File size: 5,951 Bytes
d407812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f2be92
d407812
 
 
 
 
 
 
 
 
 
8f2be92
d407812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from functools import partial
from typing import Any, Dict, List, Optional

import torch
from torch import nn


class BaseEncoder(nn.Module):
    def __init__(self, parent: nn.Module) -> None:
        super().__init__()
        self._parent = [parent]

    @property
    def parent(self) -> nn.Module:
        return self._parent[0]


class BasicImageEncoder(BaseEncoder):
    def __init__(
        self,
        parent: torch.nn.Module,
        start_tokens: Optional[str] = None,
        end_tokens: Optional[str] = "\n",
    ) -> None:
        super().__init__(parent)
        self.start_tokens = start_tokens
        self.end_tokens = end_tokens

    def embed_tokens(self, tokens: Optional[str]) -> Optional[torch.Tensor]:
        if tokens is None:
            return None
        token_ids = self.parent.tokenizer(tokens).input_ids
        token_ids = torch.tensor(token_ids, device=self.parent.device)
        return self.parent.llm_model_embed_tokens(token_ids)

    def _process_features(
        self,
        features: torch.Tensor,
        start_token_embeds: Optional[torch.Tensor],
        end_token_embeds: Optional[torch.Tensor],
    ) -> torch.Tensor:
        if start_token_embeds is not None:
            features = torch.cat([start_token_embeds, features], dim=0)
        if end_token_embeds is not None:
            features = torch.cat([features, end_token_embeds], dim=0)
        return features

    def forward(self, images: List[torch.Tensor], config: Dict[str, Any], device: torch.device) -> List[torch.Tensor]:
        images = torch.stack(images, dim=0)
        features = self.parent.encode_images(images, block_sizes=config.get("block_sizes"))
        process_features = partial(
            self._process_features,
            start_token_embeds=self.embed_tokens(self.start_tokens),
            end_token_embeds=self.embed_tokens(self.end_tokens),
        )
        return [process_features(f).to(device) for f in features]


class BasicVideoEncoder(BaseEncoder):
    def __init__(
        self,
        parent: torch.nn.Module,
        start_tokens: Optional[str] = None,
        end_tokens: Optional[str] = "\n",
    ) -> None:
        super().__init__(parent)
        self.start_tokens = start_tokens
        self.end_tokens = end_tokens

    def embed_tokens(self, tokens: Optional[str]) -> Optional[torch.Tensor]:
        if tokens is None:
            return None
        token_ids = self.parent.tokenizer(tokens).input_ids
        token_ids = torch.tensor(token_ids, device=self.parent.device)
        return self.parent.llm_model_embed_tokens(token_ids)

    def _process_features(
        self,
        features: torch.Tensor,
        start_token_embeds: Optional[torch.Tensor],
        end_token_embeds: Optional[torch.Tensor],
    ) -> torch.Tensor:
        if start_token_embeds is not None:
            start_embeds = torch.stack([start_token_embeds] * features.shape[0], dim=0)
            features = torch.cat([start_embeds, features], dim=1)
        if end_token_embeds is not None:
            end_embeds = torch.stack([end_token_embeds] * features.shape[0], dim=0)
            features = torch.cat([features, end_embeds], dim=1)
        return features.flatten(0, 1)

    def forward(self, videos: List[torch.Tensor], config: Dict[str, Any]) -> List[torch.Tensor]:
        num_frames = [video.shape[0] for video in videos]
        images = torch.cat(videos, dim=0)
        features = self.parent.encode_images(images)
        features = torch.split(features, num_frames)
        process_features = partial(
            self._process_features,
            start_token_embeds=self.embed_tokens(self.start_tokens),
            end_token_embeds=self.embed_tokens(self.end_tokens),
        )
        return [process_features(f) for f in features]

def pool(x: torch.Tensor, size: int, dim: int) -> torch.Tensor:
    return x.view(x.shape[:dim] + (-1, size) + x.shape[dim + 1 :]).mean(dim + 1)

class TSPVideoEncoder(BasicVideoEncoder):
    def __init__(
        self,
        parent: torch.nn.Module,
        start_tokens: Optional[str] = None,
        end_tokens: Optional[str] = "\n",
        sep_tokens: Optional[str] = None,
    ) -> None:
        super().__init__(parent, start_tokens=start_tokens, end_tokens=end_tokens)
        self.pool_sizes = [[8, 1, 1]]
        self.sep_tokens = sep_tokens

    def _process_features(
        self,
        inputs: torch.Tensor,
        start_token_embeds: Optional[torch.Tensor],
        end_token_embeds: Optional[torch.Tensor],
        sep_token_embeds: Optional[torch.Tensor],
    ) -> torch.Tensor:
        nt, ns = inputs.shape[:2]
        nl = int(ns**0.5)
        outputs = []
        for pool_size in self.pool_sizes:
            features = inputs.view(nt, nl, nl, -1)
            for dim, p in enumerate(pool_size):
                features = pool(features, p, dim=dim)
            features = features.flatten(1, 2)
            features = super()._process_features(
                features,
                start_token_embeds=start_token_embeds,
                end_token_embeds=end_token_embeds,
            )
            if sep_token_embeds is not None:
                features = torch.cat([features, sep_token_embeds], dim=0)
            outputs.append(features)
        return torch.cat(outputs, dim=0)

    def forward(self, videos: List[torch.Tensor], config: Dict[str, Any]) -> List[torch.Tensor]:
        num_frames = [video.shape[0] for video in videos]
        images = torch.cat(videos, dim=0)
        features = self.parent.encode_images(images)
        features = torch.split(features, num_frames)
        process_features = partial(
            self._process_features,
            start_token_embeds=self.embed_tokens(self.start_tokens),
            end_token_embeds=self.embed_tokens(self.end_tokens),
            sep_token_embeds=self.embed_tokens(self.sep_tokens),
        )
        return [process_features(f) for f in features]