Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +116 -0
- diff2flow.py +62 -23
- generate_reflow_pairs.py +60 -38
- results/reflow_ep99_eval_1step_fixed/0_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/0_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/10_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/10_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/11_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/11_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/12_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/12_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/13_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/13_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/14_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/14_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/15_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/15_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/16_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/16_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/17_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/17_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/18_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/18_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/19_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/19_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/1_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/1_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/20_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/20_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/21_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/21_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/22_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/22_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/23_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/23_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/24_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/24_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/25_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/25_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/26_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/26_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/27_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/27_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/28_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/28_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/29_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/29_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/2_rain_flow.png +3 -0
- results/reflow_ep99_eval_1step_fixed/2_rain_input.png +3 -0
- results/reflow_ep99_eval_1step_fixed/30_rain_flow.png +3 -0
.gitattributes
CHANGED
|
@@ -497,3 +497,119 @@ results/reflow_ep99_eval_8step/8_rain_flow.png filter=lfs diff=lfs merge=lfs -te
|
|
| 497 |
results/reflow_ep99_eval_8step/8_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 498 |
results/reflow_ep99_eval_8step/9_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 499 |
results/reflow_ep99_eval_8step/9_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 497 |
results/reflow_ep99_eval_8step/8_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 498 |
results/reflow_ep99_eval_8step/9_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 499 |
results/reflow_ep99_eval_8step/9_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 500 |
+
results/reflow_ep99_eval_1step_fixed/0_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 501 |
+
results/reflow_ep99_eval_1step_fixed/0_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 502 |
+
results/reflow_ep99_eval_1step_fixed/10_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 503 |
+
results/reflow_ep99_eval_1step_fixed/10_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 504 |
+
results/reflow_ep99_eval_1step_fixed/11_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 505 |
+
results/reflow_ep99_eval_1step_fixed/11_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 506 |
+
results/reflow_ep99_eval_1step_fixed/12_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 507 |
+
results/reflow_ep99_eval_1step_fixed/12_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 508 |
+
results/reflow_ep99_eval_1step_fixed/13_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 509 |
+
results/reflow_ep99_eval_1step_fixed/13_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 510 |
+
results/reflow_ep99_eval_1step_fixed/14_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 511 |
+
results/reflow_ep99_eval_1step_fixed/14_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 512 |
+
results/reflow_ep99_eval_1step_fixed/15_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 513 |
+
results/reflow_ep99_eval_1step_fixed/15_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 514 |
+
results/reflow_ep99_eval_1step_fixed/16_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 515 |
+
results/reflow_ep99_eval_1step_fixed/16_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 516 |
+
results/reflow_ep99_eval_1step_fixed/17_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 517 |
+
results/reflow_ep99_eval_1step_fixed/17_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 518 |
+
results/reflow_ep99_eval_1step_fixed/18_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 519 |
+
results/reflow_ep99_eval_1step_fixed/18_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 520 |
+
results/reflow_ep99_eval_1step_fixed/19_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 521 |
+
results/reflow_ep99_eval_1step_fixed/19_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 522 |
+
results/reflow_ep99_eval_1step_fixed/1_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 523 |
+
results/reflow_ep99_eval_1step_fixed/1_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 524 |
+
results/reflow_ep99_eval_1step_fixed/20_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 525 |
+
results/reflow_ep99_eval_1step_fixed/20_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 526 |
+
results/reflow_ep99_eval_1step_fixed/21_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 527 |
+
results/reflow_ep99_eval_1step_fixed/21_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 528 |
+
results/reflow_ep99_eval_1step_fixed/22_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 529 |
+
results/reflow_ep99_eval_1step_fixed/22_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 530 |
+
results/reflow_ep99_eval_1step_fixed/23_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 531 |
+
results/reflow_ep99_eval_1step_fixed/23_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 532 |
+
results/reflow_ep99_eval_1step_fixed/24_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 533 |
+
results/reflow_ep99_eval_1step_fixed/24_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 534 |
+
results/reflow_ep99_eval_1step_fixed/25_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 535 |
+
results/reflow_ep99_eval_1step_fixed/25_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 536 |
+
results/reflow_ep99_eval_1step_fixed/26_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 537 |
+
results/reflow_ep99_eval_1step_fixed/26_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 538 |
+
results/reflow_ep99_eval_1step_fixed/27_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 539 |
+
results/reflow_ep99_eval_1step_fixed/27_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 540 |
+
results/reflow_ep99_eval_1step_fixed/28_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 541 |
+
results/reflow_ep99_eval_1step_fixed/28_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 542 |
+
results/reflow_ep99_eval_1step_fixed/29_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 543 |
+
results/reflow_ep99_eval_1step_fixed/29_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 544 |
+
results/reflow_ep99_eval_1step_fixed/2_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 545 |
+
results/reflow_ep99_eval_1step_fixed/2_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 546 |
+
results/reflow_ep99_eval_1step_fixed/30_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 547 |
+
results/reflow_ep99_eval_1step_fixed/30_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 548 |
+
results/reflow_ep99_eval_1step_fixed/31_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 549 |
+
results/reflow_ep99_eval_1step_fixed/31_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 550 |
+
results/reflow_ep99_eval_1step_fixed/32_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 551 |
+
results/reflow_ep99_eval_1step_fixed/32_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 552 |
+
results/reflow_ep99_eval_1step_fixed/33_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 553 |
+
results/reflow_ep99_eval_1step_fixed/33_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 554 |
+
results/reflow_ep99_eval_1step_fixed/34_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 555 |
+
results/reflow_ep99_eval_1step_fixed/34_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 556 |
+
results/reflow_ep99_eval_1step_fixed/35_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 557 |
+
results/reflow_ep99_eval_1step_fixed/35_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 558 |
+
results/reflow_ep99_eval_1step_fixed/36_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 559 |
+
results/reflow_ep99_eval_1step_fixed/36_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 560 |
+
results/reflow_ep99_eval_1step_fixed/37_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 561 |
+
results/reflow_ep99_eval_1step_fixed/37_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 562 |
+
results/reflow_ep99_eval_1step_fixed/38_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 563 |
+
results/reflow_ep99_eval_1step_fixed/38_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 564 |
+
results/reflow_ep99_eval_1step_fixed/39_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 565 |
+
results/reflow_ep99_eval_1step_fixed/39_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 566 |
+
results/reflow_ep99_eval_1step_fixed/3_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 567 |
+
results/reflow_ep99_eval_1step_fixed/3_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 568 |
+
results/reflow_ep99_eval_1step_fixed/40_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 569 |
+
results/reflow_ep99_eval_1step_fixed/40_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 570 |
+
results/reflow_ep99_eval_1step_fixed/41_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 571 |
+
results/reflow_ep99_eval_1step_fixed/41_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 572 |
+
results/reflow_ep99_eval_1step_fixed/42_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 573 |
+
results/reflow_ep99_eval_1step_fixed/42_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 574 |
+
results/reflow_ep99_eval_1step_fixed/43_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 575 |
+
results/reflow_ep99_eval_1step_fixed/43_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 576 |
+
results/reflow_ep99_eval_1step_fixed/44_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 577 |
+
results/reflow_ep99_eval_1step_fixed/44_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 578 |
+
results/reflow_ep99_eval_1step_fixed/45_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 579 |
+
results/reflow_ep99_eval_1step_fixed/45_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 580 |
+
results/reflow_ep99_eval_1step_fixed/46_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 581 |
+
results/reflow_ep99_eval_1step_fixed/46_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 582 |
+
results/reflow_ep99_eval_1step_fixed/47_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 583 |
+
results/reflow_ep99_eval_1step_fixed/47_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 584 |
+
results/reflow_ep99_eval_1step_fixed/48_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 585 |
+
results/reflow_ep99_eval_1step_fixed/48_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 586 |
+
results/reflow_ep99_eval_1step_fixed/49_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 587 |
+
results/reflow_ep99_eval_1step_fixed/49_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 588 |
+
results/reflow_ep99_eval_1step_fixed/4_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 589 |
+
results/reflow_ep99_eval_1step_fixed/4_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 590 |
+
results/reflow_ep99_eval_1step_fixed/50_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 591 |
+
results/reflow_ep99_eval_1step_fixed/50_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 592 |
+
results/reflow_ep99_eval_1step_fixed/51_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 593 |
+
results/reflow_ep99_eval_1step_fixed/51_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 594 |
+
results/reflow_ep99_eval_1step_fixed/52_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 595 |
+
results/reflow_ep99_eval_1step_fixed/52_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 596 |
+
results/reflow_ep99_eval_1step_fixed/53_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 597 |
+
results/reflow_ep99_eval_1step_fixed/53_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 598 |
+
results/reflow_ep99_eval_1step_fixed/54_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 599 |
+
results/reflow_ep99_eval_1step_fixed/54_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 600 |
+
results/reflow_ep99_eval_1step_fixed/55_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 601 |
+
results/reflow_ep99_eval_1step_fixed/55_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 602 |
+
results/reflow_ep99_eval_1step_fixed/56_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 603 |
+
results/reflow_ep99_eval_1step_fixed/56_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 604 |
+
results/reflow_ep99_eval_1step_fixed/57_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 605 |
+
results/reflow_ep99_eval_1step_fixed/57_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 606 |
+
results/reflow_ep99_eval_1step_fixed/5_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 607 |
+
results/reflow_ep99_eval_1step_fixed/5_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 608 |
+
results/reflow_ep99_eval_1step_fixed/6_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 609 |
+
results/reflow_ep99_eval_1step_fixed/6_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 610 |
+
results/reflow_ep99_eval_1step_fixed/7_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 611 |
+
results/reflow_ep99_eval_1step_fixed/7_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 612 |
+
results/reflow_ep99_eval_1step_fixed/8_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 613 |
+
results/reflow_ep99_eval_1step_fixed/8_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
| 614 |
+
results/reflow_ep99_eval_1step_fixed/9_rain_flow.png filter=lfs diff=lfs merge=lfs -text
|
| 615 |
+
results/reflow_ep99_eval_1step_fixed/9_rain_input.png filter=lfs diff=lfs merge=lfs -text
|
diff2flow.py
CHANGED
|
@@ -58,7 +58,7 @@ def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_time
|
|
| 58 |
class VPDiffusionFlow:
|
| 59 |
def __init__(self, args, config):
|
| 60 |
self.args = args
|
| 61 |
-
self.flow_mode = getattr(args,
|
| 62 |
self.config = config
|
| 63 |
self.device = config.device
|
| 64 |
|
|
@@ -134,9 +134,9 @@ class VPDiffusionFlow:
|
|
| 134 |
# Calculate alpha_bar analytically for linear beta schedule
|
| 135 |
scalar_t = t.item() if isinstance(t, torch.Tensor) else t
|
| 136 |
scalar_t = max(0.0, min(1.0, scalar_t))
|
| 137 |
-
|
| 138 |
N = self.num_timesteps
|
| 139 |
-
|
| 140 |
# Integral of N * (b0 + (b1-b0)*s) ds from 0 to t
|
| 141 |
# = N * [ b0*t + 0.5*(b1-b0)*t^2 ]
|
| 142 |
b0 = self.beta_start
|
|
@@ -151,6 +151,13 @@ class VPDiffusionFlow:
|
|
| 151 |
w_list = [i for i in range(0, w - output_size + 1, r)]
|
| 152 |
return h_list, w_list
|
| 153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
def get_velocity(self, x, t, x_cond, patch_size=None, r_stride=16):
|
| 155 |
# If no patching needed (x fits in patch_size or patch_size None), do normal
|
| 156 |
if patch_size is None or (
|
|
@@ -163,42 +170,56 @@ class VPDiffusionFlow:
|
|
| 163 |
t_idx = min(int(t * N), N - 1)
|
| 164 |
t_input_scalar = t_idx
|
| 165 |
|
| 166 |
-
#
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
corners = [(i, j) for i in h_list for j in w_list]
|
| 169 |
|
|
|
|
|
|
|
|
|
|
| 170 |
# Mask for overlap averaging
|
| 171 |
-
|
| 172 |
-
# But for now recompute is safer/easier.
|
| 173 |
-
x_grid_mask = torch.zeros_like(x, device=self.device)
|
| 174 |
for hi, wi in corners:
|
| 175 |
-
x_grid_mask[:, :, hi : hi + patch_size, wi : wi + patch_size] +=
|
| 176 |
|
| 177 |
# Accumulate output (epsilon or velocity)
|
| 178 |
-
output_accum = torch.zeros_like(
|
| 179 |
|
| 180 |
# Process in batches
|
| 181 |
batch_size = 64 # From restoration.py logic or config
|
| 182 |
|
| 183 |
# Prepare params if VP
|
| 184 |
-
if self.flow_mode ==
|
| 185 |
beta_discrete = self.get_beta_t(t)
|
| 186 |
beta_cont = beta_discrete * N
|
| 187 |
ab = self.alphas_cumprod[t_idx]
|
| 188 |
-
|
| 189 |
# Loop over patches
|
| 190 |
# NOTE: drift depends on x (noisy) and x_cond (clean/cond).
|
| 191 |
for i in range(0, len(corners), batch_size):
|
| 192 |
batch_corners = corners[i : i + batch_size]
|
| 193 |
|
| 194 |
-
# Crop batch
|
| 195 |
x_batch = torch.cat(
|
| 196 |
-
[
|
|
|
|
|
|
|
|
|
|
| 197 |
dim=0,
|
| 198 |
)
|
| 199 |
cond_batch = torch.cat(
|
| 200 |
[
|
| 201 |
-
crop(
|
| 202 |
for (hi, wi) in batch_corners
|
| 203 |
],
|
| 204 |
dim=0,
|
|
@@ -208,19 +229,33 @@ class VPDiffusionFlow:
|
|
| 208 |
)
|
| 209 |
|
| 210 |
with torch.no_grad():
|
| 211 |
-
model_output = self.model(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
-
# Scatter back
|
| 214 |
for idx, (hi, wi) in enumerate(batch_corners):
|
| 215 |
output_accum[0, :, hi : hi + patch_size, wi : wi + patch_size] += (
|
| 216 |
-
|
| 217 |
)
|
| 218 |
|
| 219 |
# Average
|
| 220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
# Compute v
|
| 223 |
-
if self.flow_mode ==
|
| 224 |
# In Reflow, model output is velocity
|
| 225 |
v = model_output_full
|
| 226 |
else:
|
|
@@ -229,7 +264,7 @@ class VPDiffusionFlow:
|
|
| 229 |
coeff1 = -0.5 * beta_cont
|
| 230 |
coeff2 = 0.5 * beta_cont / torch.sqrt(1 - ab)
|
| 231 |
v = coeff1 * x + coeff2 * epsilon
|
| 232 |
-
|
| 233 |
return v
|
| 234 |
|
| 235 |
def _get_velocity_single(self, x, t, x_cond):
|
|
@@ -245,7 +280,7 @@ class VPDiffusionFlow:
|
|
| 245 |
with torch.no_grad():
|
| 246 |
model_output = self.model(torch.cat([x_cond, x], dim=1), t_input)
|
| 247 |
|
| 248 |
-
if self.flow_mode ==
|
| 249 |
return model_output
|
| 250 |
else:
|
| 251 |
epsilon = model_output
|
|
@@ -315,7 +350,11 @@ def main():
|
|
| 315 |
"--rtol", type=float, default=1e-4, help="Relative tolerance for ODE solver"
|
| 316 |
)
|
| 317 |
parser.add_argument(
|
| 318 |
-
"--flow_mode",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
)
|
| 320 |
args = parser.parse_args()
|
| 321 |
|
|
|
|
| 58 |
class VPDiffusionFlow:
|
| 59 |
def __init__(self, args, config):
|
| 60 |
self.args = args
|
| 61 |
+
self.flow_mode = getattr(args, "flow_mode", "vp")
|
| 62 |
self.config = config
|
| 63 |
self.device = config.device
|
| 64 |
|
|
|
|
| 134 |
# Calculate alpha_bar analytically for linear beta schedule
|
| 135 |
scalar_t = t.item() if isinstance(t, torch.Tensor) else t
|
| 136 |
scalar_t = max(0.0, min(1.0, scalar_t))
|
| 137 |
+
|
| 138 |
N = self.num_timesteps
|
| 139 |
+
|
| 140 |
# Integral of N * (b0 + (b1-b0)*s) ds from 0 to t
|
| 141 |
# = N * [ b0*t + 0.5*(b1-b0)*t^2 ]
|
| 142 |
b0 = self.beta_start
|
|
|
|
| 151 |
w_list = [i for i in range(0, w - output_size + 1, r)]
|
| 152 |
return h_list, w_list
|
| 153 |
|
| 154 |
+
def get_blending_window(self, patch_size):
|
| 155 |
+
# Hanning window (cosine-based, smooth goes to 0 at edges)
|
| 156 |
+
# Using periodic=False (symmetric window)
|
| 157 |
+
w = torch.hann_window(patch_size, periodic=False, device=self.device)
|
| 158 |
+
w2d = w.unsqueeze(0) * w.unsqueeze(1)
|
| 159 |
+
return w2d.view(1, 1, patch_size, patch_size)
|
| 160 |
+
|
| 161 |
def get_velocity(self, x, t, x_cond, patch_size=None, r_stride=16):
|
| 162 |
# If no patching needed (x fits in patch_size or patch_size None), do normal
|
| 163 |
if patch_size is None or (
|
|
|
|
| 170 |
t_idx = min(int(t * N), N - 1)
|
| 171 |
t_input_scalar = t_idx
|
| 172 |
|
| 173 |
+
# --- Padding to handle edges ---
|
| 174 |
+
# Pad by patch_size // 2 to ensure original edges are covered by window center
|
| 175 |
+
pad_size = patch_size // 2
|
| 176 |
+
x_padded = torch.nn.functional.pad(
|
| 177 |
+
x, (pad_size, pad_size, pad_size, pad_size), mode="reflect"
|
| 178 |
+
)
|
| 179 |
+
x_cond_padded = torch.nn.functional.pad(
|
| 180 |
+
x_cond, (pad_size, pad_size, pad_size, pad_size), mode="reflect"
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
# Grid setup on PADDED image
|
| 184 |
+
h_list, w_list = self.overlapping_grid_indices(x_padded, patch_size, r=r_stride)
|
| 185 |
corners = [(i, j) for i in h_list for j in w_list]
|
| 186 |
|
| 187 |
+
# Use Weighted Averaging (Hanning Window) to reduce grid artifacts
|
| 188 |
+
window = self.get_blending_window(patch_size)
|
| 189 |
+
|
| 190 |
# Mask for overlap averaging
|
| 191 |
+
x_grid_mask = torch.zeros_like(x_padded, device=self.device)
|
|
|
|
|
|
|
| 192 |
for hi, wi in corners:
|
| 193 |
+
x_grid_mask[:, :, hi : hi + patch_size, wi : wi + patch_size] += window
|
| 194 |
|
| 195 |
# Accumulate output (epsilon or velocity)
|
| 196 |
+
output_accum = torch.zeros_like(x_padded, device=self.device)
|
| 197 |
|
| 198 |
# Process in batches
|
| 199 |
batch_size = 64 # From restoration.py logic or config
|
| 200 |
|
| 201 |
# Prepare params if VP
|
| 202 |
+
if self.flow_mode == "vp":
|
| 203 |
beta_discrete = self.get_beta_t(t)
|
| 204 |
beta_cont = beta_discrete * N
|
| 205 |
ab = self.alphas_cumprod[t_idx]
|
| 206 |
+
|
| 207 |
# Loop over patches
|
| 208 |
# NOTE: drift depends on x (noisy) and x_cond (clean/cond).
|
| 209 |
for i in range(0, len(corners), batch_size):
|
| 210 |
batch_corners = corners[i : i + batch_size]
|
| 211 |
|
| 212 |
+
# Crop batch from PADDED input
|
| 213 |
x_batch = torch.cat(
|
| 214 |
+
[
|
| 215 |
+
crop(x_padded, hi, wi, patch_size, patch_size)
|
| 216 |
+
for (hi, wi) in batch_corners
|
| 217 |
+
],
|
| 218 |
dim=0,
|
| 219 |
)
|
| 220 |
cond_batch = torch.cat(
|
| 221 |
[
|
| 222 |
+
crop(x_cond_padded, hi, wi, patch_size, patch_size)
|
| 223 |
for (hi, wi) in batch_corners
|
| 224 |
],
|
| 225 |
dim=0,
|
|
|
|
| 229 |
)
|
| 230 |
|
| 231 |
with torch.no_grad():
|
| 232 |
+
model_output = self.model(
|
| 233 |
+
torch.cat([cond_batch, x_batch], dim=1), t_batch
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
# Scatter back with window weighting
|
| 237 |
+
# model_output: [B, C, P, P]
|
| 238 |
+
weighted_output = model_output * window
|
| 239 |
|
|
|
|
| 240 |
for idx, (hi, wi) in enumerate(batch_corners):
|
| 241 |
output_accum[0, :, hi : hi + patch_size, wi : wi + patch_size] += (
|
| 242 |
+
weighted_output[idx]
|
| 243 |
)
|
| 244 |
|
| 245 |
# Average
|
| 246 |
+
# Add epsilon to mask to avoid division by zero
|
| 247 |
+
model_output_full = torch.div(output_accum, x_grid_mask + 1e-8)
|
| 248 |
+
|
| 249 |
+
# --- Crop back to original size ---
|
| 250 |
+
# x_padded was padded by pad_size on all sides.
|
| 251 |
+
# Original is at pad_size : -pad_size
|
| 252 |
+
if pad_size > 0:
|
| 253 |
+
model_output_full = model_output_full[
|
| 254 |
+
:, :, pad_size:-pad_size, pad_size:-pad_size
|
| 255 |
+
]
|
| 256 |
|
| 257 |
# Compute v
|
| 258 |
+
if self.flow_mode == "reflow":
|
| 259 |
# In Reflow, model output is velocity
|
| 260 |
v = model_output_full
|
| 261 |
else:
|
|
|
|
| 264 |
coeff1 = -0.5 * beta_cont
|
| 265 |
coeff2 = 0.5 * beta_cont / torch.sqrt(1 - ab)
|
| 266 |
v = coeff1 * x + coeff2 * epsilon
|
| 267 |
+
|
| 268 |
return v
|
| 269 |
|
| 270 |
def _get_velocity_single(self, x, t, x_cond):
|
|
|
|
| 280 |
with torch.no_grad():
|
| 281 |
model_output = self.model(torch.cat([x_cond, x], dim=1), t_input)
|
| 282 |
|
| 283 |
+
if self.flow_mode == "reflow":
|
| 284 |
return model_output
|
| 285 |
else:
|
| 286 |
epsilon = model_output
|
|
|
|
| 350 |
"--rtol", type=float, default=1e-4, help="Relative tolerance for ODE solver"
|
| 351 |
)
|
| 352 |
parser.add_argument(
|
| 353 |
+
"--flow_mode",
|
| 354 |
+
type=str,
|
| 355 |
+
default="vp",
|
| 356 |
+
choices=["vp", "reflow"],
|
| 357 |
+
help="Flow mode: vp (default) or reflow",
|
| 358 |
)
|
| 359 |
args = parser.parse_args()
|
| 360 |
|
generate_reflow_pairs.py
CHANGED
|
@@ -10,7 +10,17 @@ from diff2flow import VPDiffusionFlow, dict2namespace
|
|
| 10 |
import datasets
|
| 11 |
from tqdm import tqdm
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
"""
|
| 15 |
Solves the ODE from t=0 (data) to t=1 (noise).
|
| 16 |
Returns x_1 (noise latent).
|
|
@@ -18,7 +28,7 @@ def ode_inverse_solve(flow_model, x_data, x_cond, steps=100, method="dopri5", pa
|
|
| 18 |
# Define the drift function wrapper for torchdiffeq
|
| 19 |
# For inversion, we integrate from 0 to 1.
|
| 20 |
# The drift v(x, t) is defined for t in [0, 1].
|
| 21 |
-
|
| 22 |
def drift_func(t, x):
|
| 23 |
# flow_model.get_velocity expects t in [0, 1]
|
| 24 |
# When using torchdiffeq, t will be traversing 0->1.
|
|
@@ -26,7 +36,7 @@ def ode_inverse_solve(flow_model, x_data, x_cond, steps=100, method="dopri5", pa
|
|
| 26 |
|
| 27 |
# Time points from 0 to 1
|
| 28 |
t_eval = torch.linspace(0.0, 1.0, steps + 1, device=x_data.device)
|
| 29 |
-
|
| 30 |
# Solve
|
| 31 |
out = torchdiffeq.odeint(
|
| 32 |
drift_func, x_data, t_eval, method=method, atol=atol, rtol=rtol
|
|
@@ -34,6 +44,7 @@ def ode_inverse_solve(flow_model, x_data, x_cond, steps=100, method="dopri5", pa
|
|
| 34 |
# Return final state at t=1
|
| 35 |
return out[-1]
|
| 36 |
|
|
|
|
| 37 |
def main():
|
| 38 |
parser = argparse.ArgumentParser()
|
| 39 |
parser.add_argument("--config", type=str, required=True)
|
|
@@ -47,40 +58,48 @@ def main():
|
|
| 47 |
parser.add_argument("--method", type=str, default="dopri5")
|
| 48 |
parser.add_argument("--atol", type=float, default=1e-5)
|
| 49 |
parser.add_argument("--rtol", type=float, default=1e-5)
|
| 50 |
-
parser.add_argument(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
args = parser.parse_args()
|
| 52 |
|
| 53 |
# Load Config
|
| 54 |
with open(os.path.join("configs", args.config), "r") as f:
|
| 55 |
config_dict = yaml.safe_load(f)
|
| 56 |
config = dict2namespace(config_dict)
|
| 57 |
-
|
| 58 |
if args.data_dir:
|
| 59 |
config.data.data_dir = args.data_dir
|
| 60 |
if args.dataset:
|
| 61 |
config.data.dataset = args.dataset
|
| 62 |
-
|
| 63 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 64 |
config.device = device
|
| 65 |
-
|
| 66 |
# Reproducibility
|
| 67 |
torch.manual_seed(args.seed)
|
| 68 |
np.random.seed(args.seed)
|
| 69 |
-
|
| 70 |
# Load Model
|
| 71 |
print("Initializing VPDiffusionFlow...")
|
| 72 |
flow = VPDiffusionFlow(args, config)
|
| 73 |
flow.load_ckpt(args.resume)
|
| 74 |
-
|
| 75 |
os.makedirs(args.output_dir, exist_ok=True)
|
| 76 |
-
|
| 77 |
# Load Dataset
|
| 78 |
print(f"Loading dataset {config.data.dataset}...")
|
| 79 |
DATASET = datasets.__dict__[config.data.dataset](config)
|
| 80 |
-
|
| 81 |
# We use the TRAINING set to generate pairs for training the reflow model
|
| 82 |
-
train_loader, _ = DATASET.get_loaders(
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
| 84 |
# We want to iterate over training data. Note: get_loaders usually returns (train_loader, val_loader).
|
| 85 |
# RainDrop.get_loaders returns (train_loader, val_loader).
|
| 86 |
# train_loader usually parses patches = True for original training.
|
|
@@ -90,72 +109,75 @@ def main():
|
|
| 90 |
# The original training was likely on patches (RainDropDataset uses patch_size).
|
| 91 |
# For Reflow, we should probably train on PATCHES to match the original training distribution and efficiency.
|
| 92 |
# So let's use parse_patches=True for the loader to match training setup.
|
| 93 |
-
|
| 94 |
# However, to use `ode_inverse_solve`, we need to follow the flow.
|
| 95 |
# If we use patches, we can solve ODE for each patch independently.
|
| 96 |
# This is consistent.
|
| 97 |
-
|
| 98 |
# Re-get loaders with parse_patches=True to get training patches
|
| 99 |
train_loader, _ = DATASET.get_loaders(parse_patches=True)
|
| 100 |
-
|
| 101 |
print(f"Starting generation of reflow pairs...")
|
| 102 |
-
|
| 103 |
count = 0
|
| 104 |
-
|
| 105 |
# Iterate through training patches
|
| 106 |
-
for i, (x_batch, img_id) in enumerate(
|
|
|
|
|
|
|
| 107 |
# x_batch: [B, N, 6, H, W] if parse_patches=True
|
| 108 |
# Flatten B and N to process all patches
|
| 109 |
if x_batch.ndim == 5:
|
| 110 |
x_batch = x_batch.flatten(start_dim=0, end_dim=1)
|
| 111 |
-
|
| 112 |
-
input_img = x_batch[:, :3, :, :].to(device)
|
| 113 |
-
gt_img = x_batch[:, 3:, :, :].to(device)
|
| 114 |
-
|
| 115 |
# Transform data to [-1, 1]
|
| 116 |
x_cond = utils.sampling.data_transform(input_img)
|
| 117 |
x_data = utils.sampling.data_transform(gt_img)
|
| 118 |
-
|
| 119 |
# Run ODE Inversion: x_data (t=0) -> x_noise (t=1)
|
| 120 |
# Note: patch_size argument in ode_inverse_solve usually used for stitching.
|
| 121 |
# Here x_data IS a patch (e.g. 64x64 or config size).
|
| 122 |
# So we can pass patch_size=None or just let it handle it.
|
| 123 |
# Our VPDiffusionFlow.get_velocity handles patching if x > patch_size.
|
| 124 |
# Here x is likely small.
|
| 125 |
-
|
| 126 |
with torch.no_grad():
|
| 127 |
x_noise = ode_inverse_solve(
|
| 128 |
-
flow,
|
| 129 |
-
x_data,
|
| 130 |
-
x_cond,
|
| 131 |
-
steps=args.steps,
|
| 132 |
-
method=args.method,
|
| 133 |
patch_size=args.patch_size,
|
| 134 |
-
atol=args.atol,
|
| 135 |
-
rtol=args.rtol
|
| 136 |
)
|
| 137 |
-
|
| 138 |
# Save pair (x_noise, x_cond, x_data)
|
| 139 |
# x_noise is the 'target' input for the reflow model (at t=1)
|
| 140 |
# x_data is the 'target' output (at t=0)
|
| 141 |
# x_cond is the condition
|
| 142 |
-
|
| 143 |
# We save this batch
|
| 144 |
batch_data = {
|
| 145 |
"x_noise": x_noise.cpu(),
|
| 146 |
"x_data": x_data.cpu(),
|
| 147 |
-
"x_cond": x_cond.cpu()
|
| 148 |
}
|
| 149 |
-
|
| 150 |
save_path = os.path.join(args.output_dir, f"batch_{i}.pth")
|
| 151 |
torch.save(batch_data, save_path)
|
| 152 |
-
|
| 153 |
print(f"Saved batch {i} to {save_path}")
|
| 154 |
-
|
| 155 |
count += input_img.shape[0]
|
| 156 |
if args.max_images and count >= args.max_images:
|
| 157 |
print(f"Reached max images {args.max_images}")
|
| 158 |
break
|
| 159 |
|
|
|
|
| 160 |
if __name__ == "__main__":
|
| 161 |
main()
|
|
|
|
| 10 |
import datasets
|
| 11 |
from tqdm import tqdm
|
| 12 |
|
| 13 |
+
|
| 14 |
+
def ode_inverse_solve(
|
| 15 |
+
flow_model,
|
| 16 |
+
x_data,
|
| 17 |
+
x_cond,
|
| 18 |
+
steps=100,
|
| 19 |
+
method="dopri5",
|
| 20 |
+
patch_size=64,
|
| 21 |
+
atol=1e-5,
|
| 22 |
+
rtol=1e-5,
|
| 23 |
+
):
|
| 24 |
"""
|
| 25 |
Solves the ODE from t=0 (data) to t=1 (noise).
|
| 26 |
Returns x_1 (noise latent).
|
|
|
|
| 28 |
# Define the drift function wrapper for torchdiffeq
|
| 29 |
# For inversion, we integrate from 0 to 1.
|
| 30 |
# The drift v(x, t) is defined for t in [0, 1].
|
| 31 |
+
|
| 32 |
def drift_func(t, x):
|
| 33 |
# flow_model.get_velocity expects t in [0, 1]
|
| 34 |
# When using torchdiffeq, t will be traversing 0->1.
|
|
|
|
| 36 |
|
| 37 |
# Time points from 0 to 1
|
| 38 |
t_eval = torch.linspace(0.0, 1.0, steps + 1, device=x_data.device)
|
| 39 |
+
|
| 40 |
# Solve
|
| 41 |
out = torchdiffeq.odeint(
|
| 42 |
drift_func, x_data, t_eval, method=method, atol=atol, rtol=rtol
|
|
|
|
| 44 |
# Return final state at t=1
|
| 45 |
return out[-1]
|
| 46 |
|
| 47 |
+
|
| 48 |
def main():
|
| 49 |
parser = argparse.ArgumentParser()
|
| 50 |
parser.add_argument("--config", type=str, required=True)
|
|
|
|
| 58 |
parser.add_argument("--method", type=str, default="dopri5")
|
| 59 |
parser.add_argument("--atol", type=float, default=1e-5)
|
| 60 |
parser.add_argument("--rtol", type=float, default=1e-5)
|
| 61 |
+
parser.add_argument(
|
| 62 |
+
"--max_images",
|
| 63 |
+
type=int,
|
| 64 |
+
default=None,
|
| 65 |
+
help="Max images to generate (for testing)",
|
| 66 |
+
)
|
| 67 |
args = parser.parse_args()
|
| 68 |
|
| 69 |
# Load Config
|
| 70 |
with open(os.path.join("configs", args.config), "r") as f:
|
| 71 |
config_dict = yaml.safe_load(f)
|
| 72 |
config = dict2namespace(config_dict)
|
| 73 |
+
|
| 74 |
if args.data_dir:
|
| 75 |
config.data.data_dir = args.data_dir
|
| 76 |
if args.dataset:
|
| 77 |
config.data.dataset = args.dataset
|
| 78 |
+
|
| 79 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 80 |
config.device = device
|
| 81 |
+
|
| 82 |
# Reproducibility
|
| 83 |
torch.manual_seed(args.seed)
|
| 84 |
np.random.seed(args.seed)
|
| 85 |
+
|
| 86 |
# Load Model
|
| 87 |
print("Initializing VPDiffusionFlow...")
|
| 88 |
flow = VPDiffusionFlow(args, config)
|
| 89 |
flow.load_ckpt(args.resume)
|
| 90 |
+
|
| 91 |
os.makedirs(args.output_dir, exist_ok=True)
|
| 92 |
+
|
| 93 |
# Load Dataset
|
| 94 |
print(f"Loading dataset {config.data.dataset}...")
|
| 95 |
DATASET = datasets.__dict__[config.data.dataset](config)
|
| 96 |
+
|
| 97 |
# We use the TRAINING set to generate pairs for training the reflow model
|
| 98 |
+
train_loader, _ = DATASET.get_loaders(
|
| 99 |
+
parse_patches=False,
|
| 100 |
+
validation=config.data.dataset if args.dataset else "raindrop",
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
# We want to iterate over training data. Note: get_loaders usually returns (train_loader, val_loader).
|
| 104 |
# RainDrop.get_loaders returns (train_loader, val_loader).
|
| 105 |
# train_loader usually parses patches = True for original training.
|
|
|
|
| 109 |
# The original training was likely on patches (RainDropDataset uses patch_size).
|
| 110 |
# For Reflow, we should probably train on PATCHES to match the original training distribution and efficiency.
|
| 111 |
# So let's use parse_patches=True for the loader to match training setup.
|
| 112 |
+
|
| 113 |
# However, to use `ode_inverse_solve`, we need to follow the flow.
|
| 114 |
# If we use patches, we can solve ODE for each patch independently.
|
| 115 |
# This is consistent.
|
| 116 |
+
|
| 117 |
# Re-get loaders with parse_patches=True to get training patches
|
| 118 |
train_loader, _ = DATASET.get_loaders(parse_patches=True)
|
| 119 |
+
|
| 120 |
print(f"Starting generation of reflow pairs...")
|
| 121 |
+
|
| 122 |
count = 0
|
| 123 |
+
|
| 124 |
# Iterate through training patches
|
| 125 |
+
for i, (x_batch, img_id) in enumerate(
|
| 126 |
+
tqdm(train_loader, desc="Generating Reflow Pairs")
|
| 127 |
+
):
|
| 128 |
# x_batch: [B, N, 6, H, W] if parse_patches=True
|
| 129 |
# Flatten B and N to process all patches
|
| 130 |
if x_batch.ndim == 5:
|
| 131 |
x_batch = x_batch.flatten(start_dim=0, end_dim=1)
|
| 132 |
+
|
| 133 |
+
input_img = x_batch[:, :3, :, :].to(device) # Input (Rainy)
|
| 134 |
+
gt_img = x_batch[:, 3:, :, :].to(device) # GT (Clean)
|
| 135 |
+
|
| 136 |
# Transform data to [-1, 1]
|
| 137 |
x_cond = utils.sampling.data_transform(input_img)
|
| 138 |
x_data = utils.sampling.data_transform(gt_img)
|
| 139 |
+
|
| 140 |
# Run ODE Inversion: x_data (t=0) -> x_noise (t=1)
|
| 141 |
# Note: patch_size argument in ode_inverse_solve usually used for stitching.
|
| 142 |
# Here x_data IS a patch (e.g. 64x64 or config size).
|
| 143 |
# So we can pass patch_size=None or just let it handle it.
|
| 144 |
# Our VPDiffusionFlow.get_velocity handles patching if x > patch_size.
|
| 145 |
# Here x is likely small.
|
| 146 |
+
|
| 147 |
with torch.no_grad():
|
| 148 |
x_noise = ode_inverse_solve(
|
| 149 |
+
flow,
|
| 150 |
+
x_data,
|
| 151 |
+
x_cond,
|
| 152 |
+
steps=args.steps,
|
| 153 |
+
method=args.method,
|
| 154 |
patch_size=args.patch_size,
|
| 155 |
+
atol=args.atol,
|
| 156 |
+
rtol=args.rtol,
|
| 157 |
)
|
| 158 |
+
|
| 159 |
# Save pair (x_noise, x_cond, x_data)
|
| 160 |
# x_noise is the 'target' input for the reflow model (at t=1)
|
| 161 |
# x_data is the 'target' output (at t=0)
|
| 162 |
# x_cond is the condition
|
| 163 |
+
|
| 164 |
# We save this batch
|
| 165 |
batch_data = {
|
| 166 |
"x_noise": x_noise.cpu(),
|
| 167 |
"x_data": x_data.cpu(),
|
| 168 |
+
"x_cond": x_cond.cpu(),
|
| 169 |
}
|
| 170 |
+
|
| 171 |
save_path = os.path.join(args.output_dir, f"batch_{i}.pth")
|
| 172 |
torch.save(batch_data, save_path)
|
| 173 |
+
|
| 174 |
print(f"Saved batch {i} to {save_path}")
|
| 175 |
+
|
| 176 |
count += input_img.shape[0]
|
| 177 |
if args.max_images and count >= args.max_images:
|
| 178 |
print(f"Reached max images {args.max_images}")
|
| 179 |
break
|
| 180 |
|
| 181 |
+
|
| 182 |
if __name__ == "__main__":
|
| 183 |
main()
|
results/reflow_ep99_eval_1step_fixed/0_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/0_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/10_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/10_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/11_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/11_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/12_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/12_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/13_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/13_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/14_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/14_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/15_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/15_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/16_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/16_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/17_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/17_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/18_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/18_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/19_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/19_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/1_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/1_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/20_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/20_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/21_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/21_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/22_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/22_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/23_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/23_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/24_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/24_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/25_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/25_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/26_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/26_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/27_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/27_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/28_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/28_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/29_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/29_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/2_rain_flow.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/2_rain_input.png
ADDED
|
Git LFS Details
|
results/reflow_ep99_eval_1step_fixed/30_rain_flow.png
ADDED
|
Git LFS Details
|