Upload model
Browse files- config.json +2 -1
- model.safetensors +3 -0
- modeling_bionexttagger.py +440 -0
config.json
CHANGED
|
@@ -7,7 +7,8 @@
|
|
| 7 |
"attention_probs_dropout_prob": 0.1,
|
| 8 |
"augmentation": "unk",
|
| 9 |
"auto_map": {
|
| 10 |
-
"AutoConfig": "configuration_bionexttager.BioNextTaggerConfig"
|
|
|
|
| 11 |
},
|
| 12 |
"classifier_dropout": null,
|
| 13 |
"context_size": 2,
|
|
|
|
| 7 |
"attention_probs_dropout_prob": 0.1,
|
| 8 |
"augmentation": "unk",
|
| 9 |
"auto_map": {
|
| 10 |
+
"AutoConfig": "configuration_bionexttager.BioNextTaggerConfig",
|
| 11 |
+
"AutoModel": "modeling_bionexttagger.BioNextTaggerModel"
|
| 12 |
},
|
| 13 |
"classifier_dropout": null,
|
| 14 |
"context_size": 2,
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e0f62f81f49e7c3d3704ea79b6c9714ce76f8eaf27c70d2b4339ded3be5aed95
|
| 3 |
+
size 1334004696
|
modeling_bionexttagger.py
ADDED
|
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
from typing import Optional, Union
|
| 4 |
+
from transformers import AutoModel, PreTrainedModel, AutoConfig
|
| 5 |
+
from transformers.modeling_outputs import TokenClassifierOutput
|
| 6 |
+
from torch import nn
|
| 7 |
+
from torch.nn import CrossEntropyLoss
|
| 8 |
+
|
| 9 |
+
from typing import List, Optional
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
from itertools import islice
|
| 13 |
+
from .configuration_bionexttager import BioNextTaggerConfig
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
NUM_PER_LAYER = 16
|
| 17 |
+
|
| 18 |
+
class BioNextTaggerModel(PreTrainedModel):
|
| 19 |
+
config_class = BioNextTaggerConfig
|
| 20 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 21 |
+
|
| 22 |
+
def __init__(self, config):
|
| 23 |
+
super().__init__(config)
|
| 24 |
+
self.num_labels = config.num_labels
|
| 25 |
+
self.bert = AutoModel.from_pretrained(config._name_or_path, config=config.get_backbonemodel_config(), add_pooling_layer=False)
|
| 26 |
+
# self.vocab_size = config.vocab_size
|
| 27 |
+
classifier_dropout = (config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob)
|
| 28 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 29 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 30 |
+
self.dense_activation = nn.GELU(approximate='none')
|
| 31 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 32 |
+
self.crf = CRF(num_tags=config.num_labels, batch_first=True)
|
| 33 |
+
self.reduction=config.crf_reduction
|
| 34 |
+
|
| 35 |
+
if self.config.freeze == True:
|
| 36 |
+
self.manage_freezing()
|
| 37 |
+
|
| 38 |
+
#self.bert.init_weights() # load pretrained weights
|
| 39 |
+
|
| 40 |
+
def manage_freezing(self):
|
| 41 |
+
for _, param in self.bert.embeddings.named_parameters():
|
| 42 |
+
param.requires_grad = False
|
| 43 |
+
|
| 44 |
+
num_encoders_to_freeze = self.config.num_frozen_encoder
|
| 45 |
+
if num_encoders_to_freeze > 0:
|
| 46 |
+
for _, param in islice(self.bert.encoder.named_parameters(), num_encoders_to_freeze*NUM_PER_LAYER):
|
| 47 |
+
param.requires_grad = False
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def forward(self,
|
| 51 |
+
input_ids=None,
|
| 52 |
+
attention_mask=None,
|
| 53 |
+
token_type_ids=None,
|
| 54 |
+
position_ids=None,
|
| 55 |
+
head_mask=None,
|
| 56 |
+
inputs_embeds=None,
|
| 57 |
+
labels=None,
|
| 58 |
+
output_attentions=None,
|
| 59 |
+
output_hidden_states=None,
|
| 60 |
+
return_dict=None
|
| 61 |
+
):
|
| 62 |
+
# Default `model.config.use_return_dict´ is `True´
|
| 63 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 64 |
+
|
| 65 |
+
outputs = self.bert(input_ids,
|
| 66 |
+
attention_mask=attention_mask,
|
| 67 |
+
token_type_ids=token_type_ids,
|
| 68 |
+
position_ids=position_ids,
|
| 69 |
+
head_mask=head_mask,
|
| 70 |
+
inputs_embeds=inputs_embeds,
|
| 71 |
+
output_attentions=output_attentions,
|
| 72 |
+
output_hidden_states=output_hidden_states,
|
| 73 |
+
return_dict=return_dict)
|
| 74 |
+
|
| 75 |
+
sequence_output = outputs[0]
|
| 76 |
+
sequence_output = self.dropout(sequence_output) # B S E
|
| 77 |
+
dense_output = self.dense(sequence_output)
|
| 78 |
+
dense_output = self.dense_activation(dense_output)
|
| 79 |
+
logits = self.classifier(dense_output)
|
| 80 |
+
#logits = self.classifier(sequence_output)
|
| 81 |
+
|
| 82 |
+
loss = None
|
| 83 |
+
if labels is not None:
|
| 84 |
+
# During train/test as we don't pass labels during inference
|
| 85 |
+
|
| 86 |
+
# loss
|
| 87 |
+
return self.crf(logits, labels, reduction=self.reduction), logits
|
| 88 |
+
else:
|
| 89 |
+
# decoded tags
|
| 90 |
+
# NOTE: This gather operation (multiGPU) not work here, bc it uses tensors that are on CPU...
|
| 91 |
+
return torch.Tensor(self.crf.decode(logits))
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# Taken from https://github.com/kmkurn/pytorch-crf/blob/master/torchcrf/__init__.py and fixed got uint8 warning
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
LARGE_NEGATIVE_NUMBER = -1e9
|
| 100 |
+
|
| 101 |
+
class CRF(nn.Module):
|
| 102 |
+
"""Conditional random field.
|
| 103 |
+
This module implements a conditional random field [LMP01]_. The forward computation
|
| 104 |
+
of this class computes the log likelihood of the given sequence of tags and
|
| 105 |
+
emission score tensor. This class also has `~CRF.decode` method which finds
|
| 106 |
+
the best tag sequence given an emission score tensor using `Viterbi algorithm`_.
|
| 107 |
+
Args:
|
| 108 |
+
num_tags: Number of tags.
|
| 109 |
+
batch_first: Whether the first dimension corresponds to the size of a minibatch.
|
| 110 |
+
Attributes:
|
| 111 |
+
start_transitions (`~torch.nn.Parameter`): Start transition score tensor of size
|
| 112 |
+
``(num_tags,)``.
|
| 113 |
+
end_transitions (`~torch.nn.Parameter`): End transition score tensor of size
|
| 114 |
+
``(num_tags,)``.
|
| 115 |
+
transitions (`~torch.nn.Parameter`): Transition score tensor of size
|
| 116 |
+
``(num_tags, num_tags)``.
|
| 117 |
+
.. [LMP01] Lafferty, J., McCallum, A., Pereira, F. (2001).
|
| 118 |
+
"Conditional random fields: Probabilistic models for segmenting and
|
| 119 |
+
labeling sequence data". *Proc. 18th International Conf. on Machine
|
| 120 |
+
Learning*. Morgan Kaufmann. pp. 282–289.
|
| 121 |
+
.. _Viterbi algorithm: https://en.wikipedia.org/wiki/Viterbi_algorithm
|
| 122 |
+
"""
|
| 123 |
+
|
| 124 |
+
def __init__(self, num_tags: int, batch_first: bool = False) -> None:
|
| 125 |
+
if num_tags <= 0:
|
| 126 |
+
raise ValueError(f'invalid number of tags: {num_tags}')
|
| 127 |
+
super().__init__()
|
| 128 |
+
self.num_tags = num_tags
|
| 129 |
+
self.batch_first = batch_first
|
| 130 |
+
self.start_transitions = nn.Parameter(torch.empty(num_tags))
|
| 131 |
+
self.end_transitions = nn.Parameter(torch.empty(num_tags))
|
| 132 |
+
self.transitions = nn.Parameter(torch.empty(num_tags, num_tags))
|
| 133 |
+
|
| 134 |
+
self.reset_parameters()
|
| 135 |
+
self.mask_impossible_transitions()
|
| 136 |
+
|
| 137 |
+
def reset_parameters(self) -> None:
|
| 138 |
+
"""Initialize the transition parameters.
|
| 139 |
+
The parameters will be initialized randomly from a uniform distribution
|
| 140 |
+
between -0.1 and 0.1.
|
| 141 |
+
"""
|
| 142 |
+
nn.init.uniform_(self.start_transitions, -0.1, 0.1)
|
| 143 |
+
nn.init.uniform_(self.end_transitions, -0.1, 0.1)
|
| 144 |
+
nn.init.uniform_(self.transitions, -0.1, 0.1)
|
| 145 |
+
|
| 146 |
+
def mask_impossible_transitions(self) -> None:
|
| 147 |
+
"""Set the value of impossible transitions to LARGE_NEGATIVE_NUMBER
|
| 148 |
+
- start transition value of I-X
|
| 149 |
+
- transition score of O -> I
|
| 150 |
+
"""
|
| 151 |
+
with torch.no_grad():
|
| 152 |
+
|
| 153 |
+
for i in range(6):
|
| 154 |
+
self.start_transitions[i*2+2] = LARGE_NEGATIVE_NUMBER
|
| 155 |
+
#O to any I
|
| 156 |
+
self.transitions[0][i*2+2] = LARGE_NEGATIVE_NUMBER
|
| 157 |
+
|
| 158 |
+
#I to any other I
|
| 159 |
+
for j in range(6):
|
| 160 |
+
if j!=i:
|
| 161 |
+
self.transitions[i*2+1][j*2+2] = LARGE_NEGATIVE_NUMBER
|
| 162 |
+
self.transitions[i*2+2][j*2+2] = LARGE_NEGATIVE_NUMBER
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def __repr__(self) -> str:
|
| 167 |
+
return f'{self.__class__.__name__}(num_tags={self.num_tags})'
|
| 168 |
+
|
| 169 |
+
def forward(
|
| 170 |
+
self,
|
| 171 |
+
emissions: torch.Tensor,
|
| 172 |
+
tags: torch.LongTensor,
|
| 173 |
+
mask: Optional[torch.ByteTensor] = None,
|
| 174 |
+
reduction: str = 'sum',
|
| 175 |
+
) -> torch.Tensor:
|
| 176 |
+
"""Compute the conditional log likelihood of a sequence of tags given emission scores.
|
| 177 |
+
Args:
|
| 178 |
+
emissions (`~torch.Tensor`): Emission score tensor of size
|
| 179 |
+
``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``,
|
| 180 |
+
``(batch_size, seq_length, num_tags)`` otherwise.
|
| 181 |
+
tags (`~torch.LongTensor`): Sequence of tags tensor of size
|
| 182 |
+
``(seq_length, batch_size)`` if ``batch_first`` is ``False``,
|
| 183 |
+
``(batch_size, seq_length)`` otherwise.
|
| 184 |
+
mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)``
|
| 185 |
+
if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise.
|
| 186 |
+
reduction: Specifies the reduction to apply to the output:
|
| 187 |
+
``none|sum|mean|token_mean``. ``none``: no reduction will be applied.
|
| 188 |
+
``sum``: the output will be summed over batches. ``mean``: the output will be
|
| 189 |
+
averaged over batches. ``token_mean``: the output will be averaged over tokens.
|
| 190 |
+
Returns:
|
| 191 |
+
`~torch.Tensor`: The log likelihood. This will have size ``(batch_size,)`` if
|
| 192 |
+
reduction is ``none``, ``()`` otherwise.
|
| 193 |
+
"""
|
| 194 |
+
#self.mask_impossible_transitions()
|
| 195 |
+
self._validate(emissions, tags=tags, mask=mask)
|
| 196 |
+
if reduction not in ('none', 'sum', 'mean', 'token_mean'):
|
| 197 |
+
raise ValueError(f'invalid reduction: {reduction}')
|
| 198 |
+
if mask is None:
|
| 199 |
+
mask = torch.ones_like(tags, dtype=torch.uint8)
|
| 200 |
+
|
| 201 |
+
if self.batch_first:
|
| 202 |
+
emissions = emissions.transpose(0, 1)
|
| 203 |
+
tags = tags.transpose(0, 1)
|
| 204 |
+
mask = mask.transpose(0, 1)
|
| 205 |
+
|
| 206 |
+
# shape: (batch_size,)
|
| 207 |
+
numerator = self._compute_score(emissions, tags, mask)
|
| 208 |
+
# shape: (batch_size,)
|
| 209 |
+
denominator = self._compute_normalizer(emissions, mask)
|
| 210 |
+
# shape: (batch_size,)
|
| 211 |
+
llh = numerator - denominator
|
| 212 |
+
nllh = -llh
|
| 213 |
+
|
| 214 |
+
if reduction == 'none':
|
| 215 |
+
return nllh
|
| 216 |
+
if reduction == 'sum':
|
| 217 |
+
return nllh.sum()
|
| 218 |
+
if reduction == 'mean':
|
| 219 |
+
return nllh.mean()
|
| 220 |
+
assert reduction == 'token_mean'
|
| 221 |
+
return nllh.sum() / mask.type_as(emissions).sum()
|
| 222 |
+
|
| 223 |
+
def decode(self, emissions: torch.Tensor,
|
| 224 |
+
mask: Optional[torch.ByteTensor] = None) -> List[List[int]]:
|
| 225 |
+
"""Find the most likely tag sequence using Viterbi algorithm.
|
| 226 |
+
Args:
|
| 227 |
+
emissions (`~torch.Tensor`): Emission score tensor of size
|
| 228 |
+
``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``,
|
| 229 |
+
``(batch_size, seq_length, num_tags)`` otherwise.
|
| 230 |
+
mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)``
|
| 231 |
+
if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise.
|
| 232 |
+
Returns:
|
| 233 |
+
List of list containing the best tag sequence for each batch.
|
| 234 |
+
"""
|
| 235 |
+
self._validate(emissions, mask=mask)
|
| 236 |
+
if mask is None:
|
| 237 |
+
mask = emissions.new_ones(emissions.shape[:2], dtype=torch.uint8)
|
| 238 |
+
|
| 239 |
+
if self.batch_first:
|
| 240 |
+
emissions = emissions.transpose(0, 1)
|
| 241 |
+
mask = mask.transpose(0, 1)
|
| 242 |
+
|
| 243 |
+
return self._viterbi_decode(emissions, mask)
|
| 244 |
+
|
| 245 |
+
def _validate(
|
| 246 |
+
self,
|
| 247 |
+
emissions: torch.Tensor,
|
| 248 |
+
tags: Optional[torch.LongTensor] = None,
|
| 249 |
+
mask: Optional[torch.ByteTensor] = None) -> None:
|
| 250 |
+
if emissions.dim() != 3:
|
| 251 |
+
raise ValueError(f'emissions must have dimension of 3, got {emissions.dim()}')
|
| 252 |
+
if emissions.size(2) != self.num_tags:
|
| 253 |
+
raise ValueError(
|
| 254 |
+
f'expected last dimension of emissions is {self.num_tags}, '
|
| 255 |
+
f'got {emissions.size(2)}')
|
| 256 |
+
|
| 257 |
+
if tags is not None:
|
| 258 |
+
if emissions.shape[:2] != tags.shape:
|
| 259 |
+
raise ValueError(
|
| 260 |
+
'the first two dimensions of emissions and tags must match, '
|
| 261 |
+
f'got {tuple(emissions.shape[:2])} and {tuple(tags.shape)}')
|
| 262 |
+
|
| 263 |
+
if mask is not None:
|
| 264 |
+
if emissions.shape[:2] != mask.shape:
|
| 265 |
+
raise ValueError(
|
| 266 |
+
'the first two dimensions of emissions and mask must match, '
|
| 267 |
+
f'got {tuple(emissions.shape[:2])} and {tuple(mask.shape)}')
|
| 268 |
+
no_empty_seq = not self.batch_first and mask[0].all()
|
| 269 |
+
no_empty_seq_bf = self.batch_first and mask[:, 0].all()
|
| 270 |
+
if not no_empty_seq and not no_empty_seq_bf:
|
| 271 |
+
raise ValueError('mask of the first timestep must all be on')
|
| 272 |
+
|
| 273 |
+
def _compute_score(
|
| 274 |
+
self, emissions: torch.Tensor, tags: torch.LongTensor,
|
| 275 |
+
mask: torch.ByteTensor) -> torch.Tensor:
|
| 276 |
+
# emissions: (seq_length, batch_size, num_tags)
|
| 277 |
+
# tags: (seq_length, batch_size)
|
| 278 |
+
# mask: (seq_length, batch_size)
|
| 279 |
+
assert emissions.dim() == 3 and tags.dim() == 2
|
| 280 |
+
assert emissions.shape[:2] == tags.shape
|
| 281 |
+
assert emissions.size(2) == self.num_tags
|
| 282 |
+
assert mask.shape == tags.shape
|
| 283 |
+
assert mask[0].all()
|
| 284 |
+
|
| 285 |
+
seq_length, batch_size = tags.shape
|
| 286 |
+
mask = mask.type_as(emissions)
|
| 287 |
+
|
| 288 |
+
# Start transition score and first emission
|
| 289 |
+
# shape: (batch_size,)
|
| 290 |
+
score = self.start_transitions[tags[0]]
|
| 291 |
+
score += emissions[0, torch.arange(batch_size), tags[0]]
|
| 292 |
+
|
| 293 |
+
for i in range(1, seq_length):
|
| 294 |
+
# Transition score to next tag, only added if next timestep is valid (mask == 1)
|
| 295 |
+
# shape: (batch_size,)
|
| 296 |
+
score += self.transitions[tags[i - 1], tags[i]] * mask[i]
|
| 297 |
+
|
| 298 |
+
# Emission score for next tag, only added if next timestep is valid (mask == 1)
|
| 299 |
+
# shape: (batch_size,)
|
| 300 |
+
score += emissions[i, torch.arange(batch_size), tags[i]] * mask[i]
|
| 301 |
+
|
| 302 |
+
# End transition score
|
| 303 |
+
# shape: (batch_size,)
|
| 304 |
+
seq_ends = mask.long().sum(dim=0) - 1
|
| 305 |
+
# shape: (batch_size,)
|
| 306 |
+
last_tags = tags[seq_ends, torch.arange(batch_size)]
|
| 307 |
+
# shape: (batch_size,)
|
| 308 |
+
score += self.end_transitions[last_tags]
|
| 309 |
+
|
| 310 |
+
return score
|
| 311 |
+
|
| 312 |
+
def _compute_normalizer(
|
| 313 |
+
self, emissions: torch.Tensor, mask: torch.ByteTensor) -> torch.Tensor:
|
| 314 |
+
# emissions: (seq_length, batch_size, num_tags)
|
| 315 |
+
# mask: (seq_length, batch_size)
|
| 316 |
+
assert emissions.dim() == 3 and mask.dim() == 2
|
| 317 |
+
assert emissions.shape[:2] == mask.shape
|
| 318 |
+
assert emissions.size(2) == self.num_tags
|
| 319 |
+
assert mask[0].all()
|
| 320 |
+
|
| 321 |
+
seq_length = emissions.size(0)
|
| 322 |
+
|
| 323 |
+
# Start transition score and first emission; score has size of
|
| 324 |
+
# (batch_size, num_tags) where for each batch, the j-th column stores
|
| 325 |
+
# the score that the first timestep has tag j
|
| 326 |
+
# shape: (batch_size, num_tags)
|
| 327 |
+
score = self.start_transitions + emissions[0]
|
| 328 |
+
|
| 329 |
+
for i in range(1, seq_length):
|
| 330 |
+
# Broadcast score for every possible next tag
|
| 331 |
+
# shape: (batch_size, num_tags, 1)
|
| 332 |
+
broadcast_score = score.unsqueeze(2)
|
| 333 |
+
|
| 334 |
+
# Broadcast emission score for every possible current tag
|
| 335 |
+
# shape: (batch_size, 1, num_tags)
|
| 336 |
+
broadcast_emissions = emissions[i].unsqueeze(1)
|
| 337 |
+
|
| 338 |
+
# Compute the score tensor of size (batch_size, num_tags, num_tags) where
|
| 339 |
+
# for each sample, entry at row i and column j stores the sum of scores of all
|
| 340 |
+
# possible tag sequences so far that end with transitioning from tag i to tag j
|
| 341 |
+
# and emitting
|
| 342 |
+
# shape: (batch_size, num_tags, num_tags)
|
| 343 |
+
next_score = broadcast_score + self.transitions + broadcast_emissions
|
| 344 |
+
|
| 345 |
+
# Sum over all possible current tags, but we're in score space, so a sum
|
| 346 |
+
# becomes a log-sum-exp: for each sample, entry i stores the sum of scores of
|
| 347 |
+
# all possible tag sequences so far, that end in tag i
|
| 348 |
+
# shape: (batch_size, num_tags)
|
| 349 |
+
next_score = torch.logsumexp(next_score, dim=1)
|
| 350 |
+
|
| 351 |
+
# Set score to the next score if this timestep is valid (mask == 1)
|
| 352 |
+
# shape: (batch_size, num_tags)
|
| 353 |
+
score = torch.where(mask[i].unsqueeze(1).bool(), next_score, score)
|
| 354 |
+
|
| 355 |
+
# End transition score
|
| 356 |
+
# shape: (batch_size, num_tags)
|
| 357 |
+
score += self.end_transitions
|
| 358 |
+
|
| 359 |
+
# Sum (log-sum-exp) over all possible tags
|
| 360 |
+
# shape: (batch_size,)
|
| 361 |
+
return torch.logsumexp(score, dim=1)
|
| 362 |
+
|
| 363 |
+
def _viterbi_decode(self, emissions: torch.FloatTensor,
|
| 364 |
+
mask: torch.ByteTensor) -> List[List[int]]:
|
| 365 |
+
# emissions: (seq_length, batch_size, num_tags)
|
| 366 |
+
# mask: (seq_length, batch_size)
|
| 367 |
+
assert emissions.dim() == 3 and mask.dim() == 2
|
| 368 |
+
assert emissions.shape[:2] == mask.shape
|
| 369 |
+
assert emissions.size(2) == self.num_tags
|
| 370 |
+
assert mask[0].all()
|
| 371 |
+
|
| 372 |
+
seq_length, batch_size = mask.shape
|
| 373 |
+
|
| 374 |
+
# Start transition and first emission
|
| 375 |
+
# shape: (batch_size, num_tags)
|
| 376 |
+
score = self.start_transitions + emissions[0]
|
| 377 |
+
history = []
|
| 378 |
+
|
| 379 |
+
# score is a tensor of size (batch_size, num_tags) where for every batch,
|
| 380 |
+
# value at column j stores the score of the best tag sequence so far that ends
|
| 381 |
+
# with tag j
|
| 382 |
+
# history saves where the best tags candidate transitioned from; this is used
|
| 383 |
+
# when we trace back the best tag sequence
|
| 384 |
+
|
| 385 |
+
# Viterbi algorithm recursive case: we compute the score of the best tag sequence
|
| 386 |
+
# for every possible next tag
|
| 387 |
+
for i in range(1, seq_length):
|
| 388 |
+
# Broadcast viterbi score for every possible next tag
|
| 389 |
+
# shape: (batch_size, num_tags, 1)
|
| 390 |
+
broadcast_score = score.unsqueeze(2)
|
| 391 |
+
|
| 392 |
+
# Broadcast emission score for every possible current tag
|
| 393 |
+
# shape: (batch_size, 1, num_tags)
|
| 394 |
+
broadcast_emission = emissions[i].unsqueeze(1)
|
| 395 |
+
|
| 396 |
+
# Compute the score tensor of size (batch_size, num_tags, num_tags) where
|
| 397 |
+
# for each sample, entry at row i and column j stores the score of the best
|
| 398 |
+
# tag sequence so far that ends with transitioning from tag i to tag j and emitting
|
| 399 |
+
# shape: (batch_size, num_tags, num_tags)
|
| 400 |
+
next_score = broadcast_score + self.transitions + broadcast_emission
|
| 401 |
+
|
| 402 |
+
# Find the maximum score over all possible current tag
|
| 403 |
+
# shape: (batch_size, num_tags)
|
| 404 |
+
next_score, indices = next_score.max(dim=1)
|
| 405 |
+
|
| 406 |
+
# Set score to the next score if this timestep is valid (mask == 1)
|
| 407 |
+
# and save the index that produces the next score
|
| 408 |
+
# shape: (batch_size, num_tags)
|
| 409 |
+
score = torch.where(mask[i].unsqueeze(1).bool(), next_score, score)
|
| 410 |
+
history.append(indices)
|
| 411 |
+
|
| 412 |
+
# End transition score
|
| 413 |
+
# shape: (batch_size, num_tags)
|
| 414 |
+
score += self.end_transitions
|
| 415 |
+
|
| 416 |
+
# Now, compute the best path for each sample
|
| 417 |
+
|
| 418 |
+
# shape: (batch_size,)
|
| 419 |
+
seq_ends = mask.long().sum(dim=0) - 1
|
| 420 |
+
best_tags_list = []
|
| 421 |
+
|
| 422 |
+
for idx in range(batch_size):
|
| 423 |
+
# Find the tag which maximizes the score at the last timestep; this is our best tag
|
| 424 |
+
# for the last timestep
|
| 425 |
+
_, best_last_tag = score[idx].max(dim=0)
|
| 426 |
+
best_tags = [best_last_tag.item()]
|
| 427 |
+
|
| 428 |
+
# We trace back where the best last tag comes from, append that to our best tag
|
| 429 |
+
# sequence, and trace it back again, and so on
|
| 430 |
+
for hist in reversed(history[:seq_ends[idx]]):
|
| 431 |
+
best_last_tag = hist[idx][best_tags[-1]]
|
| 432 |
+
best_tags.append(best_last_tag.item())
|
| 433 |
+
|
| 434 |
+
# Reverse the order because we start from the last timestep
|
| 435 |
+
best_tags.reverse()
|
| 436 |
+
best_tags_list.append(best_tags)
|
| 437 |
+
|
| 438 |
+
return best_tags_list
|
| 439 |
+
|
| 440 |
+
|