File size: 12,805 Bytes
3e2b852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
"""
Install dependencies:
pip install pytorch360convert

Example ffmpeg command to use on output frames:
ffmpeg -framerate 60 -i output_frames/sweep360_%06d.png -c:v libx264 -pix_fmt yuv420p my_360_video.mp4

# Example for calculating FOV to use for specific dimensions
import math
width, height = 1280, 896
ratio = width / height
vfov_deg = 70.0
vfov = math.radians(vfov_deg)
hfov = 2 * math.atan(ratio * math.tan(vfov / 2))
hfov_deg = math.degrees(hfov)
print(hfov_deg)  # ~90.02°
"""

import math
import os
from typing import Dict, List, Optional, Tuple, Union

import torch
from pytorch360convert import e2p
from PIL import Image
import numpy as np
from tqdm import tqdm


def load_image_to_tensor(path: str, device: Optional[torch.device] = None) -> torch.Tensor:
    """
    Load an image file to a float torch tensor in CHW format, range [0,1].
    """
    img = Image.open(path).convert("RGB")
    arr = np.array(img).astype(np.float32) / 255.0  # HWC float32
    t = torch.from_numpy(arr)  # HWC
    t = t.permute(2, 0, 1)     # CHW
    if device is not None:
        t = t.to(device)
    return t


def _linear_progress(n_frames: int) -> List[float]:
    """
    Generate a linear progression from 0.0 to 1.0 over n_frames.

    Args:
        n_frames (int): Number of frames.

    Returns:
        List[float]: List of normalized progress values.
    """
    return [i / max(1, (n_frames - 1)) for i in range(n_frames)]


def _ease_in_out_progress(n_frames: int) -> List[float]:
    """
    Generate an ease-in-out progression (cosine smoothing) from 0.0 to 1.0.

    Args:
        n_frames (int): Number of frames.

    Returns:
        List[float]: List of normalized progress values.
    """
    return [
        0.5 * (1 - math.cos(math.pi * (i / max(1, (n_frames - 1)))))
        for i in range(n_frames)
    ]


def _save_tensor_as_image(tensor: torch.Tensor, path: str) -> None:
    """
    Save a CHW float tensor (range [0, 1]) to directory
    """
    if tensor.dim() == 4:  # [B,H,W,C] -> take first
        tensor = tensor[0]
    tensor = tensor.permute(1, 2, 0)
    t = tensor.detach().cpu().clamp(0.0, 1.0) * 255.0
    Image.fromarray(t.to(dtype=torch.uint8).numpy()).save(path)


def generate_frames_from_equirect(
    equi_tensors: List[torch.Tensor],
    out_dir: str,
    resolution: Tuple[int, int] = (1080, 1920),
    fps: int = 30,
    duration_per_image: Optional[float] = 4.0,
    total_duration: Optional[float] = None,
    fov_deg: Union[float, Tuple[float, float]] = (70.0, 60.0),
    interpolation_mode: str = "bilinear",
    speed_profile: str = "constant",
    vertical_movement: Optional[Dict] = None,
    device: Optional[torch.device] = None,
    start_frame_index: int = 0,
    save_format: str = "png",
    start_yaw_deg: float = 0.0,
    end_yaw_deg: float = 360.0,
    filename_prefix: str = "frame",
    verbose: bool = True,
) -> List[str]:
    """
    Generate video frames by sweeping through one or more equirectangular images.

    Args:
        equi_tensors (List[torch.Tensor]): List of equirectangular image tensors.
        out_dir (str): Output directory where frames will be saved.
        resolution (tuple of int): Output frame resolution as (height, width). Default: (1080, 1920)
        fps (int): Frames per second for timing calculations. Default: 30
        duration_per_image (float): Duration in seconds for each image sweep. Default: 4.0
        total_duration (float): Total duration in seconds for all images combined. Default: None
        fov_deg (float or tuple): Field of view in degrees. Default: (70.0, 60.0)
        interpolation_mode (str): Resampling interpolation. Options: "nearest", "bilinear", "bicubic". Default: "bilinear"
        speed_profile (str): Progression curve. Options: "constant", "ease_in_out". Default: "constant"
        vertical_movement (dict): Parameters for adding pitch movement. Default: None
        device (torch.device): Torch device to run on. Default: cpu
        start_frame_index (int): Starting frame index for naming. Default: 0
        save_format (str): Image format. Options: "png", "jpg", "jpeg", "bmp". Default: "png"
        start_yaw_deg (float): Starting yaw angle in degrees. Default: 0.0
        end_yaw_deg (float): Ending yaw angle in degrees. Default: 360.0
        filename_prefix (str): Prefix for saved frame filenames. Default: "frame"
        verbose (bool): Print progress information. Default: True

    Returns:
        List[str]: List of file paths for the saved frames.
    """
    os.makedirs(out_dir, exist_ok=True)
    device = device if device is not None else torch.device("cpu")
    saved_paths = []
    n_images = len(equi_tensors)

    if n_images == 0:
        return saved_paths

    # Decide frames per image
    if total_duration is not None:
        assert total_duration > 0
        seconds_per_image = total_duration / n_images
    else:
        seconds_per_image = duration_per_image if duration_per_image is not None else 4.0

    frames_per_image = max(1, int(round(seconds_per_image * fps)))

    # Calculate degrees per frame for consistent speed
    vm = vertical_movement or {"mode": "none"}
    vm_mode = vm.get("mode", "none")
    horizontal_distance = abs(end_yaw_deg - start_yaw_deg)
    degrees_per_frame = horizontal_distance / frames_per_image

    # Calculate total frames for progress tracking
    total_frames = n_images * frames_per_image

    # Add extra frames for separate pole sweep if enabled
    if vm_mode == "separate" or vm_mode == "both":
        # Pole sweep path: level (0°) -> down (-85°) -> up (+85°) -> level (0°) = 340° total
        vertical_distance = 340.0
        pole_frames = max(1, int(round(vertical_distance / degrees_per_frame)))
        total_frames += n_images * pole_frames

    # Choose progress function
    if speed_profile == "constant":
        progress_fn = _linear_progress
    elif speed_profile == "ease_in_out":
        progress_fn = _ease_in_out_progress
    else:
        raise ValueError("speed_profile must be 'constant' or 'ease_in_out'")

    frame_idx = start_frame_index
    current_frame = 0
    e2p_jit = e2p

    yaw_start, yaw_end = start_yaw_deg, end_yaw_deg

    for img_idx, e_img in enumerate(equi_tensors):
        if verbose:
            print(f"Processing image {img_idx + 1}/{n_images}...")

        n = frames_per_image
        prog = progress_fn(n)
        yaw_values = [yaw_start + p * (yaw_end - yaw_start) for p in prog]

        # Vertical values
        if vm_mode == "during" or vm_mode == "both":
            amplitude = float(vm.get("amplitude_deg", 15.0))
            vertical_pattern = vm.get("pattern", "sine")
            if vertical_pattern == "sine":
                v_values = [amplitude * math.sin(2 * math.pi * p) for p in prog]
            else:
                v_values = [amplitude * (2 * p - 1) for p in prog]
        else:
            v_values = [0.0] * n

        # Rotation frames
        for i_frame in tqdm(range(n), desc=f"Image {img_idx + 1} rotation", disable=not verbose):
            h_deg = yaw_values[i_frame]
            v_deg = v_values[i_frame]
            pers = e2p_jit(
                e_img,
                fov_deg=fov_deg,
                h_deg=h_deg,
                v_deg=v_deg,
                out_hw=resolution,
                mode=interpolation_mode,
                channels_first=True,
            ).unsqueeze(0)
            filename = f"{filename_prefix}_{frame_idx:06d}.{save_format}"
            path = os.path.join(out_dir, filename)
            _save_tensor_as_image(pers, path)
            saved_paths.append(path)
            frame_idx += 1
            current_frame += 1

        # Optional separate pole sweep - continues from end position
        if vm_mode == "separate" or vm_mode == "both":
            if verbose:
                print(f"  Generating pole sweep for image {img_idx + 1}...")

            # Continue from the ending yaw position
            final_yaw = yaw_values[-1]

            # Calculate frames based on angular distance to maintain constant speed
            horizontal_distance = abs(yaw_end - yaw_start)
            degrees_per_frame = horizontal_distance / frames_per_image

            # Vertical path: 0° -> -85° -> +85° -> 0° = 340° total
            vertical_distance = 340.0
            pole_frames = max(1, int(round(vertical_distance / degrees_per_frame)))

            if verbose:
                print(f"  Horizontal: {horizontal_distance}° in {frames_per_image} frames ({degrees_per_frame:.2f}°/frame)")
                print(f"  Vertical: {vertical_distance}° in {pole_frames} frames ({degrees_per_frame:.2f}°/frame)")

            # Use linear progress for consistent speed throughout
            pole_progress = _linear_progress(pole_frames)
            pole_v_values = []

            # Phase distances: 85° down, 170° up, 85° down
            total_distance = 340.0
            phase1_distance = 85.0   # Level to bottom
            phase2_distance = 170.0  # Bottom to top
            phase3_distance = 85.0   # Top to level

            for p in pole_progress:
                current_distance = p * total_distance

                if current_distance <= phase1_distance:
                    # Phase 1: Level (0°) -> Down (-85°)
                    phase_progress = current_distance / phase1_distance
                    v_deg = 0.0 - (85.0 * phase_progress)
                elif current_distance <= phase1_distance + phase2_distance:
                    # Phase 2: Down (-85°) -> Up (+85°)
                    phase_progress = (current_distance - phase1_distance) / phase2_distance
                    v_deg = -85.0 + (170.0 * phase_progress)
                else:
                    # Phase 3: Up (+85°) -> Level (0°)
                    phase_progress = (current_distance - phase1_distance - phase2_distance) / phase3_distance
                    v_deg = 85.0 - (85.0 * phase_progress)

                pole_v_values.append(v_deg)

            for pole_idx, v_deg in tqdm(enumerate(pole_v_values), total=len(pole_v_values), desc=f"Image {img_idx + 1} pole sweep", disable=not verbose):
                pers = e2p(
                    e_img,
                    fov_deg=fov_deg,
                    h_deg=final_yaw,
                    v_deg=v_deg,
                    out_hw=resolution,
                    mode=interpolation_mode,
                    channels_first=True,
                )
                filename = f"{filename_prefix}_{frame_idx:06d}.{save_format}"
                path = os.path.join(out_dir, filename)
                _save_tensor_as_image(pers, path)
                saved_paths.append(path)
                frame_idx += 1
                current_frame += 1

    if verbose:
        print(f"\nCompleted! Generated {len(saved_paths)} frames in {out_dir}")

    return saved_paths


def main():
    """
    Main function - configure your parameters here
    """
    # Configuration
    IMAGE_PATHS = ["path/to/equi_image.jpg"]
    OUTPUT_DIR = "path/to/output_frames"
    start_idx = 0

    # Frame generation settings
    WIDTH = 1280
    HEIGHT = 896
    FPS = 60
    DURATION_PER_IMAGE = 10.0
    FOV_HORIZONTAL = 90.0169847156118
    FOV_VERTICAL = 70

    # Movement settings
    SPEED_PROFILE = "constant"  # "constant" or "ease_in_out"
    START_YAW = 0.0
    END_YAW = 360.0

    # Vertical movement (set mode to "none" to disable)
    VERTICAL_MOVEMENT = {
        "mode": "separate",  # "none", "during", "separate", or "both"
        "amplitude_deg": 90.0,
        "pattern": "sine",  # "sine" or "linear"
    }

    # Other settings
    INTERPOLATION_MODE = "bilinear"  # "bilinear", "bicubic", or "nearest"
    SAVE_FORMAT = "png"  # "png", "jpg", "jpeg", or "bmp"
    FILENAME_PREFIX = "sweep360"
    DEVICE = "cuda:0"

    # Load images as tensors
    equi_tensors = []
    for img_path in IMAGE_PATHS:
        equi_tensors.append(load_image_to_tensor(img_path, DEVICE))

    if not equi_tensors:
        print("No images loaded. Please add your equirectangular images.")
        return

    # Generate frames
    saved_paths = generate_frames_from_equirect(
        equi_tensors=equi_tensors,
        out_dir=OUTPUT_DIR,
        resolution=(HEIGHT, WIDTH),
        fps=FPS,
        duration_per_image=DURATION_PER_IMAGE,
        fov_deg=(FOV_HORIZONTAL, FOV_VERTICAL),
        interpolation_mode=INTERPOLATION_MODE,
        speed_profile=SPEED_PROFILE,
        vertical_movement=VERTICAL_MOVEMENT,
        start_yaw_deg=START_YAW,
        end_yaw_deg=END_YAW,
        save_format=SAVE_FORMAT,
        filename_prefix=FILENAME_PREFIX,
        verbose=True,
        start_frame_index=start_idx,
    )

    print(f"Successfully generated {len(saved_paths)} frames")


if __name__ == "__main__":
    main()