Add tokenizer.json and original Randeng-T5 files
Browse files- .gitattributes +1 -2
- README.md +243 -0
- config.json +31 -0
- model.safetensors +3 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +23 -0
- spiece.model +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +843 -0
- zeroclue.png +3 -0
.gitattributes
CHANGED
|
@@ -2,7 +2,6 @@
|
|
| 2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
|
@@ -25,7 +24,6 @@
|
|
| 25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
|
@@ -33,3 +31,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 5 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 6 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 24 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 25 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 26 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 27 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 28 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 29 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 31 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 32 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language: zh
|
| 4 |
+
tags:
|
| 5 |
+
- Text2Text Generation
|
| 6 |
+
- T5
|
| 7 |
+
- chinese
|
| 8 |
+
- sentencepiece
|
| 9 |
+
inference: true
|
| 10 |
+
widget:
|
| 11 |
+
- text: "新闻分类任务:【微软披露拓扑量子计算机计划!】这篇文章的类别是什么?故事/文化/娱乐/体育/财经/房产/汽车/教育/科技"
|
| 12 |
+
- type: "text-generation"
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# Randeng-T5-784M-MultiTask-Chinese
|
| 16 |
+
|
| 17 |
+
- Main Page:[Fengshenbang](https://fengshenbang-lm.com/)
|
| 18 |
+
- Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
|
| 19 |
+
|
| 20 |
+
## 简介 Brief Introduction
|
| 21 |
+
|
| 22 |
+
在Randeng-T5-784M的基础上,收集了100个左右的中文数据集,进行Text2Text统一范式的有监督任务预训练。
|
| 23 |
+
|
| 24 |
+
On the basis of Randeng-T5-784M, about 100 Chinese datasets were collected and pre-trained for the supervised task of Text2Text unified paradigm.
|
| 25 |
+
|
| 26 |
+
本模型在中文zero-shot榜单ZeroClue上取得了第三名(不包括人类)的成绩,在所有基于T5(encoder-decoder架构)的模型中排名第一。
|
| 27 |
+
|
| 28 |
+
This model achieved the 3rd place (excluding humans) on the Chinese zero-shot benchmark ZeroClue, ranking first among all models based on T5 (encoder-decoder architecture).
|
| 29 |
+
|
| 30 |
+

|
| 31 |
+
|
| 32 |
+
## 模型分类 Model Taxonomy
|
| 33 |
+
|
| 34 |
+
| 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra |
|
| 35 |
+
| :----: | :----: | :----: | :----: | :----: | :----: |
|
| 36 |
+
| 通用 General | 自然语言转换 NLT | 燃灯 Randeng | MultiTask | 784M | 多任务-中文 MultiTask-Chinese |
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
## 模型信息 Model Information
|
| 40 |
+
|
| 41 |
+
参考论文:[Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](http://jmlr.org/papers/v21/20-074.html)
|
| 42 |
+
|
| 43 |
+
基于[Randeng-T5-784M](https://huggingface.co/IDEA-CCNL/Randeng-T5-784M),我们在收集的100+个中文领域的多任务数据集(从中采样了30w+个样本)上微调了它,得到了此多任务版本。这些多任务包括:情感分析,新闻分类,文本分类,意图识别,自然语言推理,多项选择,指代消解,抽取式阅读理解,实体识别,关键词抽取,生成式摘要。
|
| 44 |
+
|
| 45 |
+
Based on [Randeng-T5-784M](https://huggingface.co/IDEA-CCNL/Randeng-T5-784M), we fine-tuned it on a collection of 100+ multitasking datasets in Chinese domains (from which 30w+ samples were sampled) to obtain this multitasking version. These multitasks include: sentiment analysis, news classification, text classification, intention recognition, natural language inference, multiple choice, denotational disambiguation, extractive reading comprehension, entity recognition, keyword extraction, and generative summarization.
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
## 使用 Usage
|
| 49 |
+
|
| 50 |
+
```python
|
| 51 |
+
import torch
|
| 52 |
+
from transformers import T5Tokenizer, T5Config, T5ForConditionalGeneration
|
| 53 |
+
|
| 54 |
+
# load tokenizer and model
|
| 55 |
+
pretrained_model = "IDEA-CCNL/Randeng-T5-784M-MultiTask-Chinese"
|
| 56 |
+
|
| 57 |
+
special_tokens = ["<extra_id_{}>".format(i) for i in range(100)]
|
| 58 |
+
tokenizer = T5Tokenizer.from_pretrained(
|
| 59 |
+
pretrained_model,
|
| 60 |
+
do_lower_case=True,
|
| 61 |
+
max_length=512,
|
| 62 |
+
truncation=True,
|
| 63 |
+
additional_special_tokens=special_tokens,
|
| 64 |
+
)
|
| 65 |
+
config = T5Config.from_pretrained(pretrained_model)
|
| 66 |
+
model = T5ForConditionalGeneration.from_pretrained(pretrained_model, config=config)
|
| 67 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 68 |
+
model.eval()
|
| 69 |
+
|
| 70 |
+
# tokenize
|
| 71 |
+
text = "新闻分类任务:【微软披露拓扑量子计算机计划!】这篇文章的类别是什么?故事/文化/娱乐/体育/财经/房产/汽车/教育/科技"
|
| 72 |
+
encode_dict = tokenizer(text, max_length=512, padding='max_length',truncation=True)
|
| 73 |
+
|
| 74 |
+
inputs = {
|
| 75 |
+
"input_ids": torch.tensor([encode_dict['input_ids']]).long(),
|
| 76 |
+
"attention_mask": torch.tensor([encode_dict['attention_mask']]).long(),
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
# generate answer
|
| 80 |
+
logits = model.generate(
|
| 81 |
+
input_ids = inputs['input_ids'],
|
| 82 |
+
max_length=100,
|
| 83 |
+
do_sample= True
|
| 84 |
+
# early_stopping=True,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
logits=logits[:,1:]
|
| 88 |
+
predict_label = [tokenizer.decode(i,skip_special_tokens=True) for i in logits]
|
| 89 |
+
print(predict_label)
|
| 90 |
+
|
| 91 |
+
# model output: 科技
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
除了分类任务,其他任务的数据构造例子如下:
|
| 95 |
+
|
| 96 |
+
In addition to classification tasks, data construction examples of other tasks are as follows:
|
| 97 |
+
|
| 98 |
+
```python
|
| 99 |
+
example_dict={
|
| 100 |
+
"文本分类":{"text_a":"钢琴块3别踩白块儿3钢琴块3是一款简洁的钢琴模拟软件,在Android平台上,类似的软件还是比较多的。","choices":["相机","影视娱乐","棋牌中心","新闻","财经","策略","休闲益智","教育"]},
|
| 101 |
+
'新闻分类':{"text_a":"微软披露拓扑量子计算机计划!","choices":["故事","文化","娱乐","体育","财经","房产","汽车","教育","科技"]},
|
| 102 |
+
'情感分析':{"text_a":"刚买iphone13 pro 还不到一个月,天天死机最差的一次购物体验","choices":["好评","差评"]},
|
| 103 |
+
'意图识别':{"text_a":"打电话给吴小军。","choices":["放音乐","播放下一首","打电话","退出导航","开始导航","其他","暂停音乐","导航","开导航"]},
|
| 104 |
+
|
| 105 |
+
'语义匹配':{"text_a":"今天心情不好","text_b":"我很不开心","choices":["相似","不相似"]},
|
| 106 |
+
'自然语言推理':{"text_a":"小明正在上高中","text_b":"小明是一个初中生","choices":["无关","矛盾","蕴含"]},
|
| 107 |
+
|
| 108 |
+
'多项选择':{"text_a":"这大家千万不能着急,我们现在只是暂时输了7分。距离比赛结束还有20多分钟呢,我们是完全有机会转败为赢的,大家加油!","question":"说话人希望大家:","choices":["别得意","冷静一些","加快速度","提前预习"]},
|
| 109 |
+
'指代消解':{"text_a":"李鸣觉得董客这人,踏实得叫人难受。可因为孟野和森森太疯,他只好去找董客聊天,但在董客眼里,李鸣也是不正常,他竟然放着现成的大学不愿上。","question":"【他】指的是【李鸣】吗?","choices":["是","不是"]},
|
| 110 |
+
|
| 111 |
+
'实体识别':{"text_a":"北京大学是我国的一座历史名校,坐落在海淀区,蔡元培曾经担任校长","question":"机构"},
|
| 112 |
+
'抽取式阅读理解':{"text_a":"《H》正式定档3月7日下午两点整在京东商城独家平台开启第一批5000份预售,定价230元人民币,回馈最忠实的火星歌迷,意在用精品回馈三年来跟随华晨宇音乐不离不弃的粉丝们的支持与厚爱","question":"华晨宇专辑h预售价格是多少?"},
|
| 113 |
+
'关键词抽取':{"text_a":"今儿在大众点评,找到了口碑不错的老茶故事私房菜。"},
|
| 114 |
+
'关键词识别':{"text_a":"今儿在大众点评,找到了口碑不错的老茶故事私房菜。","question":"请问这篇文章的关键词是大众点评、老茶私房菜吗?,"choices":["是","不是"]}
|
| 115 |
+
|
| 116 |
+
"生成式摘要":{"text_a":"针对传统的流量分类管理系统存在不稳定、结果反馈不及时、分类结果显示不直观等问题,设计一个基于web的在线的流量分类管理系统.该系统采用流中前5个包(排除3次握手包)所含信息作为特征值计算资源,集成一种或多种分类算法用于在线网络流量分类,应用数据可视化技术处理分类结果.实验表明:在采用适应在线分类的特征集和c4.5决策树算法做分类时,系统能快速做出分类,且精度达到94%以上;数据可视化有助于人机交互,改善分类指导."}
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
# 构造prompt的过程中,verbalizer这个占位key的内容,是通过 "/".join(choices) 拼接起来
|
| 120 |
+
dataset2instruction = {
|
| 121 |
+
"情感分析": {
|
| 122 |
+
"prompt": "{}任务:【{}】这篇文章的情感态度是什么?{}",
|
| 123 |
+
"keys_order": ["subtask_type","text_a", "verbalizer"],
|
| 124 |
+
"data_type": "classification",
|
| 125 |
+
},
|
| 126 |
+
"文本分类": {
|
| 127 |
+
"prompt": "{}任务:【{}】这篇文章的类别是什么?{}",
|
| 128 |
+
"keys_order": ["subtask_type","text_a", "verbalizer"],
|
| 129 |
+
"data_type": "classification",
|
| 130 |
+
},
|
| 131 |
+
"新闻分类": {
|
| 132 |
+
"prompt": "{}任务:【{}】这篇文章的类别是什么?{}",
|
| 133 |
+
"keys_order": ["subtask_type","text_a", "verbalizer"],
|
| 134 |
+
"data_type": "classification",
|
| 135 |
+
},
|
| 136 |
+
"意图识别": {
|
| 137 |
+
"prompt": "{}任务:【{}】这句话的意图是什么?{}",
|
| 138 |
+
"keys_order": ["subtask_type","text_a", "verbalizer"],
|
| 139 |
+
"data_type": "classification",
|
| 140 |
+
},
|
| 141 |
+
# --------------------
|
| 142 |
+
"自然语言推理": {
|
| 143 |
+
"prompt": "{}任务:【{}】和【{}】,以上两句话的逻辑关系是什么?{}",
|
| 144 |
+
"keys_order": ["subtask_type","text_a", "text_b", "verbalizer"],
|
| 145 |
+
"data_type": "classification",
|
| 146 |
+
},
|
| 147 |
+
"语义匹配": {
|
| 148 |
+
"prompt": "{}任务:【{}】和【{}】,以上两句话的内容是否相似?{}",
|
| 149 |
+
"keys_order": ["subtask_type","text_a", "text_b", "verbalizer"],
|
| 150 |
+
"data_type": "classification",
|
| 151 |
+
},
|
| 152 |
+
# -----------------------
|
| 153 |
+
"指代消解": {
|
| 154 |
+
"prompt": "{}任务:文章【{}】中{}{}",
|
| 155 |
+
"keys_order": ["subtask_type","text_a", "question", "verbalizer"],
|
| 156 |
+
"data_type": "classification",
|
| 157 |
+
},
|
| 158 |
+
"多项选择": {
|
| 159 |
+
"prompt": "{}任务:阅读文章【{}】问题【{}】?{}",
|
| 160 |
+
"keys_order": ["subtask_type","text_a", "question", "verbalizer"],
|
| 161 |
+
"data_type": "classification",
|
| 162 |
+
},
|
| 163 |
+
# ------------------------
|
| 164 |
+
"抽取式阅读理解": {
|
| 165 |
+
"prompt": "{}任务:阅读文章【{}】问题【{}】的答案是什么?",
|
| 166 |
+
"keys_order": ["subtask_type","text_a", "question"],
|
| 167 |
+
"data_type": "mrc",
|
| 168 |
+
},
|
| 169 |
+
"实体识别": {
|
| 170 |
+
"prompt": "{}任务:找出【{}】这篇文章中所有【{}】类型的实体?",
|
| 171 |
+
"keys_order": ["subtask_type","text_a", "question"],
|
| 172 |
+
"data_type": "ner",
|
| 173 |
+
},
|
| 174 |
+
# ------------------------
|
| 175 |
+
"关键词抽取": {
|
| 176 |
+
"prompt": "{}任务:【{}】这篇文章的关键词是什么?",
|
| 177 |
+
"keys_order": ["subtask_type","text_a"],
|
| 178 |
+
"data_type": "keys",
|
| 179 |
+
},
|
| 180 |
+
"关键词识别":{
|
| 181 |
+
"prompt": "{}任务:阅读文章【{}】问题【{}】{}",
|
| 182 |
+
"keys_order": ["subtask_type","text_a","question","verbalizer"],
|
| 183 |
+
"data_type": "classification",
|
| 184 |
+
},
|
| 185 |
+
"生成式摘要": {
|
| 186 |
+
"prompt": "{}任务:【{}】这篇文章的摘要是什么?",
|
| 187 |
+
"keys_order": ["subtask_type","text_a"],
|
| 188 |
+
"data_type": "summ",
|
| 189 |
+
},
|
| 190 |
+
}
|
| 191 |
+
|
| 192 |
+
def get_instruction(sample):
|
| 193 |
+
|
| 194 |
+
template = dataset2instruction[sample["subtask_type"]]
|
| 195 |
+
# print(template)
|
| 196 |
+
# print(sample)
|
| 197 |
+
sample["instruction"] = template["prompt"].format(*[
|
| 198 |
+
sample[k] for k in template["keys_order"]
|
| 199 |
+
])
|
| 200 |
+
|
| 201 |
+
print(sample["instruction"])
|
| 202 |
+
|
| 203 |
+
return sample["instruction"]
|
| 204 |
+
```
|
| 205 |
+
|
| 206 |
+
## 预训练或微调 prtrain or finetune
|
| 207 |
+
如果您对于怎么预训练Randeng-T5模型或者想在自己的下游任务中微调Randeng模型,欢迎使用[Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM/)项目,这里提供了完整的示例:
|
| 208 |
+
- [预训练](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/pretrain_t5)
|
| 209 |
+
- [微调](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/mt5_summary)
|
| 210 |
+
|
| 211 |
+
If you want to pre train the Randeng T5 model or fine tune the Randeng model in your downstream tasks, welcome to use [Fengshenbang LM]( https://github.com/IDEA-CCNL/Fengshenbang-LM/ )A complete example of the project is provided here:
|
| 212 |
+
|
| 213 |
+
- [Pre training](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/pretrain_t5)
|
| 214 |
+
- [Fine tune](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/mt5_summary)
|
| 215 |
+
|
| 216 |
+
## 引用 Citation
|
| 217 |
+
|
| 218 |
+
如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2209.02970):
|
| 219 |
+
|
| 220 |
+
If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970):
|
| 221 |
+
|
| 222 |
+
```text
|
| 223 |
+
@article{fengshenbang,
|
| 224 |
+
author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen},
|
| 225 |
+
title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
|
| 226 |
+
journal = {CoRR},
|
| 227 |
+
volume = {abs/2209.02970},
|
| 228 |
+
year = {2022}
|
| 229 |
+
}
|
| 230 |
+
```
|
| 231 |
+
|
| 232 |
+
也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/):
|
| 233 |
+
|
| 234 |
+
You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/):
|
| 235 |
+
|
| 236 |
+
```text
|
| 237 |
+
@misc{Fengshenbang-LM,
|
| 238 |
+
title={Fengshenbang-LM},
|
| 239 |
+
author={IDEA-CCNL},
|
| 240 |
+
year={2021},
|
| 241 |
+
howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
|
| 242 |
+
}
|
| 243 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/cognitive_comp/wuxiaojun/pretrained/pytorch/Randeng-T5-784M",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"T5ForConditionalGeneration"
|
| 5 |
+
],
|
| 6 |
+
"d_ff": 2816,
|
| 7 |
+
"d_kv": 64,
|
| 8 |
+
"d_model": 1024,
|
| 9 |
+
"decoder_start_token_id": 0,
|
| 10 |
+
"dropout_rate": 0.1,
|
| 11 |
+
"eos_token_id": 1,
|
| 12 |
+
"feed_forward_proj": "gated-gelu",
|
| 13 |
+
"initializer_factor": 1.0,
|
| 14 |
+
"is_encoder_decoder": true,
|
| 15 |
+
"layer_norm_epsilon": 1e-06,
|
| 16 |
+
"max_length": 200,
|
| 17 |
+
"model_type": "t5",
|
| 18 |
+
"num_decoder_layers": 24,
|
| 19 |
+
"num_heads": 16,
|
| 20 |
+
"num_layers": 24,
|
| 21 |
+
"output_past": true,
|
| 22 |
+
"pad_token_id": 0,
|
| 23 |
+
"relative_attention_max_distance": 128,
|
| 24 |
+
"relative_attention_num_buckets": 32,
|
| 25 |
+
"tie_word_embeddings": false,
|
| 26 |
+
"tokenizer_class": "T5Tokenizer",
|
| 27 |
+
"torch_dtype": "float32",
|
| 28 |
+
"transformers_version": "4.18.0",
|
| 29 |
+
"use_cache": true,
|
| 30 |
+
"vocab_size": 32596
|
| 31 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:73c2b409545d943ea38d2427d5cfc26a51ac6d2a07a3841243cf8da8eb43adcb
|
| 3 |
+
size 3136502664
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:53a9274353c0e873b6c61a84d5210bfc78d3d2f78653f7911eb5cf09a9b964ca
|
| 3 |
+
size 3136623589
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"eos_token": {
|
| 3 |
+
"content": "</s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"pad_token": {
|
| 10 |
+
"content": "<pad>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"unk_token": {
|
| 17 |
+
"content": "<unk>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
spiece.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c65feffa65ff0378759778193852083d23349cb1b40c906e9463a12f8076ff32
|
| 3 |
+
size 680811
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,843 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": null,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"0": {
|
| 5 |
+
"content": "<pad>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"1": {
|
| 13 |
+
"content": "</s>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"2": {
|
| 21 |
+
"content": "<unk>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"32496": {
|
| 29 |
+
"content": "▁<extra_id_99>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": false
|
| 35 |
+
},
|
| 36 |
+
"32497": {
|
| 37 |
+
"content": "▁<extra_id_98>",
|
| 38 |
+
"lstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": false
|
| 43 |
+
},
|
| 44 |
+
"32498": {
|
| 45 |
+
"content": "▁<extra_id_97>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false,
|
| 50 |
+
"special": false
|
| 51 |
+
},
|
| 52 |
+
"32499": {
|
| 53 |
+
"content": "▁<extra_id_96>",
|
| 54 |
+
"lstrip": false,
|
| 55 |
+
"normalized": false,
|
| 56 |
+
"rstrip": false,
|
| 57 |
+
"single_word": false,
|
| 58 |
+
"special": false
|
| 59 |
+
},
|
| 60 |
+
"32500": {
|
| 61 |
+
"content": "▁<extra_id_95>",
|
| 62 |
+
"lstrip": false,
|
| 63 |
+
"normalized": false,
|
| 64 |
+
"rstrip": false,
|
| 65 |
+
"single_word": false,
|
| 66 |
+
"special": false
|
| 67 |
+
},
|
| 68 |
+
"32501": {
|
| 69 |
+
"content": "▁<extra_id_94>",
|
| 70 |
+
"lstrip": false,
|
| 71 |
+
"normalized": false,
|
| 72 |
+
"rstrip": false,
|
| 73 |
+
"single_word": false,
|
| 74 |
+
"special": false
|
| 75 |
+
},
|
| 76 |
+
"32502": {
|
| 77 |
+
"content": "▁<extra_id_93>",
|
| 78 |
+
"lstrip": false,
|
| 79 |
+
"normalized": false,
|
| 80 |
+
"rstrip": false,
|
| 81 |
+
"single_word": false,
|
| 82 |
+
"special": false
|
| 83 |
+
},
|
| 84 |
+
"32503": {
|
| 85 |
+
"content": "▁<extra_id_92>",
|
| 86 |
+
"lstrip": false,
|
| 87 |
+
"normalized": false,
|
| 88 |
+
"rstrip": false,
|
| 89 |
+
"single_word": false,
|
| 90 |
+
"special": false
|
| 91 |
+
},
|
| 92 |
+
"32504": {
|
| 93 |
+
"content": "▁<extra_id_91>",
|
| 94 |
+
"lstrip": false,
|
| 95 |
+
"normalized": false,
|
| 96 |
+
"rstrip": false,
|
| 97 |
+
"single_word": false,
|
| 98 |
+
"special": false
|
| 99 |
+
},
|
| 100 |
+
"32505": {
|
| 101 |
+
"content": "▁<extra_id_90>",
|
| 102 |
+
"lstrip": false,
|
| 103 |
+
"normalized": false,
|
| 104 |
+
"rstrip": false,
|
| 105 |
+
"single_word": false,
|
| 106 |
+
"special": false
|
| 107 |
+
},
|
| 108 |
+
"32506": {
|
| 109 |
+
"content": "▁<extra_id_89>",
|
| 110 |
+
"lstrip": false,
|
| 111 |
+
"normalized": false,
|
| 112 |
+
"rstrip": false,
|
| 113 |
+
"single_word": false,
|
| 114 |
+
"special": false
|
| 115 |
+
},
|
| 116 |
+
"32507": {
|
| 117 |
+
"content": "▁<extra_id_88>",
|
| 118 |
+
"lstrip": false,
|
| 119 |
+
"normalized": false,
|
| 120 |
+
"rstrip": false,
|
| 121 |
+
"single_word": false,
|
| 122 |
+
"special": false
|
| 123 |
+
},
|
| 124 |
+
"32508": {
|
| 125 |
+
"content": "▁<extra_id_87>",
|
| 126 |
+
"lstrip": false,
|
| 127 |
+
"normalized": false,
|
| 128 |
+
"rstrip": false,
|
| 129 |
+
"single_word": false,
|
| 130 |
+
"special": false
|
| 131 |
+
},
|
| 132 |
+
"32509": {
|
| 133 |
+
"content": "▁<extra_id_86>",
|
| 134 |
+
"lstrip": false,
|
| 135 |
+
"normalized": false,
|
| 136 |
+
"rstrip": false,
|
| 137 |
+
"single_word": false,
|
| 138 |
+
"special": false
|
| 139 |
+
},
|
| 140 |
+
"32510": {
|
| 141 |
+
"content": "▁<extra_id_85>",
|
| 142 |
+
"lstrip": false,
|
| 143 |
+
"normalized": false,
|
| 144 |
+
"rstrip": false,
|
| 145 |
+
"single_word": false,
|
| 146 |
+
"special": false
|
| 147 |
+
},
|
| 148 |
+
"32511": {
|
| 149 |
+
"content": "▁<extra_id_84>",
|
| 150 |
+
"lstrip": false,
|
| 151 |
+
"normalized": false,
|
| 152 |
+
"rstrip": false,
|
| 153 |
+
"single_word": false,
|
| 154 |
+
"special": false
|
| 155 |
+
},
|
| 156 |
+
"32512": {
|
| 157 |
+
"content": "▁<extra_id_83>",
|
| 158 |
+
"lstrip": false,
|
| 159 |
+
"normalized": false,
|
| 160 |
+
"rstrip": false,
|
| 161 |
+
"single_word": false,
|
| 162 |
+
"special": false
|
| 163 |
+
},
|
| 164 |
+
"32513": {
|
| 165 |
+
"content": "▁<extra_id_82>",
|
| 166 |
+
"lstrip": false,
|
| 167 |
+
"normalized": false,
|
| 168 |
+
"rstrip": false,
|
| 169 |
+
"single_word": false,
|
| 170 |
+
"special": false
|
| 171 |
+
},
|
| 172 |
+
"32514": {
|
| 173 |
+
"content": "▁<extra_id_81>",
|
| 174 |
+
"lstrip": false,
|
| 175 |
+
"normalized": false,
|
| 176 |
+
"rstrip": false,
|
| 177 |
+
"single_word": false,
|
| 178 |
+
"special": false
|
| 179 |
+
},
|
| 180 |
+
"32515": {
|
| 181 |
+
"content": "▁<extra_id_80>",
|
| 182 |
+
"lstrip": false,
|
| 183 |
+
"normalized": false,
|
| 184 |
+
"rstrip": false,
|
| 185 |
+
"single_word": false,
|
| 186 |
+
"special": false
|
| 187 |
+
},
|
| 188 |
+
"32516": {
|
| 189 |
+
"content": "▁<extra_id_79>",
|
| 190 |
+
"lstrip": false,
|
| 191 |
+
"normalized": false,
|
| 192 |
+
"rstrip": false,
|
| 193 |
+
"single_word": false,
|
| 194 |
+
"special": false
|
| 195 |
+
},
|
| 196 |
+
"32517": {
|
| 197 |
+
"content": "▁<extra_id_78>",
|
| 198 |
+
"lstrip": false,
|
| 199 |
+
"normalized": false,
|
| 200 |
+
"rstrip": false,
|
| 201 |
+
"single_word": false,
|
| 202 |
+
"special": false
|
| 203 |
+
},
|
| 204 |
+
"32518": {
|
| 205 |
+
"content": "▁<extra_id_77>",
|
| 206 |
+
"lstrip": false,
|
| 207 |
+
"normalized": false,
|
| 208 |
+
"rstrip": false,
|
| 209 |
+
"single_word": false,
|
| 210 |
+
"special": false
|
| 211 |
+
},
|
| 212 |
+
"32519": {
|
| 213 |
+
"content": "▁<extra_id_76>",
|
| 214 |
+
"lstrip": false,
|
| 215 |
+
"normalized": false,
|
| 216 |
+
"rstrip": false,
|
| 217 |
+
"single_word": false,
|
| 218 |
+
"special": false
|
| 219 |
+
},
|
| 220 |
+
"32520": {
|
| 221 |
+
"content": "▁<extra_id_75>",
|
| 222 |
+
"lstrip": false,
|
| 223 |
+
"normalized": false,
|
| 224 |
+
"rstrip": false,
|
| 225 |
+
"single_word": false,
|
| 226 |
+
"special": false
|
| 227 |
+
},
|
| 228 |
+
"32521": {
|
| 229 |
+
"content": "▁<extra_id_74>",
|
| 230 |
+
"lstrip": false,
|
| 231 |
+
"normalized": false,
|
| 232 |
+
"rstrip": false,
|
| 233 |
+
"single_word": false,
|
| 234 |
+
"special": false
|
| 235 |
+
},
|
| 236 |
+
"32522": {
|
| 237 |
+
"content": "▁<extra_id_73>",
|
| 238 |
+
"lstrip": false,
|
| 239 |
+
"normalized": false,
|
| 240 |
+
"rstrip": false,
|
| 241 |
+
"single_word": false,
|
| 242 |
+
"special": false
|
| 243 |
+
},
|
| 244 |
+
"32523": {
|
| 245 |
+
"content": "▁<extra_id_72>",
|
| 246 |
+
"lstrip": false,
|
| 247 |
+
"normalized": false,
|
| 248 |
+
"rstrip": false,
|
| 249 |
+
"single_word": false,
|
| 250 |
+
"special": false
|
| 251 |
+
},
|
| 252 |
+
"32524": {
|
| 253 |
+
"content": "▁<extra_id_71>",
|
| 254 |
+
"lstrip": false,
|
| 255 |
+
"normalized": false,
|
| 256 |
+
"rstrip": false,
|
| 257 |
+
"single_word": false,
|
| 258 |
+
"special": false
|
| 259 |
+
},
|
| 260 |
+
"32525": {
|
| 261 |
+
"content": "▁<extra_id_70>",
|
| 262 |
+
"lstrip": false,
|
| 263 |
+
"normalized": false,
|
| 264 |
+
"rstrip": false,
|
| 265 |
+
"single_word": false,
|
| 266 |
+
"special": false
|
| 267 |
+
},
|
| 268 |
+
"32526": {
|
| 269 |
+
"content": "▁<extra_id_69>",
|
| 270 |
+
"lstrip": false,
|
| 271 |
+
"normalized": false,
|
| 272 |
+
"rstrip": false,
|
| 273 |
+
"single_word": false,
|
| 274 |
+
"special": false
|
| 275 |
+
},
|
| 276 |
+
"32527": {
|
| 277 |
+
"content": "▁<extra_id_68>",
|
| 278 |
+
"lstrip": false,
|
| 279 |
+
"normalized": false,
|
| 280 |
+
"rstrip": false,
|
| 281 |
+
"single_word": false,
|
| 282 |
+
"special": false
|
| 283 |
+
},
|
| 284 |
+
"32528": {
|
| 285 |
+
"content": "▁<extra_id_67>",
|
| 286 |
+
"lstrip": false,
|
| 287 |
+
"normalized": false,
|
| 288 |
+
"rstrip": false,
|
| 289 |
+
"single_word": false,
|
| 290 |
+
"special": false
|
| 291 |
+
},
|
| 292 |
+
"32529": {
|
| 293 |
+
"content": "▁<extra_id_66>",
|
| 294 |
+
"lstrip": false,
|
| 295 |
+
"normalized": false,
|
| 296 |
+
"rstrip": false,
|
| 297 |
+
"single_word": false,
|
| 298 |
+
"special": false
|
| 299 |
+
},
|
| 300 |
+
"32530": {
|
| 301 |
+
"content": "▁<extra_id_65>",
|
| 302 |
+
"lstrip": false,
|
| 303 |
+
"normalized": false,
|
| 304 |
+
"rstrip": false,
|
| 305 |
+
"single_word": false,
|
| 306 |
+
"special": false
|
| 307 |
+
},
|
| 308 |
+
"32531": {
|
| 309 |
+
"content": "▁<extra_id_64>",
|
| 310 |
+
"lstrip": false,
|
| 311 |
+
"normalized": false,
|
| 312 |
+
"rstrip": false,
|
| 313 |
+
"single_word": false,
|
| 314 |
+
"special": false
|
| 315 |
+
},
|
| 316 |
+
"32532": {
|
| 317 |
+
"content": "▁<extra_id_63>",
|
| 318 |
+
"lstrip": false,
|
| 319 |
+
"normalized": false,
|
| 320 |
+
"rstrip": false,
|
| 321 |
+
"single_word": false,
|
| 322 |
+
"special": false
|
| 323 |
+
},
|
| 324 |
+
"32533": {
|
| 325 |
+
"content": "▁<extra_id_62>",
|
| 326 |
+
"lstrip": false,
|
| 327 |
+
"normalized": false,
|
| 328 |
+
"rstrip": false,
|
| 329 |
+
"single_word": false,
|
| 330 |
+
"special": false
|
| 331 |
+
},
|
| 332 |
+
"32534": {
|
| 333 |
+
"content": "▁<extra_id_61>",
|
| 334 |
+
"lstrip": false,
|
| 335 |
+
"normalized": false,
|
| 336 |
+
"rstrip": false,
|
| 337 |
+
"single_word": false,
|
| 338 |
+
"special": false
|
| 339 |
+
},
|
| 340 |
+
"32535": {
|
| 341 |
+
"content": "▁<extra_id_60>",
|
| 342 |
+
"lstrip": false,
|
| 343 |
+
"normalized": false,
|
| 344 |
+
"rstrip": false,
|
| 345 |
+
"single_word": false,
|
| 346 |
+
"special": false
|
| 347 |
+
},
|
| 348 |
+
"32536": {
|
| 349 |
+
"content": "▁<extra_id_59>",
|
| 350 |
+
"lstrip": false,
|
| 351 |
+
"normalized": false,
|
| 352 |
+
"rstrip": false,
|
| 353 |
+
"single_word": false,
|
| 354 |
+
"special": false
|
| 355 |
+
},
|
| 356 |
+
"32537": {
|
| 357 |
+
"content": "▁<extra_id_58>",
|
| 358 |
+
"lstrip": false,
|
| 359 |
+
"normalized": false,
|
| 360 |
+
"rstrip": false,
|
| 361 |
+
"single_word": false,
|
| 362 |
+
"special": false
|
| 363 |
+
},
|
| 364 |
+
"32538": {
|
| 365 |
+
"content": "▁<extra_id_57>",
|
| 366 |
+
"lstrip": false,
|
| 367 |
+
"normalized": false,
|
| 368 |
+
"rstrip": false,
|
| 369 |
+
"single_word": false,
|
| 370 |
+
"special": false
|
| 371 |
+
},
|
| 372 |
+
"32539": {
|
| 373 |
+
"content": "▁<extra_id_56>",
|
| 374 |
+
"lstrip": false,
|
| 375 |
+
"normalized": false,
|
| 376 |
+
"rstrip": false,
|
| 377 |
+
"single_word": false,
|
| 378 |
+
"special": false
|
| 379 |
+
},
|
| 380 |
+
"32540": {
|
| 381 |
+
"content": "▁<extra_id_55>",
|
| 382 |
+
"lstrip": false,
|
| 383 |
+
"normalized": false,
|
| 384 |
+
"rstrip": false,
|
| 385 |
+
"single_word": false,
|
| 386 |
+
"special": false
|
| 387 |
+
},
|
| 388 |
+
"32541": {
|
| 389 |
+
"content": "▁<extra_id_54>",
|
| 390 |
+
"lstrip": false,
|
| 391 |
+
"normalized": false,
|
| 392 |
+
"rstrip": false,
|
| 393 |
+
"single_word": false,
|
| 394 |
+
"special": false
|
| 395 |
+
},
|
| 396 |
+
"32542": {
|
| 397 |
+
"content": "▁<extra_id_53>",
|
| 398 |
+
"lstrip": false,
|
| 399 |
+
"normalized": false,
|
| 400 |
+
"rstrip": false,
|
| 401 |
+
"single_word": false,
|
| 402 |
+
"special": false
|
| 403 |
+
},
|
| 404 |
+
"32543": {
|
| 405 |
+
"content": "▁<extra_id_52>",
|
| 406 |
+
"lstrip": false,
|
| 407 |
+
"normalized": false,
|
| 408 |
+
"rstrip": false,
|
| 409 |
+
"single_word": false,
|
| 410 |
+
"special": false
|
| 411 |
+
},
|
| 412 |
+
"32544": {
|
| 413 |
+
"content": "▁<extra_id_51>",
|
| 414 |
+
"lstrip": false,
|
| 415 |
+
"normalized": false,
|
| 416 |
+
"rstrip": false,
|
| 417 |
+
"single_word": false,
|
| 418 |
+
"special": false
|
| 419 |
+
},
|
| 420 |
+
"32545": {
|
| 421 |
+
"content": "▁<extra_id_50>",
|
| 422 |
+
"lstrip": false,
|
| 423 |
+
"normalized": false,
|
| 424 |
+
"rstrip": false,
|
| 425 |
+
"single_word": false,
|
| 426 |
+
"special": false
|
| 427 |
+
},
|
| 428 |
+
"32546": {
|
| 429 |
+
"content": "▁<extra_id_49>",
|
| 430 |
+
"lstrip": false,
|
| 431 |
+
"normalized": false,
|
| 432 |
+
"rstrip": false,
|
| 433 |
+
"single_word": false,
|
| 434 |
+
"special": false
|
| 435 |
+
},
|
| 436 |
+
"32547": {
|
| 437 |
+
"content": "▁<extra_id_48>",
|
| 438 |
+
"lstrip": false,
|
| 439 |
+
"normalized": false,
|
| 440 |
+
"rstrip": false,
|
| 441 |
+
"single_word": false,
|
| 442 |
+
"special": false
|
| 443 |
+
},
|
| 444 |
+
"32548": {
|
| 445 |
+
"content": "▁<extra_id_47>",
|
| 446 |
+
"lstrip": false,
|
| 447 |
+
"normalized": false,
|
| 448 |
+
"rstrip": false,
|
| 449 |
+
"single_word": false,
|
| 450 |
+
"special": false
|
| 451 |
+
},
|
| 452 |
+
"32549": {
|
| 453 |
+
"content": "▁<extra_id_46>",
|
| 454 |
+
"lstrip": false,
|
| 455 |
+
"normalized": false,
|
| 456 |
+
"rstrip": false,
|
| 457 |
+
"single_word": false,
|
| 458 |
+
"special": false
|
| 459 |
+
},
|
| 460 |
+
"32550": {
|
| 461 |
+
"content": "▁<extra_id_45>",
|
| 462 |
+
"lstrip": false,
|
| 463 |
+
"normalized": false,
|
| 464 |
+
"rstrip": false,
|
| 465 |
+
"single_word": false,
|
| 466 |
+
"special": false
|
| 467 |
+
},
|
| 468 |
+
"32551": {
|
| 469 |
+
"content": "▁<extra_id_44>",
|
| 470 |
+
"lstrip": false,
|
| 471 |
+
"normalized": false,
|
| 472 |
+
"rstrip": false,
|
| 473 |
+
"single_word": false,
|
| 474 |
+
"special": false
|
| 475 |
+
},
|
| 476 |
+
"32552": {
|
| 477 |
+
"content": "▁<extra_id_43>",
|
| 478 |
+
"lstrip": false,
|
| 479 |
+
"normalized": false,
|
| 480 |
+
"rstrip": false,
|
| 481 |
+
"single_word": false,
|
| 482 |
+
"special": false
|
| 483 |
+
},
|
| 484 |
+
"32553": {
|
| 485 |
+
"content": "▁<extra_id_42>",
|
| 486 |
+
"lstrip": false,
|
| 487 |
+
"normalized": false,
|
| 488 |
+
"rstrip": false,
|
| 489 |
+
"single_word": false,
|
| 490 |
+
"special": false
|
| 491 |
+
},
|
| 492 |
+
"32554": {
|
| 493 |
+
"content": "▁<extra_id_41>",
|
| 494 |
+
"lstrip": false,
|
| 495 |
+
"normalized": false,
|
| 496 |
+
"rstrip": false,
|
| 497 |
+
"single_word": false,
|
| 498 |
+
"special": false
|
| 499 |
+
},
|
| 500 |
+
"32555": {
|
| 501 |
+
"content": "▁<extra_id_40>",
|
| 502 |
+
"lstrip": false,
|
| 503 |
+
"normalized": false,
|
| 504 |
+
"rstrip": false,
|
| 505 |
+
"single_word": false,
|
| 506 |
+
"special": false
|
| 507 |
+
},
|
| 508 |
+
"32556": {
|
| 509 |
+
"content": "▁<extra_id_39>",
|
| 510 |
+
"lstrip": false,
|
| 511 |
+
"normalized": false,
|
| 512 |
+
"rstrip": false,
|
| 513 |
+
"single_word": false,
|
| 514 |
+
"special": false
|
| 515 |
+
},
|
| 516 |
+
"32557": {
|
| 517 |
+
"content": "▁<extra_id_38>",
|
| 518 |
+
"lstrip": false,
|
| 519 |
+
"normalized": false,
|
| 520 |
+
"rstrip": false,
|
| 521 |
+
"single_word": false,
|
| 522 |
+
"special": false
|
| 523 |
+
},
|
| 524 |
+
"32558": {
|
| 525 |
+
"content": "▁<extra_id_37>",
|
| 526 |
+
"lstrip": false,
|
| 527 |
+
"normalized": false,
|
| 528 |
+
"rstrip": false,
|
| 529 |
+
"single_word": false,
|
| 530 |
+
"special": false
|
| 531 |
+
},
|
| 532 |
+
"32559": {
|
| 533 |
+
"content": "▁<extra_id_36>",
|
| 534 |
+
"lstrip": false,
|
| 535 |
+
"normalized": false,
|
| 536 |
+
"rstrip": false,
|
| 537 |
+
"single_word": false,
|
| 538 |
+
"special": false
|
| 539 |
+
},
|
| 540 |
+
"32560": {
|
| 541 |
+
"content": "▁<extra_id_35>",
|
| 542 |
+
"lstrip": false,
|
| 543 |
+
"normalized": false,
|
| 544 |
+
"rstrip": false,
|
| 545 |
+
"single_word": false,
|
| 546 |
+
"special": false
|
| 547 |
+
},
|
| 548 |
+
"32561": {
|
| 549 |
+
"content": "▁<extra_id_34>",
|
| 550 |
+
"lstrip": false,
|
| 551 |
+
"normalized": false,
|
| 552 |
+
"rstrip": false,
|
| 553 |
+
"single_word": false,
|
| 554 |
+
"special": false
|
| 555 |
+
},
|
| 556 |
+
"32562": {
|
| 557 |
+
"content": "▁<extra_id_33>",
|
| 558 |
+
"lstrip": false,
|
| 559 |
+
"normalized": false,
|
| 560 |
+
"rstrip": false,
|
| 561 |
+
"single_word": false,
|
| 562 |
+
"special": false
|
| 563 |
+
},
|
| 564 |
+
"32563": {
|
| 565 |
+
"content": "▁<extra_id_32>",
|
| 566 |
+
"lstrip": false,
|
| 567 |
+
"normalized": false,
|
| 568 |
+
"rstrip": false,
|
| 569 |
+
"single_word": false,
|
| 570 |
+
"special": false
|
| 571 |
+
},
|
| 572 |
+
"32564": {
|
| 573 |
+
"content": "▁<extra_id_31>",
|
| 574 |
+
"lstrip": false,
|
| 575 |
+
"normalized": false,
|
| 576 |
+
"rstrip": false,
|
| 577 |
+
"single_word": false,
|
| 578 |
+
"special": false
|
| 579 |
+
},
|
| 580 |
+
"32565": {
|
| 581 |
+
"content": "▁<extra_id_30>",
|
| 582 |
+
"lstrip": false,
|
| 583 |
+
"normalized": false,
|
| 584 |
+
"rstrip": false,
|
| 585 |
+
"single_word": false,
|
| 586 |
+
"special": false
|
| 587 |
+
},
|
| 588 |
+
"32566": {
|
| 589 |
+
"content": "▁<extra_id_29>",
|
| 590 |
+
"lstrip": false,
|
| 591 |
+
"normalized": false,
|
| 592 |
+
"rstrip": false,
|
| 593 |
+
"single_word": false,
|
| 594 |
+
"special": false
|
| 595 |
+
},
|
| 596 |
+
"32567": {
|
| 597 |
+
"content": "▁<extra_id_28>",
|
| 598 |
+
"lstrip": false,
|
| 599 |
+
"normalized": false,
|
| 600 |
+
"rstrip": false,
|
| 601 |
+
"single_word": false,
|
| 602 |
+
"special": false
|
| 603 |
+
},
|
| 604 |
+
"32568": {
|
| 605 |
+
"content": "▁<extra_id_27>",
|
| 606 |
+
"lstrip": false,
|
| 607 |
+
"normalized": false,
|
| 608 |
+
"rstrip": false,
|
| 609 |
+
"single_word": false,
|
| 610 |
+
"special": false
|
| 611 |
+
},
|
| 612 |
+
"32569": {
|
| 613 |
+
"content": "▁<extra_id_26>",
|
| 614 |
+
"lstrip": false,
|
| 615 |
+
"normalized": false,
|
| 616 |
+
"rstrip": false,
|
| 617 |
+
"single_word": false,
|
| 618 |
+
"special": false
|
| 619 |
+
},
|
| 620 |
+
"32570": {
|
| 621 |
+
"content": "▁<extra_id_25>",
|
| 622 |
+
"lstrip": false,
|
| 623 |
+
"normalized": false,
|
| 624 |
+
"rstrip": false,
|
| 625 |
+
"single_word": false,
|
| 626 |
+
"special": false
|
| 627 |
+
},
|
| 628 |
+
"32571": {
|
| 629 |
+
"content": "▁<extra_id_24>",
|
| 630 |
+
"lstrip": false,
|
| 631 |
+
"normalized": false,
|
| 632 |
+
"rstrip": false,
|
| 633 |
+
"single_word": false,
|
| 634 |
+
"special": false
|
| 635 |
+
},
|
| 636 |
+
"32572": {
|
| 637 |
+
"content": "▁<extra_id_23>",
|
| 638 |
+
"lstrip": false,
|
| 639 |
+
"normalized": false,
|
| 640 |
+
"rstrip": false,
|
| 641 |
+
"single_word": false,
|
| 642 |
+
"special": false
|
| 643 |
+
},
|
| 644 |
+
"32573": {
|
| 645 |
+
"content": "▁<extra_id_22>",
|
| 646 |
+
"lstrip": false,
|
| 647 |
+
"normalized": false,
|
| 648 |
+
"rstrip": false,
|
| 649 |
+
"single_word": false,
|
| 650 |
+
"special": false
|
| 651 |
+
},
|
| 652 |
+
"32574": {
|
| 653 |
+
"content": "▁<extra_id_21>",
|
| 654 |
+
"lstrip": false,
|
| 655 |
+
"normalized": false,
|
| 656 |
+
"rstrip": false,
|
| 657 |
+
"single_word": false,
|
| 658 |
+
"special": false
|
| 659 |
+
},
|
| 660 |
+
"32575": {
|
| 661 |
+
"content": "▁<extra_id_20>",
|
| 662 |
+
"lstrip": false,
|
| 663 |
+
"normalized": false,
|
| 664 |
+
"rstrip": false,
|
| 665 |
+
"single_word": false,
|
| 666 |
+
"special": false
|
| 667 |
+
},
|
| 668 |
+
"32576": {
|
| 669 |
+
"content": "▁<extra_id_19>",
|
| 670 |
+
"lstrip": false,
|
| 671 |
+
"normalized": false,
|
| 672 |
+
"rstrip": false,
|
| 673 |
+
"single_word": false,
|
| 674 |
+
"special": false
|
| 675 |
+
},
|
| 676 |
+
"32577": {
|
| 677 |
+
"content": "▁<extra_id_18>",
|
| 678 |
+
"lstrip": false,
|
| 679 |
+
"normalized": false,
|
| 680 |
+
"rstrip": false,
|
| 681 |
+
"single_word": false,
|
| 682 |
+
"special": false
|
| 683 |
+
},
|
| 684 |
+
"32578": {
|
| 685 |
+
"content": "▁<extra_id_17>",
|
| 686 |
+
"lstrip": false,
|
| 687 |
+
"normalized": false,
|
| 688 |
+
"rstrip": false,
|
| 689 |
+
"single_word": false,
|
| 690 |
+
"special": false
|
| 691 |
+
},
|
| 692 |
+
"32579": {
|
| 693 |
+
"content": "▁<extra_id_16>",
|
| 694 |
+
"lstrip": false,
|
| 695 |
+
"normalized": false,
|
| 696 |
+
"rstrip": false,
|
| 697 |
+
"single_word": false,
|
| 698 |
+
"special": false
|
| 699 |
+
},
|
| 700 |
+
"32580": {
|
| 701 |
+
"content": "▁<extra_id_15>",
|
| 702 |
+
"lstrip": false,
|
| 703 |
+
"normalized": false,
|
| 704 |
+
"rstrip": false,
|
| 705 |
+
"single_word": false,
|
| 706 |
+
"special": false
|
| 707 |
+
},
|
| 708 |
+
"32581": {
|
| 709 |
+
"content": "▁<extra_id_14>",
|
| 710 |
+
"lstrip": false,
|
| 711 |
+
"normalized": false,
|
| 712 |
+
"rstrip": false,
|
| 713 |
+
"single_word": false,
|
| 714 |
+
"special": false
|
| 715 |
+
},
|
| 716 |
+
"32582": {
|
| 717 |
+
"content": "▁<extra_id_13>",
|
| 718 |
+
"lstrip": false,
|
| 719 |
+
"normalized": false,
|
| 720 |
+
"rstrip": false,
|
| 721 |
+
"single_word": false,
|
| 722 |
+
"special": false
|
| 723 |
+
},
|
| 724 |
+
"32583": {
|
| 725 |
+
"content": "▁<extra_id_12>",
|
| 726 |
+
"lstrip": false,
|
| 727 |
+
"normalized": false,
|
| 728 |
+
"rstrip": false,
|
| 729 |
+
"single_word": false,
|
| 730 |
+
"special": false
|
| 731 |
+
},
|
| 732 |
+
"32584": {
|
| 733 |
+
"content": "▁<extra_id_11>",
|
| 734 |
+
"lstrip": false,
|
| 735 |
+
"normalized": false,
|
| 736 |
+
"rstrip": false,
|
| 737 |
+
"single_word": false,
|
| 738 |
+
"special": false
|
| 739 |
+
},
|
| 740 |
+
"32585": {
|
| 741 |
+
"content": "▁<extra_id_10>",
|
| 742 |
+
"lstrip": false,
|
| 743 |
+
"normalized": false,
|
| 744 |
+
"rstrip": false,
|
| 745 |
+
"single_word": false,
|
| 746 |
+
"special": false
|
| 747 |
+
},
|
| 748 |
+
"32586": {
|
| 749 |
+
"content": "▁<extra_id_9>",
|
| 750 |
+
"lstrip": false,
|
| 751 |
+
"normalized": false,
|
| 752 |
+
"rstrip": false,
|
| 753 |
+
"single_word": false,
|
| 754 |
+
"special": false
|
| 755 |
+
},
|
| 756 |
+
"32587": {
|
| 757 |
+
"content": "▁<extra_id_8>",
|
| 758 |
+
"lstrip": false,
|
| 759 |
+
"normalized": false,
|
| 760 |
+
"rstrip": false,
|
| 761 |
+
"single_word": false,
|
| 762 |
+
"special": false
|
| 763 |
+
},
|
| 764 |
+
"32588": {
|
| 765 |
+
"content": "▁<extra_id_7>",
|
| 766 |
+
"lstrip": false,
|
| 767 |
+
"normalized": false,
|
| 768 |
+
"rstrip": false,
|
| 769 |
+
"single_word": false,
|
| 770 |
+
"special": false
|
| 771 |
+
},
|
| 772 |
+
"32589": {
|
| 773 |
+
"content": "▁<extra_id_6>",
|
| 774 |
+
"lstrip": false,
|
| 775 |
+
"normalized": false,
|
| 776 |
+
"rstrip": false,
|
| 777 |
+
"single_word": false,
|
| 778 |
+
"special": false
|
| 779 |
+
},
|
| 780 |
+
"32590": {
|
| 781 |
+
"content": "▁<extra_id_5>",
|
| 782 |
+
"lstrip": false,
|
| 783 |
+
"normalized": false,
|
| 784 |
+
"rstrip": false,
|
| 785 |
+
"single_word": false,
|
| 786 |
+
"special": false
|
| 787 |
+
},
|
| 788 |
+
"32591": {
|
| 789 |
+
"content": "▁<extra_id_4>",
|
| 790 |
+
"lstrip": false,
|
| 791 |
+
"normalized": false,
|
| 792 |
+
"rstrip": false,
|
| 793 |
+
"single_word": false,
|
| 794 |
+
"special": false
|
| 795 |
+
},
|
| 796 |
+
"32592": {
|
| 797 |
+
"content": "▁<extra_id_3>",
|
| 798 |
+
"lstrip": false,
|
| 799 |
+
"normalized": false,
|
| 800 |
+
"rstrip": false,
|
| 801 |
+
"single_word": false,
|
| 802 |
+
"special": false
|
| 803 |
+
},
|
| 804 |
+
"32593": {
|
| 805 |
+
"content": "▁<extra_id_2>",
|
| 806 |
+
"lstrip": false,
|
| 807 |
+
"normalized": false,
|
| 808 |
+
"rstrip": false,
|
| 809 |
+
"single_word": false,
|
| 810 |
+
"special": false
|
| 811 |
+
},
|
| 812 |
+
"32594": {
|
| 813 |
+
"content": "▁<extra_id_1>",
|
| 814 |
+
"lstrip": false,
|
| 815 |
+
"normalized": false,
|
| 816 |
+
"rstrip": false,
|
| 817 |
+
"single_word": false,
|
| 818 |
+
"special": false
|
| 819 |
+
},
|
| 820 |
+
"32595": {
|
| 821 |
+
"content": "▁<extra_id_0>",
|
| 822 |
+
"lstrip": false,
|
| 823 |
+
"normalized": false,
|
| 824 |
+
"rstrip": false,
|
| 825 |
+
"single_word": false,
|
| 826 |
+
"special": false
|
| 827 |
+
}
|
| 828 |
+
},
|
| 829 |
+
"additional_special_tokens": [],
|
| 830 |
+
"clean_up_tokenization_spaces": false,
|
| 831 |
+
"do_lower_case": true,
|
| 832 |
+
"eos_token": "</s>",
|
| 833 |
+
"extra_ids": 0,
|
| 834 |
+
"extra_special_tokens": {},
|
| 835 |
+
"legacy": true,
|
| 836 |
+
"max_length": 1024,
|
| 837 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 838 |
+
"pad_token": "<pad>",
|
| 839 |
+
"sp_model_kwargs": {},
|
| 840 |
+
"tokenizer_class": "T5Tokenizer",
|
| 841 |
+
"truncation": true,
|
| 842 |
+
"unk_token": "<unk>"
|
| 843 |
+
}
|
zeroclue.png
ADDED
|
Git LFS Details
|