Commit
·
cafa4f8
1
Parent(s):
1beb2ae
Upload multi_frame_render.py
Browse files- script/multi_frame_render.py +201 -0
script/multi_frame_render.py
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Beta V0.72
|
| 2 |
+
import numpy as np
|
| 3 |
+
from tqdm import trange
|
| 4 |
+
from PIL import Image, ImageSequence, ImageDraw
|
| 5 |
+
import math
|
| 6 |
+
|
| 7 |
+
import modules.scripts as scripts
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
from modules import processing, shared, sd_samplers, images
|
| 11 |
+
from modules.processing import Processed
|
| 12 |
+
from modules.sd_samplers import samplers
|
| 13 |
+
from modules.shared import opts, cmd_opts, state
|
| 14 |
+
from modules import deepbooru
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class Script(scripts.Script):
|
| 18 |
+
def title(self):
|
| 19 |
+
return "(Beta) Multi-frame Video rendering - V0.72"
|
| 20 |
+
|
| 21 |
+
def show(self, is_img2img):
|
| 22 |
+
return is_img2img
|
| 23 |
+
|
| 24 |
+
def ui(self, is_img2img):
|
| 25 |
+
first_denoise = gr.Slider(minimum=0, maximum=1, step=0.05, label='Initial Denoise Strength', value=1, elem_id=self.elem_id("first_denoise"))
|
| 26 |
+
append_interrogation = gr.Dropdown(label="Append interrogated prompt at each iteration", choices=["None", "CLIP", "DeepBooru"], value="None")
|
| 27 |
+
third_frame_image = gr.Dropdown(label="Third Frame Image", choices=["None", "FirstGen", "GuideImg", "Historical"], value="None")
|
| 28 |
+
reference_imgs = gr.UploadButton(label="Upload Guide Frames", file_types = ['.png','.jpg','.jpeg'], live=True, file_count = "multiple")
|
| 29 |
+
color_correction_enabled = gr.Checkbox(label="Enable Color Correction", value=False, elem_id=self.elem_id("color_correction_enabled"))
|
| 30 |
+
unfreeze_seed = gr.Checkbox(label="Unfreeze Seed", value=False, elem_id=self.elem_id("unfreeze_seed"))
|
| 31 |
+
loopback_source = gr.Dropdown(label="Loopback Source", choices=["PreviousFrame", "InputFrame","FirstGen"], value="PreviousFrame")
|
| 32 |
+
|
| 33 |
+
return [append_interrogation, reference_imgs, first_denoise, third_frame_image, color_correction_enabled, unfreeze_seed, loopback_source]
|
| 34 |
+
|
| 35 |
+
def run(self, p, append_interrogation, reference_imgs, first_denoise, third_frame_image, color_correction_enabled, unfreeze_seed, loopback_source):
|
| 36 |
+
freeze_seed = not unfreeze_seed
|
| 37 |
+
|
| 38 |
+
loops = len(reference_imgs)
|
| 39 |
+
|
| 40 |
+
processing.fix_seed(p)
|
| 41 |
+
batch_count = p.n_iter
|
| 42 |
+
|
| 43 |
+
p.batch_size = 1
|
| 44 |
+
p.n_iter = 1
|
| 45 |
+
|
| 46 |
+
output_images, info = None, None
|
| 47 |
+
initial_seed = None
|
| 48 |
+
initial_info = None
|
| 49 |
+
|
| 50 |
+
initial_width = p.width
|
| 51 |
+
initial_img = p.init_images[0]
|
| 52 |
+
|
| 53 |
+
grids = []
|
| 54 |
+
all_images = []
|
| 55 |
+
original_init_image = p.init_images
|
| 56 |
+
original_prompt = p.prompt
|
| 57 |
+
original_denoise = p.denoising_strength
|
| 58 |
+
state.job_count = loops * batch_count
|
| 59 |
+
|
| 60 |
+
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
|
| 61 |
+
|
| 62 |
+
for n in range(batch_count):
|
| 63 |
+
history = []
|
| 64 |
+
frames = []
|
| 65 |
+
third_image = None
|
| 66 |
+
third_image_index = 0
|
| 67 |
+
frame_color_correction = None
|
| 68 |
+
|
| 69 |
+
# Reset to original init image at the start of each batch
|
| 70 |
+
p.init_images = original_init_image
|
| 71 |
+
p.width = initial_width
|
| 72 |
+
|
| 73 |
+
for i in range(loops):
|
| 74 |
+
p.n_iter = 1
|
| 75 |
+
p.batch_size = 1
|
| 76 |
+
p.do_not_save_grid = True
|
| 77 |
+
p.control_net_input_image = Image.open(reference_imgs[i].name).convert("RGB").resize((initial_width, p.height), Image.ANTIALIAS)
|
| 78 |
+
|
| 79 |
+
if(i > 0):
|
| 80 |
+
loopback_image = p.init_images[0]
|
| 81 |
+
if loopback_source == "InputFrame":
|
| 82 |
+
loopback_image = p.control_net_input_image
|
| 83 |
+
elif loopback_source == "FirstGen":
|
| 84 |
+
loopback_image = history[0]
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
if third_frame_image != "None" and i > 1:
|
| 88 |
+
p.width = initial_width * 3
|
| 89 |
+
img = Image.new("RGB", (initial_width*3, p.height))
|
| 90 |
+
img.paste(p.init_images[0], (0, 0))
|
| 91 |
+
# img.paste(p.init_images[0], (initial_width, 0))
|
| 92 |
+
img.paste(loopback_image, (initial_width, 0))
|
| 93 |
+
img.paste(third_image, (initial_width*2, 0))
|
| 94 |
+
p.init_images = [img]
|
| 95 |
+
if color_correction_enabled:
|
| 96 |
+
p.color_corrections = [processing.setup_color_correction(img)]
|
| 97 |
+
|
| 98 |
+
msk = Image.new("RGB", (initial_width*3, p.height))
|
| 99 |
+
msk.paste(Image.open(reference_imgs[i-1].name).convert("RGB").resize((initial_width, p.height), Image.ANTIALIAS), (0, 0))
|
| 100 |
+
msk.paste(p.control_net_input_image, (initial_width, 0))
|
| 101 |
+
msk.paste(Image.open(reference_imgs[third_image_index].name).convert("RGB").resize((initial_width, p.height), Image.ANTIALIAS), (initial_width*2, 0))
|
| 102 |
+
p.control_net_input_image = msk
|
| 103 |
+
|
| 104 |
+
latent_mask = Image.new("RGB", (initial_width*3, p.height), "black")
|
| 105 |
+
latent_draw = ImageDraw.Draw(latent_mask)
|
| 106 |
+
latent_draw.rectangle((initial_width,0,initial_width*2,p.height), fill="white")
|
| 107 |
+
p.image_mask = latent_mask
|
| 108 |
+
p.denoising_strength = original_denoise
|
| 109 |
+
else:
|
| 110 |
+
p.width = initial_width * 2
|
| 111 |
+
img = Image.new("RGB", (initial_width*2, p.height))
|
| 112 |
+
img.paste(p.init_images[0], (0, 0))
|
| 113 |
+
# img.paste(p.init_images[0], (initial_width, 0))
|
| 114 |
+
img.paste(loopback_image, (initial_width, 0))
|
| 115 |
+
p.init_images = [img]
|
| 116 |
+
if color_correction_enabled:
|
| 117 |
+
p.color_corrections = [processing.setup_color_correction(img)]
|
| 118 |
+
|
| 119 |
+
msk = Image.new("RGB", (initial_width*2, p.height))
|
| 120 |
+
msk.paste(Image.open(reference_imgs[i-1].name).convert("RGB").resize((initial_width, p.height), Image.ANTIALIAS), (0, 0))
|
| 121 |
+
msk.paste(p.control_net_input_image, (initial_width, 0))
|
| 122 |
+
p.control_net_input_image = msk
|
| 123 |
+
frames.append(msk)
|
| 124 |
+
|
| 125 |
+
# latent_mask = Image.new("RGB", (initial_width*2, p.height), "white")
|
| 126 |
+
# latent_draw = ImageDraw.Draw(latent_mask)
|
| 127 |
+
# latent_draw.rectangle((0,0,initial_width,p.height), fill="black")
|
| 128 |
+
latent_mask = Image.new("RGB", (initial_width*2, p.height), "black")
|
| 129 |
+
latent_draw = ImageDraw.Draw(latent_mask)
|
| 130 |
+
latent_draw.rectangle((initial_width,0,initial_width*2,p.height), fill="white")
|
| 131 |
+
|
| 132 |
+
# p.latent_mask = latent_mask
|
| 133 |
+
p.image_mask = latent_mask
|
| 134 |
+
p.denoising_strength = original_denoise
|
| 135 |
+
else:
|
| 136 |
+
latent_mask = Image.new("RGB", (initial_width, p.height), "white")
|
| 137 |
+
# p.latent_mask = latent_mask
|
| 138 |
+
p.image_mask = latent_mask
|
| 139 |
+
p.denoising_strength = first_denoise
|
| 140 |
+
p.control_net_input_image = p.control_net_input_image.resize((initial_width, p.height))
|
| 141 |
+
frames.append(p.control_net_input_image)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
if append_interrogation != "None":
|
| 145 |
+
p.prompt = original_prompt + ", " if original_prompt != "" else ""
|
| 146 |
+
if append_interrogation == "CLIP":
|
| 147 |
+
p.prompt += shared.interrogator.interrogate(p.init_images[0])
|
| 148 |
+
elif append_interrogation == "DeepBooru":
|
| 149 |
+
p.prompt += deepbooru.model.tag(p.init_images[0])
|
| 150 |
+
|
| 151 |
+
state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}"
|
| 152 |
+
|
| 153 |
+
processed = processing.process_images(p)
|
| 154 |
+
|
| 155 |
+
if initial_seed is None:
|
| 156 |
+
initial_seed = processed.seed
|
| 157 |
+
initial_info = processed.info
|
| 158 |
+
|
| 159 |
+
init_img = processed.images[0]
|
| 160 |
+
if(i > 0):
|
| 161 |
+
init_img = init_img.crop((initial_width, 0, initial_width*2, p.height))
|
| 162 |
+
|
| 163 |
+
if third_frame_image != "None":
|
| 164 |
+
if third_frame_image == "FirstGen" and i == 0:
|
| 165 |
+
third_image = init_img
|
| 166 |
+
third_image_index = 0
|
| 167 |
+
elif third_frame_image == "GuideImg" and i == 0:
|
| 168 |
+
third_image = original_init_image[0]
|
| 169 |
+
third_image_index = 0
|
| 170 |
+
elif third_frame_image == "Historical":
|
| 171 |
+
third_image = processed.images[0].crop((0, 0, initial_width, p.height))
|
| 172 |
+
third_image_index = (i-1)
|
| 173 |
+
|
| 174 |
+
p.init_images = [init_img]
|
| 175 |
+
if(freeze_seed):
|
| 176 |
+
p.seed = processed.seed
|
| 177 |
+
else:
|
| 178 |
+
p.seed = processed.seed + 1
|
| 179 |
+
|
| 180 |
+
history.append(init_img)
|
| 181 |
+
if opts.samples_save:
|
| 182 |
+
images.save_image(init_img, p.outpath_samples, "Frame", p.seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
|
| 183 |
+
|
| 184 |
+
frames.append(processed.images[0])
|
| 185 |
+
|
| 186 |
+
grid = images.image_grid(history, rows=1)
|
| 187 |
+
if opts.grid_save:
|
| 188 |
+
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
|
| 189 |
+
|
| 190 |
+
grids.append(grid)
|
| 191 |
+
# all_images += history + frames
|
| 192 |
+
all_images += history
|
| 193 |
+
|
| 194 |
+
p.seed = p.seed+1
|
| 195 |
+
|
| 196 |
+
if opts.return_grid:
|
| 197 |
+
all_images = grids + all_images
|
| 198 |
+
|
| 199 |
+
processed = Processed(p, all_images, initial_seed, initial_info)
|
| 200 |
+
|
| 201 |
+
return processed
|