File size: 13,418 Bytes
e2150b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* Examples.nb - ChaosSim Example Simulations *)
(* Practical demonstrations of chaos simulation capabilities *)
(* ::Title:: *)
(*ChaosSim Examples and Demonstrations*)
(* ::Section:: *)
(*Setup*)
(* Load ChaosSim framework *)
Get[FileNameJoin[{NotebookDirectory[], "ChaosSim.nb"}]]
Get[FileNameJoin[{NotebookDirectory[], "Visualizations.nb"}]]
Print[Style["ChaosSim Examples Loaded", Bold, 16, Blue]]
Print["Run each section to see different chaos simulations in action.\n"]
(* ::Section:: *)
(*Example 1: Basic Bernoulli Chaos*)
(* ::Text:: *)
(*This example demonstrates how Bernoulli numbers create weighted chaos patterns.*)
(*The Bernoulli numbers provide non-uniform probability distributions that*)
(*generate interesting chaotic behaviors.*)
Print[Style["=== Example 1: Bernoulli Chaos Simulation ===", Bold, 14, Purple]]
(* Generate Bernoulli chaos with 500 iterations *)
bernoulliExample = SimulateBernoulliChaos[500, 12];
(* Display statistics *)
Print["Statistics:"]
Print[" Mean: ", Mean[bernoulliExample]]
Print[" Standard Deviation: ", StandardDeviation[bernoulliExample]]
Print[" Min: ", Min[bernoulliExample], " | Max: ", Max[bernoulliExample]]
(* Visualize *)
ListPlot[bernoulliExample,
PlotStyle -> {Blue, PointSize[Small]},
PlotLabel -> Style["Example 1: Bernoulli Chaos", Bold, 14],
AxesLabel -> {"Iteration", "State"},
ImageSize -> Large,
GridLines -> Automatic
]
(* ::Section:: *)
(*Example 2: Fibonacci Golden Spiral*)
(* ::Text:: *)
(*This creates a 3D golden spiral based on Fibonacci numbers.*)
(*The spiral demonstrates the connection between Fibonacci sequences*)
(*and natural chaotic patterns found in nature.*)
Print[Style["\n=== Example 2: Fibonacci Golden Spiral ===", Bold, 14, Purple]]
(* Generate 3D Fibonacci spiral *)
fibonacciSpiralPoints = FibonacciSpiral3D[20, 100];
Print["Generated ", Length[fibonacciSpiralPoints], " points in golden spiral"]
Print["Golden Ratio β ", N[GoldenRatio, 6]]
(* Visualize in 3D *)
ListPointPlot3D[fibonacciSpiralPoints,
PlotStyle -> Directive[PointSize[Small]],
ColorFunction -> Function[{x, y, z},
ColorData["SunsetColors"][Norm[{x, y}]]
],
BoxRatios -> {1, 1, 0.6},
ImageSize -> Large,
PlotLabel -> Style["Example 2: Fibonacci Golden Spiral", Bold, 14],
AxesLabel -> {"X", "Y", "Z"},
Background -> GrayLevel[0.95],
ViewPoint -> {2, -2, 1.5}
]
(* ::Section:: *)
(*Example 3: Nash Equilibrium in Prisoner's Dilemma*)
(* ::Text:: *)
(*Classic game theory example: Finding Nash equilibrium in the Prisoner's Dilemma.*)
(*This demonstrates how game theory integrates with chaos simulation.*)
Print[Style["\n=== Example 3: Prisoner's Dilemma Nash Equilibrium ===", Bold, 14, Purple]]
(* Define Prisoner's Dilemma payoff matrices *)
(* (Cooperate, Defect) for each player *)
prisonerPayoff1 = {{-1, -3}, {0, -2}}; (* Player 1 payoffs *)
prisonerPayoff2 = {{-1, 0}, {-3, -2}}; (* Player 2 payoffs *)
Print["Player 1 Payoff Matrix (rows: P1 strategy, cols: P2 strategy):"]
Print[MatrixForm[prisonerPayoff1]]
Print["\nPlayer 2 Payoff Matrix:"]
Print[MatrixForm[prisonerPayoff2]]
(* Find Nash equilibrium *)
equilibria = FindNashEquilibrium[prisonerPayoff1, prisonerPayoff2];
Print["\nNash Equilibrium found at: ", equilibria]
Print["Interpretation: Both players choosing Defect (strategy 2, 2)"]
(* Visualize payoff matrices *)
GraphicsRow[{
ArrayPlot[prisonerPayoff1,
ColorFunction -> "Rainbow",
PlotLabel -> "Player 1 Payoffs",
FrameLabel -> {"P2 Strategy", "P1 Strategy"},
PlotLegends -> Automatic
],
ArrayPlot[prisonerPayoff2,
ColorFunction -> "Rainbow",
PlotLabel -> "Player 2 Payoffs",
FrameLabel -> {"P2 Strategy", "P1 Strategy"},
PlotLegends -> Automatic
]
}, ImageSize -> Large]
(* ::Section:: *)
(*Example 4: Chaotic Game Evolution*)
(* ::Text:: *)
(*Simulate a game where payoff matrices evolve chaotically over time.*)
(*This shows how Nash equilibria shift in dynamic, chaotic environments.*)
Print[Style["\n=== Example 4: Chaotic Game Evolution ===", Bold, 14, Purple]]
(* Run chaotic game simulation *)
chaosGameHistory = ChaosGameSimulation[100, 2, 0.3];
(* Extract data *)
rounds = chaosGameHistory[[All, 1]];
strategies = chaosGameHistory[[All, 2]];
equilibriaCounts = Length /@ chaosGameHistory[[All, 3]];
Print["Simulation complete: ", Length[rounds], " rounds"]
Print["Average equilibria per round: ", Mean[equilibriaCounts]]
(* Visualize strategy evolution *)
ListLinePlot[
{strategies[[All, 1]], strategies[[All, 2]]},
PlotStyle -> {{Blue, Thick}, {Red, Thick}},
PlotLabel -> Style["Example 4: Strategy Evolution in Chaotic Game", Bold, 14],
AxesLabel -> {"Round", "Strategy Choice"},
PlotLegends -> {"Player 1", "Player 2"},
ImageSize -> Large,
GridLines -> Automatic
]
(* ::Section:: *)
(*Example 5: Multi-Agent Chaos System*)
(* ::Text:: *)
(*Simulate 5 agents seeking Nash equilibrium in a chaotic environment.*)
(*Agents adjust their strategies to minimize conflicts, creating emergent patterns.*)
Print[Style["\n=== Example 5: Multi-Agent Chaos Equilibrium ===", Bold, 14, Purple]]
(* Run multi-agent simulation *)
multiAgentChaos = MultiAgentChaosEquilibrium[5, 200];
(* Extract agent states over time *)
agentStates = multiAgentChaos[[All, 2]];
Print["Number of agents: 5"]
Print["Iterations: 200"]
Print["Final agent states: ", agentStates[[-1]]]
Print["State convergence: ", StandardDeviation[agentStates[[-1]]]]
(* Visualize all agents *)
ListLinePlot[
Table[agentStates[[All, i]], {i, 1, 5}],
PlotStyle -> Table[Directive[Thick, ColorData[97][i]], {i, 1, 5}],
PlotLabel -> Style["Example 5: Multi-Agent State Evolution", Bold, 14],
AxesLabel -> {"Iteration", "Agent State"},
PlotLegends -> Table[StringTemplate["Agent ``"][i], {i, 1, 5}],
ImageSize -> Large,
GridLines -> Automatic
]
(* ::Section:: *)
(*Example 6: Unified Chaos Simulation*)
(* ::Text:: *)
(*Combines all three chaos types (Bernoulli, Fibonacci, Nash) into one system.*)
(*This demonstrates the full power of ChaosSim's integrated approach.*)
Print[Style["\n=== Example 6: Unified Chaos System ===", Bold, 14, Purple]]
(* Run unified simulation *)
unifiedChaos = UnifiedChaosSimulation[400];
(* Analyze correlations *)
correlations = ChaosCorrelationAnalysis[unifiedChaos];
Print["Unified chaos simulation complete"]
Print["Data points: ", Length[unifiedChaos]]
Print["\nCorrelation Analysis:"]
Print[Grid[
Prepend[correlations, {"Component Pair", "Correlation"}],
Frame -> All,
Background -> {None, {LightBlue, White}}
]]
(* Visualize in 3D phase space *)
ListPointPlot3D[unifiedChaos,
PlotStyle -> Directive[PointSize[Small]],
ColorFunction -> Function[{x, y, z},
ColorData["Rainbow"][z]
],
BoxRatios -> {1, 1, 1},
ImageSize -> Large,
PlotLabel -> Style["Example 6: Unified Chaos Phase Space", Bold, 14],
AxesLabel -> {"Bernoulli", "Fibonacci", "Nash"},
Background -> Black,
ViewPoint -> {1.5, -2.5, 1.2}
]
(* ::Section:: *)
(*Example 7: Bernoulli 3D Attractor*)
(* ::Text:: *)
(*A beautiful 3D attractor generated using Bernoulli number weights.*)
(*This creates complex, non-repeating patterns in 3D space.*)
Print[Style["\n=== Example 7: Bernoulli 3D Attractor ===", Bold, 14, Purple]]
(* Generate attractor *)
attractorPoints = BernoulliAttractor[3000, 3];
Print["Generated ", Length[attractorPoints], " points"]
Print["Attractor bounds:"]
Print[" X: [", Min[attractorPoints[[All, 1]]], ", ", Max[attractorPoints[[All, 1]]], "]"]
Print[" Y: [", Min[attractorPoints[[All, 2]]], ", ", Max[attractorPoints[[All, 2]]], "]"]
Print[" Z: [", Min[attractorPoints[[All, 3]]], ", ", Max[attractorPoints[[All, 3]]], "]"]
(* Create stunning visualization *)
ListPointPlot3D[attractorPoints,
PlotStyle -> Directive[PointSize[Tiny]],
ColorFunction -> Function[{x, y, z},
ColorData["DarkRainbow"][Norm[{x, y, z}]/2]
],
BoxRatios -> {1, 1, 1},
ImageSize -> Large,
PlotLabel -> Style["Example 7: Bernoulli Attractor", Bold, 14],
AxesLabel -> {"X", "Y", "Z"},
Background -> Black,
Boxed -> False,
ViewPoint -> {2, -2, 1}
]
(* ::Section:: *)
(*Example 8: Fibonacci Chaos Map*)
(* ::Text:: *)
(*Creates a chaotic map using Fibonacci ratios as the driving parameter.*)
(*Shows bifurcations and sensitivity to initial conditions.*)
Print[Style["\n=== Example 8: Fibonacci Chaos Map ===", Bold, 14, Purple]]
(* Generate Fibonacci chaos map *)
fibChaosMap = FibonacciChaosMap[800];
Print["Generated ", Length[fibChaosMap], " iterations"]
Print["Mean value: ", Mean[fibChaosMap]]
Print["Chaos entropy: ", ChaosEntropy[fibChaosMap]]
(* Create phase space plot *)
GraphicsRow[{
ListPlot[fibChaosMap,
PlotStyle -> {Orange, PointSize[Small]},
PlotLabel -> "Time Series",
AxesLabel -> {"Iteration", "Value"},
ImageSize -> Medium
],
ListPlot[Partition[fibChaosMap, 2, 1],
PlotStyle -> {Red, PointSize[Tiny]},
PlotLabel -> "Phase Space",
AxesLabel -> {"x(t)", "x(t+1)"},
ImageSize -> Medium,
AspectRatio -> 1
]
}, ImageSize -> Large,
PlotLabel -> Style["Example 8: Fibonacci Chaos Map Analysis", Bold, 14]]
(* ::Section:: *)
(*Example 9: Comparative Chaos Analysis*)
(* ::Text:: *)
(*Compare all three types of chaos side-by-side.*)
(*Reveals unique characteristics of each approach.*)
Print[Style["\n=== Example 9: Comparative Chaos Analysis ===", Bold, 14, Purple]]
(* Generate all three types *)
iterations = 400;
bernoulliChaos = SimulateBernoulliChaos[iterations, 12];
fibonacciChaos = FibonacciChaosMap[iterations];
nashChaos = MultiAgentChaosEquilibrium[5, iterations][[All, 2, 1]];
(* Calculate statistics *)
Print["Chaos Type Statistics:"]
Print[Grid[{
{"Type", "Mean", "Std Dev", "Entropy"},
{"Bernoulli", Mean[bernoulliChaos], StandardDeviation[bernoulliChaos],
ChaosEntropy[bernoulliChaos]},
{"Fibonacci", Mean[fibonacciChaos], StandardDeviation[fibonacciChaos],
ChaosEntropy[fibonacciChaos]},
{"Nash", Mean[nashChaos], StandardDeviation[nashChaos],
ChaosEntropy[nashChaos]}
}, Frame -> All, Background -> {None, {LightYellow, White}}]]
(* Visualize comparison *)
ListLinePlot[
{bernoulliChaos, fibonacciChaos, nashChaos},
PlotStyle -> {
{Blue, Thick, Opacity[0.7]},
{Orange, Thick, Opacity[0.7]},
{Green, Thick, Opacity[0.7]}
},
PlotLabel -> Style["Example 9: Chaos Type Comparison", Bold, 14],
AxesLabel -> {"Iteration", "State Value"},
PlotLegends -> {"Bernoulli", "Fibonacci", "Nash Equilibrium"},
ImageSize -> Large,
GridLines -> Automatic
]
(* ::Section:: *)
(*Example 10: Custom Chaos Application*)
(* ::Text:: *)
(*A practical example: Using chaos for random sampling in a market model.*)
(*Simulates price fluctuations driven by chaotic dynamics.*)
Print[Style["\n=== Example 10: Chaotic Market Simulation ===", Bold, 14, Purple]]
SimulateChaoticMarket[days_Integer, initialPrice_Real: 100.0] := Module[
{chaos, prices, returns},
(* Generate Bernoulli chaos for market volatility *)
chaos = SimulateBernoulliChaos[days, 10];
(* Convert chaos to price movements *)
returns = (chaos - 0.5) * 0.1; (* Scale to Β±5% daily returns *)
(* Calculate cumulative prices *)
prices = FoldList[
#1 * (1 + #2) &,
initialPrice,
returns
];
prices
]
(* Run market simulation *)
marketPrices = SimulateChaoticMarket[250, 100.0];
Print["Market simulation: 250 trading days"]
Print["Initial price: $100.00"]
Print["Final price: $", marketPrices[[-1]]]
Print["Max price: $", Max[marketPrices]]
Print["Min price: $", Min[marketPrices]]
Print["Total return: ", (marketPrices[[-1]] - 100.0), "%"]
(* Visualize market *)
ListLinePlot[marketPrices,
PlotStyle -> {Darker[Green], Thick},
PlotLabel -> Style["Example 10: Chaotic Market Prices", Bold, 14],
AxesLabel -> {"Trading Day", "Price ($)"},
ImageSize -> Large,
Filling -> Axis,
FillingStyle -> Opacity[0.2, Green],
GridLines -> Automatic
]
(* ::Section:: *)
(*Summary*)
Print[Style["\n\n" <> StringRepeat["=", 60], Bold, Blue]]
Print[Style["ChaosSim Examples Complete!", Bold, 18, Blue]]
Print[Style[StringRepeat["=", 60] <> "\n", Bold, Blue]]
Print["You have explored:"]
Print[" β Bernoulli number-based chaos generation"]
Print[" β Fibonacci sequence chaotic patterns"]
Print[" β Nash equilibrium in game theory"]
Print[" β Multi-agent chaos systems"]
Print[" β Unified chaos simulations"]
Print[" β 3D attractors and visualizations"]
Print[" β Practical applications (market simulation)"]
Print["\nNext steps:"]
Print[" β’ Modify parameters in any example to explore variations"]
Print[" β’ Create your own chaos combinations"]
Print[" β’ Use Visualizations.nb for advanced plotting"]
Print[" β’ Refer to README.md for detailed documentation"]
Print[Style["\nHappy chaos simulation! π", Bold, 16, Purple]]
|