File size: 2,767 Bytes
25f6642 5811c94 10715a6 5811c94 25f6642 e1569e2 25f6642 9413549 5811c94 25f6642 5811c94 25f6642 f1f4024 25f6642 f1f4024 25f6642 f1f4024 25f6642 f1f4024 5811c94 25f6642 5811c94 25f6642 5811c94 25f6642 5811c94 25f6642 5811c94 25f6642 5811c94 25f6642 5811c94 25f6642 5811c94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
language:
- en
license: apache-2.0
tags:
- text-generation
- instruction-tuning
- multi-task
- reasoning
- email
- summarization
- chat
- peft
- lora
- qwen
- deepseek
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
datasets:
- HuggingFaceTB/smoltalk
- snoop2head/enron_aeslc_emails
- lucadiliello/STORIES
- abisee/cnn_dailymail
- wiki40b
model_type: causal-lm
inference: true
library_name: peft
pipeline_tag: text-generation
---
# 🧠 Deepseek-R1-multitask-lora
**Author:** Gilbert Akham
**License:** Apache-2.0
**Base model:** [`deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B`](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B)
**Adapter type:** LoRA (PEFT)
**Capabilities:** Multi-task generalization & reasoning
---
# 🚀 What It Can Do
This multitask fine-tuned model handles a broad set of natural language and reasoning-based tasks, such as:
✉️ Email & message writing — generate clear, friendly, or professional communications.
📖 Story & creative writing — craft imaginative narratives, poems, and dialogues.
💬 Conversational chat — maintain coherent, context-aware conversations.
💡 Explanations & tutoring — explain technical or abstract topics simply.
🧩 Reasoning & logic tasks — provide step-by-step answers for analytical questions.
💻 Code generation & explanation — write and explain Python or general programming code.
🌍 Translation & summarization — translate between multiple languages or condense information.
The model’s multi-domain training (based on datasets like SmolTalk, Everyday Conversations, and reasoning-rich samples) makes it suitable for assistants, chatbots, content generators, or educational tools.
---
## 🧩 Training Details
| Parameter | Value |
|------------|-------|
| Base model | `deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B` |
| Adapter | LoRA (r=8, alpha=32, dropout=0.1) |
| Max sequence length | 1024 |
| Learning rate | 3e-5 (cosine decay) |
| Optimizer | `adamw_8bit` |
| Grad Accumulation | 4 |
| Precision | 4-bit quantized, FP16 compute |
| Steps | 12k total (best @ ~8.2k) |
| Training time | ~2.5h on A4000 |
| Frameworks | 🤗 Transformers, PEFT, TRL, BitsAndBytes |
---
## 🧠 Reasoning Capability
Thanks to integration of **SmolTalk** and diverse multi-task prompts, the model learns:
- **Chain-of-thought style reasoning**
- **Conversational grounding**
- **Multi-step logical inferences**
- **Instruction following** across domains
Example:
```text
### Task: Explain reasoning
### Input:
If a train leaves City A at 3 PM and arrives at City B at 6 PM, covering 180 km, what is its average speed?
### Output:
The train travels 180 km in 3 hours.
Average speed = 180 ÷ 3 = 60 km/h.
|