Update handler.py
Browse files- handler.py +21 -5
handler.py
CHANGED
|
@@ -1,12 +1,18 @@
|
|
| 1 |
-
# handler.py
|
| 2 |
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
from peft import PeftModel
|
| 5 |
from huggingface_hub import snapshot_download
|
| 6 |
|
|
|
|
| 7 |
BASE_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
| 8 |
ADAPTER_PATH = "GilbertAkham/deepseek-R1-multitask-lora"
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
class EndpointHandler:
|
| 11 |
def __init__(self, path=""):
|
| 12 |
print("🚀 Loading base model...")
|
|
@@ -30,17 +36,27 @@ class EndpointHandler:
|
|
| 30 |
print("✅ Model + LoRA adapter loaded successfully.")
|
| 31 |
|
| 32 |
def __call__(self, data):
|
|
|
|
| 33 |
prompt = data.get("inputs", "")
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
with torch.no_grad():
|
| 36 |
outputs = self.model.generate(
|
| 37 |
**inputs,
|
| 38 |
-
max_new_tokens=
|
| 39 |
-
temperature=
|
| 40 |
-
top_p=
|
| 41 |
do_sample=True,
|
| 42 |
pad_token_id=self.tokenizer.eos_token_id,
|
| 43 |
eos_token_id=self.tokenizer.eos_token_id,
|
| 44 |
)
|
|
|
|
| 45 |
text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 46 |
return {"generated_text": text}
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
from peft import PeftModel
|
| 4 |
from huggingface_hub import snapshot_download
|
| 5 |
|
| 6 |
+
# === Base & adapter config ===
|
| 7 |
BASE_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
| 8 |
ADAPTER_PATH = "GilbertAkham/deepseek-R1-multitask-lora"
|
| 9 |
|
| 10 |
+
# === System message (always prepended to input) ===
|
| 11 |
+
SYSTEM_PROMPT = (
|
| 12 |
+
"You are Chat-Bot, a helpful and logical assistant trained for reasoning, "
|
| 13 |
+
"email, chatting, summarization, story continuation, and report writing.\n\n"
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
class EndpointHandler:
|
| 17 |
def __init__(self, path=""):
|
| 18 |
print("🚀 Loading base model...")
|
|
|
|
| 36 |
print("✅ Model + LoRA adapter loaded successfully.")
|
| 37 |
|
| 38 |
def __call__(self, data):
|
| 39 |
+
# === Combine system + user prompt ===
|
| 40 |
prompt = data.get("inputs", "")
|
| 41 |
+
full_prompt = SYSTEM_PROMPT + prompt
|
| 42 |
+
|
| 43 |
+
params = data.get("parameters", {})
|
| 44 |
+
max_new_tokens = params.get("max_new_tokens", 512)
|
| 45 |
+
temperature = params.get("temperature", 0.7)
|
| 46 |
+
top_p = params.get("top_p", 0.9)
|
| 47 |
+
|
| 48 |
+
# === Tokenize and run generation ===
|
| 49 |
+
inputs = self.tokenizer(full_prompt, return_tensors="pt").to(self.model.device)
|
| 50 |
with torch.no_grad():
|
| 51 |
outputs = self.model.generate(
|
| 52 |
**inputs,
|
| 53 |
+
max_new_tokens=max_new_tokens,
|
| 54 |
+
temperature=temperature,
|
| 55 |
+
top_p=top_p,
|
| 56 |
do_sample=True,
|
| 57 |
pad_token_id=self.tokenizer.eos_token_id,
|
| 58 |
eos_token_id=self.tokenizer.eos_token_id,
|
| 59 |
)
|
| 60 |
+
|
| 61 |
text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 62 |
return {"generated_text": text}
|