): |
|
|
"""Load a pretrained ESM++ model.""" |
|
|
if '300' in model_name: |
|
|
return ESMplusplus_300M() |
|
|
elif '600' in model_name: |
|
|
return ESMplusplus_600M() |
|
|
else: |
|
|
raise ValueError(f"Invalid model name: {model_name}") |
|
|
|
|
|
|
|
|
|
|
|
class ESMplusplusModel(PreTrainedESMplusplusModel, EmbeddingMixin): |
|
|
""" |
|
|
ESM++ model. transformer model with no heads |
|
|
""" |
|
|
config_class = ESMplusplusConfig |
|
|
def __init__(self, config: ESMplusplusConfig, **kwargs): |
|
|
PreTrainedESMplusplusModel.__init__(self, config, **kwargs) |
|
|
self.config = config |
|
|
self.vocab_size = config.vocab_size |
|
|
self.embed = nn.Embedding(self.vocab_size, config.hidden_size) |
|
|
self.transformer = TransformerStack( |
|
|
d_model=config.hidden_size, |
|
|
n_heads=config.num_attention_heads, |
|
|
n_layers=config.num_hidden_layers, |
|
|
dropout=config.dropout, |
|
|
attn_backend=config.attn_backend, |
|
|
) |
|
|
self.tokenizer = EsmSequenceTokenizer() |
|
|
self.init_weights() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embed |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.embed = value |
|
|
|
|
|
def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
|
x = self.embed(input_ids) |
|
|
return self.transformer( |
|
|
x=x, |
|
|
attention_mask=attention_mask, |
|
|
output_hidden_states=False, |
|
|
output_attentions=False, |
|
|
).last_hidden_state |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.Tensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
**kwargs, |
|
|
) -> TransformerOutput: |
|
|
"""Forward pass for masked language modeling. |
|
|
|
|
|
Args: |
|
|
input_ids: Input token IDs |
|
|
attention_mask: Attention mask |
|
|
inputs_embeds: Optional precomputed embeddings |
|
|
output_hidden_states: Whether to return all hidden states |
|
|
output_attentions: Whether to return attention weights |
|
|
|
|
|
Returns: |
|
|
TransformerOutput containing last hidden state and optionally all hidden states and attention weights |
|
|
""" |
|
|
assert input_ids is not None or inputs_embeds is not None, "You have to specify either input_ids or inputs_embeds" |
|
|
assert not (input_ids is not None and inputs_embeds is not None), "You cannot specify both input_ids and inputs_embeds at the same time" |
|
|
|
|
|
if inputs_embeds is None: |
|
|
x = self.embed(input_ids) |
|
|
else: |
|
|
x = inputs_embeds |
|
|
|
|
|
return self.transformer( |
|
|
x=x, |
|
|
attention_mask=attention_mask, |
|
|
output_hidden_states=output_hidden_states, |
|
|
output_attentions=output_attentions, |
|
|
).last_hidden_state |
|
|
|
|
|
|
|
|
class ESMplusplusForMaskedLM(PreTrainedESMplusplusModel, EmbeddingMixin): |
|
|
""" |
|
|
ESM++ model for masked language modeling. |
|
|
Implements the base ESM++ architecture with a masked language modeling head. |
|
|
""" |
|
|
config_class = ESMplusplusConfig |
|
|
def __init__(self, config: ESMplusplusConfig, **kwargs): |
|
|
PreTrainedESMplusplusModel.__init__(self, config, **kwargs) |
|
|
self.config = config |
|
|
self.vocab_size = config.vocab_size |
|
|
self.embed = nn.Embedding(self.vocab_size, config.hidden_size) |
|
|
self.transformer = TransformerStack( |
|
|
d_model=config.hidden_size, |
|
|
n_heads=config.num_attention_heads, |
|
|
n_layers=config.num_hidden_layers, |
|
|
dropout=config.dropout, |
|
|
attn_backend=config.attn_backend, |
|
|
) |
|
|
self.sequence_head = RegressionHead(config.hidden_size, self.vocab_size) |
|
|
self.ce_loss = nn.CrossEntropyLoss() |
|
|
self.tokenizer = EsmSequenceTokenizer() |
|
|
self.init_weights() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embed |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.embed = value |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.sequence_head[-1] |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.sequence_head[-1] = new_embeddings |
|
|
|
|
|
def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
|
x = self.embed(input_ids) |
|
|
return self.transformer( |
|
|
x=x, |
|
|
attention_mask=attention_mask, |
|
|
output_hidden_states=False, |
|
|
output_attentions=False, |
|
|
).last_hidden_state |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.Tensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
|
labels: Optional[torch.Tensor] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
**kwargs, |
|
|
) -> ESMplusplusOutput: |
|
|
"""Forward pass for masked language modeling. |
|
|
|
|
|
Args: |
|
|
input_ids: Input token IDs |
|
|
attention_mask: Attention mask |
|
|
inputs_embeds: Optional precomputed embeddings |
|
|
labels: Optional labels for masked tokens |
|
|
output_hidden_states: Whether to return all hidden states |
|
|
output_attentions: Whether to return attention weights |
|
|
|
|
|
Returns: |
|
|
ESMplusplusOutput containing loss, logits, hidden states and attention weights |
|
|
""" |
|
|
if inputs_embeds is None: |
|
|
x = self.embed(input_ids) |
|
|
else: |
|
|
x = inputs_embeds |
|
|
|
|
|
output = self.transformer( |
|
|
x=x, |
|
|
attention_mask=attention_mask, |
|
|
output_hidden_states=output_hidden_states, |
|
|
output_attentions=output_attentions, |
|
|
) |
|
|
|
|
|
last_hidden_state = output.last_hidden_state |
|
|
logits = self.sequence_head(last_hidden_state) |
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = self.ce_loss(logits.view(-1, self.vocab_size), labels.view(-1)) |
|
|
|
|
|
return ESMplusplusOutput( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
last_hidden_state=last_hidden_state, |
|
|
hidden_states=output.hidden_states, |
|
|
attentions=output.attentions, |
|
|
) |
|
|
|
|
|
|
|
|
class ESMplusplusForSequenceClassification(ESMplusplusForMaskedLM, EmbeddingMixin): |
|
|
""" |
|
|
ESM++ model for sequence classification. |
|
|
Extends the base ESM++ model with a classification head. |
|
|
""" |
|
|
def __init__(self, config: ESMplusplusConfig, **kwargs): |
|
|
ESMplusplusForMaskedLM.__init__(self, config, **kwargs) |
|
|
self.config = config |
|
|
self.num_labels = config.num_labels |
|
|
self.classifier = RegressionHead(config.hidden_size * 2, config.num_labels, config.hidden_size * 4) |
|
|
|
|
|
self.mse = nn.MSELoss() |
|
|
self.ce = nn.CrossEntropyLoss() |
|
|
self.bce = nn.BCEWithLogitsLoss() |
|
|
|
|
|
if 'pooling_types' in kwargs and isinstance(kwargs['pooling_types'], List[str]) and len(kwargs['pooling_types']) > 0: |
|
|
pooling_types = kwargs['pooling_types'] |
|
|
else: |
|
|
pooling_types = ['mean', 'var'] |
|
|
self.pooler = Pooler(pooling_types) |
|
|
self.init_weights() |
|
|
|
|
|
def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
|
x = self.embed(input_ids) |
|
|
return self.transformer( |
|
|
x=x, |
|
|
attention_mask=attention_mask, |
|
|
output_hidden_states=False, |
|
|
output_attentions=False, |
|
|
).last_hidden_state |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.Tensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
|
labels: Optional[torch.Tensor] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
**kwargs, |
|
|
) -> ESMplusplusOutput: |
|
|
"""Forward pass for sequence classification. |
|
|
|
|
|
Args: |
|
|
input_ids: Input token IDs |
|
|
attention_mask: Attention mask |
|
|
inputs_embeds: Optional precomputed embeddings |
|
|
labels: Optional labels for classification |
|
|
output_hidden_states: Whether to return all hidden states |
|
|
output_attentions: Whether to return attention weights |
|
|
|
|
|
Returns: |
|
|
ESMplusplusOutput containing loss, logits, and hidden states |
|
|
""" |
|
|
output = super().forward( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
inputs_embeds=inputs_embeds, |
|
|
labels=None, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states |
|
|
) |
|
|
|
|
|
last_hidden_state = output.last_hidden_state |
|
|
features = self.pooler(last_hidden_state, attention_mask) |
|
|
logits = self.classifier(features) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
labels = labels.to(logits.device) |
|
|
if self.config.problem_type is None: |
|
|
if self.num_labels == 1: |
|
|
self.config.problem_type = "regression" |
|
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
|
self.config.problem_type = "single_label_classification" |
|
|
else: |
|
|
self.config.problem_type = "multi_label_classification" |
|
|
|
|
|
if self.config.problem_type == "regression": |
|
|
if self.num_labels == 1: |
|
|
loss = self.mse(logits.flatten(), labels.flatten()) |
|
|
else: |
|
|
loss = self.mse(logits, labels) |
|
|
elif self.config.problem_type == "single_label_classification": |
|
|
loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
elif self.config.problem_type == "multi_label_classification": |
|
|
loss = self.bce(logits, labels) |
|
|
|
|
|
return ESMplusplusOutput( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
last_hidden_state=last_hidden_state, |
|
|
hidden_states=output.hidden_states, |
|
|
attentions=output.attentions, |
|
|
) |
|
|
|
|
|
|
|
|
class ESMplusplusForTokenClassification(ESMplusplusForMaskedLM, EmbeddingMixin): |
|
|
""" |
|
|
ESM++ model for token classification. |
|
|
Extends the base ESM++ model with a token classification head. |
|
|
""" |
|
|
def __init__(self, config: ESMplusplusConfig, **kwargs): |
|
|
ESMplusplusForMaskedLM.__init__(self, config, **kwargs) |
|
|
self.config = config |
|
|
self.num_labels = config.num_labels |
|
|
self.classifier = RegressionHead(config.hidden_size, config.num_labels, config.hidden_size * 4) |
|
|
|
|
|
self.loss_fct = nn.CrossEntropyLoss() |
|
|
self.init_weights() |
|
|
|
|
|
def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
|
x = self.embed(input_ids) |
|
|
return self.transformer(x, attention_mask, output_hidden_states=False, output_attentions=False).last_hidden_state |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.Tensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
|
labels: Optional[torch.Tensor] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
**kwargs, |
|
|
) -> ESMplusplusOutput: |
|
|
"""Forward pass for token classification. |
|
|
|
|
|
Args: |
|
|
input_ids: Input token IDs |
|
|
attention_mask: Attention mask |
|
|
inputs_embeds: Optional precomputed embeddings |
|
|
labels: Optional labels for token classification |
|
|
output_hidden_states: Whether to return all hidden states |
|
|
output_attentions: Whether to return attention weights |
|
|
|
|
|
Returns: |
|
|
ESMplusplusOutput containing loss, logits, and hidden states |
|
|
""" |
|
|
output = super().forward( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
inputs_embeds=inputs_embeds, |
|
|
labels=None, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states |
|
|
) |
|
|
|
|
|
last_hidden_state = output.last_hidden_state |
|
|
logits = self.classifier(last_hidden_state) |
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
|
|
return ESMplusplusOutput( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
last_hidden_state=last_hidden_state, |
|
|
hidden_states=output.hidden_states, |
|
|
attentions=output.attentions, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
_ESMC_CHECKPOINT_SPECS = { |
|
|
"esmc-300": { |
|
|
"repo_id": "EvolutionaryScale/esmc-300m-2024-12", |
|
|
"weights_relpath": "data/weights/esmc_300m_2024_12_v0.pth", |
|
|
"hidden_size": 960, |
|
|
"num_attention_heads": 15, |
|
|
"num_hidden_layers": 30, |
|
|
}, |
|
|
"esmc-600": { |
|
|
"repo_id": "EvolutionaryScale/esmc-600m-2024-12", |
|
|
"weights_relpath": "data/weights/esmc_600m_2024_12_v0.pth", |
|
|
"hidden_size": 1152, |
|
|
"num_attention_heads": 18, |
|
|
"num_hidden_layers": 36, |
|
|
}, |
|
|
} |
|
|
|
|
|
|
|
|
def _resolve_esmc_checkpoint_key(model: str) -> str: |
|
|
if "esmc-300" in model: |
|
|
return "esmc-300" |
|
|
if "esmc-600" in model: |
|
|
return "esmc-600" |
|
|
raise ValueError(f"{model=} is an invalid ESMC model name.") |
|
|
|
|
|
|
|
|
@staticmethod |
|
|
@cache |
|
|
def data_root(model: str): |
|
|
if "INFRA_PROVIDER" in os.environ: |
|
|
return Path("") |
|
|
key = _resolve_esmc_checkpoint_key(model) |
|
|
return Path(snapshot_download(repo_id=_ESMC_CHECKPOINT_SPECS[key]["repo_id"])) |
|
|
|
|
|
|
|
|
def get_esmc_checkpoint_path(model: str) -> Path: |
|
|
key = _resolve_esmc_checkpoint_key(model) |
|
|
return data_root(key) / _ESMC_CHECKPOINT_SPECS[key]["weights_relpath"] |
|
|
|
|
|
|
|
|
def _load_esmc_checkpoint_model( |
|
|
config: ESMplusplusConfig, |
|
|
model: str, |
|
|
device: torch.device | str = "cpu", |
|
|
) -> ESMplusplusForMaskedLM: |
|
|
key = _resolve_esmc_checkpoint_key(model) |
|
|
spec = _ESMC_CHECKPOINT_SPECS[key] |
|
|
assert config.hidden_size == spec["hidden_size"], ( |
|
|
f"ESMC loader expected hidden_size={spec['hidden_size']} for {key}, " |
|
|
f"but got {config.hidden_size}." |
|
|
) |
|
|
assert config.num_attention_heads == spec["num_attention_heads"], ( |
|
|
f"ESMC loader expected num_attention_heads={spec['num_attention_heads']} for {key}, " |
|
|
f"but got {config.num_attention_heads}." |
|
|
) |
|
|
assert config.num_hidden_layers == spec["num_hidden_layers"], ( |
|
|
f"ESMC loader expected num_hidden_layers={spec['num_hidden_layers']} for {key}, " |
|
|
f"but got {config.num_hidden_layers}." |
|
|
) |
|
|
with torch.device(device): |
|
|
model_obj = ESMplusplusForMaskedLM(config) |
|
|
state_dict = torch.load(get_esmc_checkpoint_path(key), map_location=device) |
|
|
model_obj.load_state_dict(state_dict) |
|
|
return model_obj |
|
|
|
|
|
|
|
|
def ESMplusplus_300M(device: torch.device | str = "cpu"): |
|
|
config = ESMplusplusConfig( |
|
|
hidden_size=960, |
|
|
num_attention_heads=15, |
|
|
num_hidden_layers=30, |
|
|
) |
|
|
return _load_esmc_checkpoint_model(config=config, model="esmc-300", device=device) |
|
|
|
|
|
|
|
|
def ESMplusplus_600M(device: torch.device | str = "cpu"): |
|
|
config = ESMplusplusConfig( |
|
|
hidden_size=1152, |
|
|
num_attention_heads=18, |
|
|
num_hidden_layers=36, |
|
|
) |
|
|
return _load_esmc_checkpoint_model(config=config, model="esmc-600", device=device) |
|
|
|
|
|
|
|
|
|
|
|
SEQUENCE_VOCAB = [ |
|
|
"<cls>", "<pad>", "<eos>", "<unk>", |
|
|
"L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", |
|
|
"Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", |
|
|
"O", ".", "-", "|", |
|
|
"<mask>", |
|
|
] |
|
|
|
|
|
class EsmSequenceTokenizer(PreTrainedTokenizerFast): |
|
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
unk_token="<unk>", |
|
|
cls_token="<cls>", |
|
|
pad_token="<pad>", |
|
|
mask_token="<mask>", |
|
|
eos_token="<eos>", |
|
|
chain_break_token="|", |
|
|
**kwargs, |
|
|
): |
|
|
all_tokens = SEQUENCE_VOCAB |
|
|
token_to_id = {tok: ind for ind, tok in enumerate(all_tokens)} |
|
|
|
|
|
|
|
|
bpe = BPE(token_to_id, merges=[], unk_token=unk_token) |
|
|
tokenizer = Tokenizer(bpe) |
|
|
special_tokens = [ |
|
|
cls_token, |
|
|
pad_token, |
|
|
mask_token, |
|
|
eos_token, |
|
|
chain_break_token, |
|
|
] |
|
|
self.cb_token = chain_break_token |
|
|
additional_special_tokens = [chain_break_token] |
|
|
|
|
|
tokenizer.add_special_tokens(special_tokens) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer.post_processor = TemplateProcessing( |
|
|
single="<cls> $A <eos>", |
|
|
pair="<cls>:0 $A:0 <eos>:0 $B:1 <eos>:1", |
|
|
special_tokens=[ |
|
|
("<cls>", tokenizer.token_to_id("<cls>")), |
|
|
("<eos>", tokenizer.token_to_id("<eos>")), |
|
|
], |
|
|
) |
|
|
super().__init__( |
|
|
tokenizer_object=tokenizer, |
|
|
unk_token=unk_token, |
|
|
cls_token=cls_token, |
|
|
pad_token=pad_token, |
|
|
mask_token=mask_token, |
|
|
eos_token=eos_token, |
|
|
additional_special_tokens=additional_special_tokens, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
@property |
|
|
def bos_token(self): |
|
|
return self.cls_token |
|
|
|
|
|
@property |
|
|
def bos_token_id(self): |
|
|
return self.cls_token_id |
|
|
|
|
|
@property |
|
|
def chain_break_token(self): |
|
|
return self.cb_token |
|
|
|
|
|
@property |
|
|
def chain_break_token_id(self): |
|
|
return self.convert_tokens_to_ids(self.chain_break_token) |
|
|
|
|
|
@property |
|
|
def all_token_ids(self): |
|
|
return list(range(self.vocab_size)) |
|
|
|
|
|
@property |
|
|
def special_token_ids(self): |
|
|
return self.all_special_ids |
|
|
|