Upload 4 files
Browse files- CVRP_configs/CVRP_deeplabv3plus.py +303 -0
- CVRP_configs/CVRP_knet.py +404 -0
- CVRP_configs/CVRP_mask2former.py +572 -0
- CVRP_configs/CVRP_segformer.py +322 -0
CVRP_configs/CVRP_deeplabv3plus.py
ADDED
|
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
crop_size = (
|
| 2 |
+
512,
|
| 3 |
+
512,
|
| 4 |
+
)
|
| 5 |
+
data_preprocessor = dict(
|
| 6 |
+
bgr_to_rgb=True,
|
| 7 |
+
mean=[
|
| 8 |
+
123.675,
|
| 9 |
+
116.28,
|
| 10 |
+
103.53,
|
| 11 |
+
],
|
| 12 |
+
pad_val=0,
|
| 13 |
+
seg_pad_val=255,
|
| 14 |
+
size=(
|
| 15 |
+
512,
|
| 16 |
+
512,
|
| 17 |
+
),
|
| 18 |
+
std=[
|
| 19 |
+
58.395,
|
| 20 |
+
57.12,
|
| 21 |
+
57.375,
|
| 22 |
+
],
|
| 23 |
+
type='SegDataPreProcessor')
|
| 24 |
+
data_root = 'CVRPDataset/'
|
| 25 |
+
dataset_type = 'CVRPDataset'
|
| 26 |
+
default_hooks = dict(
|
| 27 |
+
checkpoint=dict(
|
| 28 |
+
by_epoch=False,
|
| 29 |
+
interval=2500,
|
| 30 |
+
max_keep_ckpts=1,
|
| 31 |
+
save_best='mIoU',
|
| 32 |
+
type='CheckpointHook'),
|
| 33 |
+
logger=dict(interval=100, log_metric_by_epoch=False, type='LoggerHook'),
|
| 34 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 35 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 36 |
+
timer=dict(type='IterTimerHook'),
|
| 37 |
+
visualization=dict(type='SegVisualizationHook'))
|
| 38 |
+
default_scope = 'mmseg'
|
| 39 |
+
env_cfg = dict(
|
| 40 |
+
cudnn_benchmark=True,
|
| 41 |
+
dist_cfg=dict(backend='nccl'),
|
| 42 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 43 |
+
img_ratios = [
|
| 44 |
+
0.5,
|
| 45 |
+
0.75,
|
| 46 |
+
1.0,
|
| 47 |
+
1.25,
|
| 48 |
+
1.5,
|
| 49 |
+
1.75,
|
| 50 |
+
]
|
| 51 |
+
load_from = None
|
| 52 |
+
log_level = 'INFO'
|
| 53 |
+
log_processor = dict(by_epoch=False)
|
| 54 |
+
model = dict(
|
| 55 |
+
auxiliary_head=dict(
|
| 56 |
+
align_corners=False,
|
| 57 |
+
channels=256,
|
| 58 |
+
concat_input=False,
|
| 59 |
+
dropout_ratio=0.1,
|
| 60 |
+
in_channels=1024,
|
| 61 |
+
in_index=2,
|
| 62 |
+
loss_decode=dict(
|
| 63 |
+
loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
|
| 64 |
+
norm_cfg=dict(requires_grad=True, type='BN'),
|
| 65 |
+
num_classes=2,
|
| 66 |
+
num_convs=1,
|
| 67 |
+
type='FCNHead'),
|
| 68 |
+
backbone=dict(
|
| 69 |
+
contract_dilation=True,
|
| 70 |
+
depth=101,
|
| 71 |
+
dilations=(
|
| 72 |
+
1,
|
| 73 |
+
1,
|
| 74 |
+
2,
|
| 75 |
+
4,
|
| 76 |
+
),
|
| 77 |
+
norm_cfg=dict(requires_grad=True, type='BN'),
|
| 78 |
+
norm_eval=False,
|
| 79 |
+
num_stages=4,
|
| 80 |
+
out_indices=(
|
| 81 |
+
0,
|
| 82 |
+
1,
|
| 83 |
+
2,
|
| 84 |
+
3,
|
| 85 |
+
),
|
| 86 |
+
strides=(
|
| 87 |
+
1,
|
| 88 |
+
2,
|
| 89 |
+
1,
|
| 90 |
+
1,
|
| 91 |
+
),
|
| 92 |
+
style='pytorch',
|
| 93 |
+
type='ResNetV1c'),
|
| 94 |
+
data_preprocessor=dict(
|
| 95 |
+
bgr_to_rgb=True,
|
| 96 |
+
mean=[
|
| 97 |
+
123.675,
|
| 98 |
+
116.28,
|
| 99 |
+
103.53,
|
| 100 |
+
],
|
| 101 |
+
pad_val=0,
|
| 102 |
+
seg_pad_val=255,
|
| 103 |
+
size=(
|
| 104 |
+
512,
|
| 105 |
+
512,
|
| 106 |
+
),
|
| 107 |
+
std=[
|
| 108 |
+
58.395,
|
| 109 |
+
57.12,
|
| 110 |
+
57.375,
|
| 111 |
+
],
|
| 112 |
+
type='SegDataPreProcessor'),
|
| 113 |
+
decode_head=dict(
|
| 114 |
+
align_corners=False,
|
| 115 |
+
c1_channels=48,
|
| 116 |
+
c1_in_channels=256,
|
| 117 |
+
channels=512,
|
| 118 |
+
dilations=(
|
| 119 |
+
1,
|
| 120 |
+
12,
|
| 121 |
+
24,
|
| 122 |
+
36,
|
| 123 |
+
),
|
| 124 |
+
dropout_ratio=0.1,
|
| 125 |
+
in_channels=2048,
|
| 126 |
+
in_index=3,
|
| 127 |
+
loss_decode=dict(
|
| 128 |
+
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
|
| 129 |
+
norm_cfg=dict(requires_grad=True, type='BN'),
|
| 130 |
+
num_classes=2,
|
| 131 |
+
type='DepthwiseSeparableASPPHead'),
|
| 132 |
+
pretrained='open-mmlab://resnet101_v1c',
|
| 133 |
+
test_cfg=dict(mode='whole'),
|
| 134 |
+
train_cfg=dict(),
|
| 135 |
+
type='EncoderDecoder')
|
| 136 |
+
norm_cfg = dict(requires_grad=True, type='BN')
|
| 137 |
+
optim_wrapper = dict(
|
| 138 |
+
clip_grad=None,
|
| 139 |
+
optimizer=dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005),
|
| 140 |
+
type='OptimWrapper')
|
| 141 |
+
optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005)
|
| 142 |
+
param_scheduler = [
|
| 143 |
+
dict(
|
| 144 |
+
begin=0,
|
| 145 |
+
by_epoch=False,
|
| 146 |
+
end=160000,
|
| 147 |
+
eta_min=0.0001,
|
| 148 |
+
power=0.9,
|
| 149 |
+
type='PolyLR'),
|
| 150 |
+
]
|
| 151 |
+
randomness = dict(seed=0)
|
| 152 |
+
resume = False
|
| 153 |
+
test_cfg = dict(type='TestLoop')
|
| 154 |
+
test_dataloader = dict(
|
| 155 |
+
batch_size=1,
|
| 156 |
+
dataset=dict(
|
| 157 |
+
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
|
| 158 |
+
data_root='CVRPDataset/',
|
| 159 |
+
pipeline=[
|
| 160 |
+
dict(type='LoadImageFromFile'),
|
| 161 |
+
dict(keep_ratio=True, scale=(
|
| 162 |
+
2048,
|
| 163 |
+
1024,
|
| 164 |
+
), type='Resize'),
|
| 165 |
+
dict(type='LoadAnnotations'),
|
| 166 |
+
dict(type='PackSegInputs'),
|
| 167 |
+
],
|
| 168 |
+
type='CVRPDataset'),
|
| 169 |
+
num_workers=4,
|
| 170 |
+
persistent_workers=True,
|
| 171 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
| 172 |
+
test_evaluator = dict(
|
| 173 |
+
iou_metrics=[
|
| 174 |
+
'mIoU',
|
| 175 |
+
'mDice',
|
| 176 |
+
'mFscore',
|
| 177 |
+
], type='IoUMetric')
|
| 178 |
+
test_pipeline = [
|
| 179 |
+
dict(type='LoadImageFromFile'),
|
| 180 |
+
dict(keep_ratio=True, scale=(
|
| 181 |
+
2048,
|
| 182 |
+
1024,
|
| 183 |
+
), type='Resize'),
|
| 184 |
+
dict(type='LoadAnnotations'),
|
| 185 |
+
dict(type='PackSegInputs'),
|
| 186 |
+
]
|
| 187 |
+
train_cfg = dict(max_iters=20000, type='IterBasedTrainLoop', val_interval=500)
|
| 188 |
+
train_dataloader = dict(
|
| 189 |
+
batch_size=4,
|
| 190 |
+
dataset=dict(
|
| 191 |
+
data_prefix=dict(
|
| 192 |
+
img_path='img_dir/train', seg_map_path='ann_dir/train'),
|
| 193 |
+
data_root='CVRPDataset/',
|
| 194 |
+
pipeline=[
|
| 195 |
+
dict(type='LoadImageFromFile'),
|
| 196 |
+
dict(type='LoadAnnotations'),
|
| 197 |
+
dict(
|
| 198 |
+
keep_ratio=True,
|
| 199 |
+
ratio_range=(
|
| 200 |
+
0.5,
|
| 201 |
+
2.0,
|
| 202 |
+
),
|
| 203 |
+
scale=(
|
| 204 |
+
2048,
|
| 205 |
+
1024,
|
| 206 |
+
),
|
| 207 |
+
type='RandomResize'),
|
| 208 |
+
dict(
|
| 209 |
+
cat_max_ratio=0.75, crop_size=(
|
| 210 |
+
512,
|
| 211 |
+
512,
|
| 212 |
+
), type='RandomCrop'),
|
| 213 |
+
dict(prob=0.5, type='RandomFlip'),
|
| 214 |
+
dict(type='PhotoMetricDistortion'),
|
| 215 |
+
dict(type='PackSegInputs'),
|
| 216 |
+
],
|
| 217 |
+
type='CVRPDataset'),
|
| 218 |
+
num_workers=2,
|
| 219 |
+
persistent_workers=True,
|
| 220 |
+
sampler=dict(shuffle=True, type='InfiniteSampler'))
|
| 221 |
+
train_pipeline = [
|
| 222 |
+
dict(type='LoadImageFromFile'),
|
| 223 |
+
dict(type='LoadAnnotations'),
|
| 224 |
+
dict(
|
| 225 |
+
keep_ratio=True,
|
| 226 |
+
ratio_range=(
|
| 227 |
+
0.5,
|
| 228 |
+
2.0,
|
| 229 |
+
),
|
| 230 |
+
scale=(
|
| 231 |
+
2048,
|
| 232 |
+
1024,
|
| 233 |
+
),
|
| 234 |
+
type='RandomResize'),
|
| 235 |
+
dict(cat_max_ratio=0.75, crop_size=(
|
| 236 |
+
512,
|
| 237 |
+
512,
|
| 238 |
+
), type='RandomCrop'),
|
| 239 |
+
dict(prob=0.5, type='RandomFlip'),
|
| 240 |
+
dict(type='PhotoMetricDistortion'),
|
| 241 |
+
dict(type='PackSegInputs'),
|
| 242 |
+
]
|
| 243 |
+
tta_model = dict(type='SegTTAModel')
|
| 244 |
+
tta_pipeline = [
|
| 245 |
+
dict(file_client_args=dict(backend='disk'), type='LoadImageFromFile'),
|
| 246 |
+
dict(
|
| 247 |
+
transforms=[
|
| 248 |
+
[
|
| 249 |
+
dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
|
| 250 |
+
dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
|
| 251 |
+
dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
|
| 252 |
+
dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
|
| 253 |
+
dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
|
| 254 |
+
dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
|
| 255 |
+
],
|
| 256 |
+
[
|
| 257 |
+
dict(direction='horizontal', prob=0.0, type='RandomFlip'),
|
| 258 |
+
dict(direction='horizontal', prob=1.0, type='RandomFlip'),
|
| 259 |
+
],
|
| 260 |
+
[
|
| 261 |
+
dict(type='LoadAnnotations'),
|
| 262 |
+
],
|
| 263 |
+
[
|
| 264 |
+
dict(type='PackSegInputs'),
|
| 265 |
+
],
|
| 266 |
+
],
|
| 267 |
+
type='TestTimeAug'),
|
| 268 |
+
]
|
| 269 |
+
val_cfg = dict(type='ValLoop')
|
| 270 |
+
val_dataloader = dict(
|
| 271 |
+
batch_size=1,
|
| 272 |
+
dataset=dict(
|
| 273 |
+
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
|
| 274 |
+
data_root='CVRPDataset/',
|
| 275 |
+
pipeline=[
|
| 276 |
+
dict(type='LoadImageFromFile'),
|
| 277 |
+
dict(keep_ratio=True, scale=(
|
| 278 |
+
2048,
|
| 279 |
+
1024,
|
| 280 |
+
), type='Resize'),
|
| 281 |
+
dict(type='LoadAnnotations'),
|
| 282 |
+
dict(type='PackSegInputs'),
|
| 283 |
+
],
|
| 284 |
+
type='CVRPDataset'),
|
| 285 |
+
num_workers=4,
|
| 286 |
+
persistent_workers=True,
|
| 287 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
| 288 |
+
val_evaluator = dict(
|
| 289 |
+
iou_metrics=[
|
| 290 |
+
'mIoU',
|
| 291 |
+
'mDice',
|
| 292 |
+
'mFscore',
|
| 293 |
+
], type='IoUMetric')
|
| 294 |
+
vis_backends = [
|
| 295 |
+
dict(type='LocalVisBackend'),
|
| 296 |
+
]
|
| 297 |
+
visualizer = dict(
|
| 298 |
+
name='visualizer',
|
| 299 |
+
type='SegLocalVisualizer',
|
| 300 |
+
vis_backends=[
|
| 301 |
+
dict(type='LocalVisBackend'),
|
| 302 |
+
])
|
| 303 |
+
work_dir = './work_dirs/CVRP_deeplabv3plus'
|
CVRP_configs/CVRP_knet.py
ADDED
|
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_large_patch4_window7_224_22k_20220308-d5bdebaf.pth'
|
| 2 |
+
conv_kernel_size = 1
|
| 3 |
+
crop_size = (
|
| 4 |
+
512,
|
| 5 |
+
512,
|
| 6 |
+
)
|
| 7 |
+
data_preprocessor = dict(
|
| 8 |
+
bgr_to_rgb=True,
|
| 9 |
+
mean=[
|
| 10 |
+
123.675,
|
| 11 |
+
116.28,
|
| 12 |
+
103.53,
|
| 13 |
+
],
|
| 14 |
+
pad_val=0,
|
| 15 |
+
seg_pad_val=255,
|
| 16 |
+
size=(
|
| 17 |
+
512,
|
| 18 |
+
512,
|
| 19 |
+
),
|
| 20 |
+
std=[
|
| 21 |
+
58.395,
|
| 22 |
+
57.12,
|
| 23 |
+
57.375,
|
| 24 |
+
],
|
| 25 |
+
type='SegDataPreProcessor')
|
| 26 |
+
data_root = 'CVRPDataset/'
|
| 27 |
+
dataset_type = 'CVRPDataset'
|
| 28 |
+
default_hooks = dict(
|
| 29 |
+
checkpoint=dict(
|
| 30 |
+
by_epoch=False,
|
| 31 |
+
interval=2500,
|
| 32 |
+
max_keep_ckpts=1,
|
| 33 |
+
save_best='mIoU',
|
| 34 |
+
type='CheckpointHook'),
|
| 35 |
+
logger=dict(interval=100, log_metric_by_epoch=False, type='LoggerHook'),
|
| 36 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 37 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 38 |
+
timer=dict(type='IterTimerHook'),
|
| 39 |
+
visualization=dict(type='SegVisualizationHook'))
|
| 40 |
+
default_scope = 'mmseg'
|
| 41 |
+
env_cfg = dict(
|
| 42 |
+
cudnn_benchmark=True,
|
| 43 |
+
dist_cfg=dict(backend='nccl'),
|
| 44 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 45 |
+
img_ratios = [
|
| 46 |
+
0.5,
|
| 47 |
+
0.75,
|
| 48 |
+
1.0,
|
| 49 |
+
1.25,
|
| 50 |
+
1.5,
|
| 51 |
+
1.75,
|
| 52 |
+
]
|
| 53 |
+
load_from = None
|
| 54 |
+
log_level = 'INFO'
|
| 55 |
+
log_processor = dict(by_epoch=False)
|
| 56 |
+
model = dict(
|
| 57 |
+
auxiliary_head=dict(
|
| 58 |
+
align_corners=False,
|
| 59 |
+
channels=256,
|
| 60 |
+
concat_input=False,
|
| 61 |
+
dropout_ratio=0.1,
|
| 62 |
+
in_channels=768,
|
| 63 |
+
in_index=2,
|
| 64 |
+
loss_decode=dict(
|
| 65 |
+
loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
|
| 66 |
+
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
| 67 |
+
num_classes=2,
|
| 68 |
+
num_convs=1,
|
| 69 |
+
type='FCNHead'),
|
| 70 |
+
backbone=dict(
|
| 71 |
+
attn_drop_rate=0.0,
|
| 72 |
+
depths=[
|
| 73 |
+
2,
|
| 74 |
+
2,
|
| 75 |
+
18,
|
| 76 |
+
2,
|
| 77 |
+
],
|
| 78 |
+
drop_path_rate=0.3,
|
| 79 |
+
drop_rate=0.0,
|
| 80 |
+
embed_dims=192,
|
| 81 |
+
mlp_ratio=4,
|
| 82 |
+
num_heads=[
|
| 83 |
+
6,
|
| 84 |
+
12,
|
| 85 |
+
24,
|
| 86 |
+
48,
|
| 87 |
+
],
|
| 88 |
+
out_indices=(
|
| 89 |
+
0,
|
| 90 |
+
1,
|
| 91 |
+
2,
|
| 92 |
+
3,
|
| 93 |
+
),
|
| 94 |
+
patch_norm=True,
|
| 95 |
+
qk_scale=None,
|
| 96 |
+
qkv_bias=True,
|
| 97 |
+
type='SwinTransformer',
|
| 98 |
+
use_abs_pos_embed=False,
|
| 99 |
+
window_size=7),
|
| 100 |
+
data_preprocessor=dict(
|
| 101 |
+
bgr_to_rgb=True,
|
| 102 |
+
mean=[
|
| 103 |
+
123.675,
|
| 104 |
+
116.28,
|
| 105 |
+
103.53,
|
| 106 |
+
],
|
| 107 |
+
pad_val=0,
|
| 108 |
+
seg_pad_val=255,
|
| 109 |
+
size=(
|
| 110 |
+
512,
|
| 111 |
+
512,
|
| 112 |
+
),
|
| 113 |
+
std=[
|
| 114 |
+
58.395,
|
| 115 |
+
57.12,
|
| 116 |
+
57.375,
|
| 117 |
+
],
|
| 118 |
+
type='SegDataPreProcessor'),
|
| 119 |
+
decode_head=dict(
|
| 120 |
+
kernel_generate_head=dict(
|
| 121 |
+
align_corners=False,
|
| 122 |
+
channels=512,
|
| 123 |
+
dropout_ratio=0.1,
|
| 124 |
+
in_channels=[
|
| 125 |
+
192,
|
| 126 |
+
384,
|
| 127 |
+
768,
|
| 128 |
+
1536,
|
| 129 |
+
],
|
| 130 |
+
in_index=[
|
| 131 |
+
0,
|
| 132 |
+
1,
|
| 133 |
+
2,
|
| 134 |
+
3,
|
| 135 |
+
],
|
| 136 |
+
loss_decode=dict(
|
| 137 |
+
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
|
| 138 |
+
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
| 139 |
+
num_classes=2,
|
| 140 |
+
pool_scales=(
|
| 141 |
+
1,
|
| 142 |
+
2,
|
| 143 |
+
3,
|
| 144 |
+
6,
|
| 145 |
+
),
|
| 146 |
+
type='UPerHead'),
|
| 147 |
+
kernel_update_head=[
|
| 148 |
+
dict(
|
| 149 |
+
conv_kernel_size=1,
|
| 150 |
+
dropout=0.0,
|
| 151 |
+
feat_transform_cfg=dict(
|
| 152 |
+
act_cfg=None, conv_cfg=dict(type='Conv2d')),
|
| 153 |
+
feedforward_channels=2048,
|
| 154 |
+
ffn_act_cfg=dict(inplace=True, type='ReLU'),
|
| 155 |
+
in_channels=512,
|
| 156 |
+
kernel_updator_cfg=dict(
|
| 157 |
+
act_cfg=dict(inplace=True, type='ReLU'),
|
| 158 |
+
feat_channels=256,
|
| 159 |
+
in_channels=256,
|
| 160 |
+
norm_cfg=dict(type='LN'),
|
| 161 |
+
out_channels=256,
|
| 162 |
+
type='KernelUpdator'),
|
| 163 |
+
num_classes=150,
|
| 164 |
+
num_ffn_fcs=2,
|
| 165 |
+
num_heads=8,
|
| 166 |
+
num_mask_fcs=1,
|
| 167 |
+
out_channels=512,
|
| 168 |
+
type='KernelUpdateHead',
|
| 169 |
+
with_ffn=True),
|
| 170 |
+
dict(
|
| 171 |
+
conv_kernel_size=1,
|
| 172 |
+
dropout=0.0,
|
| 173 |
+
feat_transform_cfg=dict(
|
| 174 |
+
act_cfg=None, conv_cfg=dict(type='Conv2d')),
|
| 175 |
+
feedforward_channels=2048,
|
| 176 |
+
ffn_act_cfg=dict(inplace=True, type='ReLU'),
|
| 177 |
+
in_channels=512,
|
| 178 |
+
kernel_updator_cfg=dict(
|
| 179 |
+
act_cfg=dict(inplace=True, type='ReLU'),
|
| 180 |
+
feat_channels=256,
|
| 181 |
+
in_channels=256,
|
| 182 |
+
norm_cfg=dict(type='LN'),
|
| 183 |
+
out_channels=256,
|
| 184 |
+
type='KernelUpdator'),
|
| 185 |
+
num_classes=150,
|
| 186 |
+
num_ffn_fcs=2,
|
| 187 |
+
num_heads=8,
|
| 188 |
+
num_mask_fcs=1,
|
| 189 |
+
out_channels=512,
|
| 190 |
+
type='KernelUpdateHead',
|
| 191 |
+
with_ffn=True),
|
| 192 |
+
dict(
|
| 193 |
+
conv_kernel_size=1,
|
| 194 |
+
dropout=0.0,
|
| 195 |
+
feat_transform_cfg=dict(
|
| 196 |
+
act_cfg=None, conv_cfg=dict(type='Conv2d')),
|
| 197 |
+
feedforward_channels=2048,
|
| 198 |
+
ffn_act_cfg=dict(inplace=True, type='ReLU'),
|
| 199 |
+
in_channels=512,
|
| 200 |
+
kernel_updator_cfg=dict(
|
| 201 |
+
act_cfg=dict(inplace=True, type='ReLU'),
|
| 202 |
+
feat_channels=256,
|
| 203 |
+
in_channels=256,
|
| 204 |
+
norm_cfg=dict(type='LN'),
|
| 205 |
+
out_channels=256,
|
| 206 |
+
type='KernelUpdator'),
|
| 207 |
+
num_classes=150,
|
| 208 |
+
num_ffn_fcs=2,
|
| 209 |
+
num_heads=8,
|
| 210 |
+
num_mask_fcs=1,
|
| 211 |
+
out_channels=512,
|
| 212 |
+
type='KernelUpdateHead',
|
| 213 |
+
with_ffn=True),
|
| 214 |
+
],
|
| 215 |
+
num_stages=3,
|
| 216 |
+
type='IterativeDecodeHead'),
|
| 217 |
+
pretrained=
|
| 218 |
+
'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_large_patch4_window7_224_22k_20220308-d5bdebaf.pth',
|
| 219 |
+
test_cfg=dict(mode='whole'),
|
| 220 |
+
train_cfg=dict(),
|
| 221 |
+
type='EncoderDecoder')
|
| 222 |
+
norm_cfg = dict(requires_grad=True, type='BN')
|
| 223 |
+
num_stages = 3
|
| 224 |
+
optim_wrapper = dict(
|
| 225 |
+
clip_grad=dict(max_norm=1, norm_type=2),
|
| 226 |
+
optimizer=dict(
|
| 227 |
+
betas=(
|
| 228 |
+
0.9,
|
| 229 |
+
0.999,
|
| 230 |
+
), lr=6e-05, type='AdamW', weight_decay=0.0005),
|
| 231 |
+
paramwise_cfg=dict(
|
| 232 |
+
custom_keys=dict(
|
| 233 |
+
absolute_pos_embed=dict(decay_mult=0.0),
|
| 234 |
+
norm=dict(decay_mult=0.0),
|
| 235 |
+
relative_position_bias_table=dict(decay_mult=0.0))),
|
| 236 |
+
type='OptimWrapper')
|
| 237 |
+
optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005)
|
| 238 |
+
param_scheduler = [
|
| 239 |
+
dict(
|
| 240 |
+
begin=0, by_epoch=False, end=1000, start_factor=0.001,
|
| 241 |
+
type='LinearLR'),
|
| 242 |
+
dict(
|
| 243 |
+
begin=1000,
|
| 244 |
+
by_epoch=False,
|
| 245 |
+
end=80000,
|
| 246 |
+
milestones=[
|
| 247 |
+
60000,
|
| 248 |
+
72000,
|
| 249 |
+
],
|
| 250 |
+
type='MultiStepLR'),
|
| 251 |
+
]
|
| 252 |
+
randomness = dict(seed=0)
|
| 253 |
+
resume = False
|
| 254 |
+
test_cfg = dict(type='TestLoop')
|
| 255 |
+
test_dataloader = dict(
|
| 256 |
+
batch_size=1,
|
| 257 |
+
dataset=dict(
|
| 258 |
+
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
|
| 259 |
+
data_root='CVRPDataset/',
|
| 260 |
+
pipeline=[
|
| 261 |
+
dict(type='LoadImageFromFile'),
|
| 262 |
+
dict(keep_ratio=True, scale=(
|
| 263 |
+
2048,
|
| 264 |
+
1024,
|
| 265 |
+
), type='Resize'),
|
| 266 |
+
dict(type='LoadAnnotations'),
|
| 267 |
+
dict(type='PackSegInputs'),
|
| 268 |
+
],
|
| 269 |
+
type='CVRPDataset'),
|
| 270 |
+
num_workers=4,
|
| 271 |
+
persistent_workers=True,
|
| 272 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
| 273 |
+
test_evaluator = dict(
|
| 274 |
+
iou_metrics=[
|
| 275 |
+
'mIoU',
|
| 276 |
+
'mDice',
|
| 277 |
+
'mFscore',
|
| 278 |
+
], type='IoUMetric')
|
| 279 |
+
test_pipeline = [
|
| 280 |
+
dict(type='LoadImageFromFile'),
|
| 281 |
+
dict(keep_ratio=True, scale=(
|
| 282 |
+
2048,
|
| 283 |
+
1024,
|
| 284 |
+
), type='Resize'),
|
| 285 |
+
dict(type='LoadAnnotations'),
|
| 286 |
+
dict(type='PackSegInputs'),
|
| 287 |
+
]
|
| 288 |
+
train_cfg = dict(max_iters=20000, type='IterBasedTrainLoop', val_interval=500)
|
| 289 |
+
train_dataloader = dict(
|
| 290 |
+
batch_size=2,
|
| 291 |
+
dataset=dict(
|
| 292 |
+
data_prefix=dict(
|
| 293 |
+
img_path='img_dir/train', seg_map_path='ann_dir/train'),
|
| 294 |
+
data_root='CVRPDataset/',
|
| 295 |
+
pipeline=[
|
| 296 |
+
dict(type='LoadImageFromFile'),
|
| 297 |
+
dict(type='LoadAnnotations'),
|
| 298 |
+
dict(
|
| 299 |
+
keep_ratio=True,
|
| 300 |
+
ratio_range=(
|
| 301 |
+
0.5,
|
| 302 |
+
2.0,
|
| 303 |
+
),
|
| 304 |
+
scale=(
|
| 305 |
+
2048,
|
| 306 |
+
1024,
|
| 307 |
+
),
|
| 308 |
+
type='RandomResize'),
|
| 309 |
+
dict(
|
| 310 |
+
cat_max_ratio=0.75, crop_size=(
|
| 311 |
+
512,
|
| 312 |
+
512,
|
| 313 |
+
), type='RandomCrop'),
|
| 314 |
+
dict(prob=0.5, type='RandomFlip'),
|
| 315 |
+
dict(type='PhotoMetricDistortion'),
|
| 316 |
+
dict(type='PackSegInputs'),
|
| 317 |
+
],
|
| 318 |
+
type='CVRPDataset'),
|
| 319 |
+
num_workers=2,
|
| 320 |
+
persistent_workers=True,
|
| 321 |
+
sampler=dict(shuffle=True, type='InfiniteSampler'))
|
| 322 |
+
train_pipeline = [
|
| 323 |
+
dict(type='LoadImageFromFile'),
|
| 324 |
+
dict(type='LoadAnnotations'),
|
| 325 |
+
dict(
|
| 326 |
+
keep_ratio=True,
|
| 327 |
+
ratio_range=(
|
| 328 |
+
0.5,
|
| 329 |
+
2.0,
|
| 330 |
+
),
|
| 331 |
+
scale=(
|
| 332 |
+
2048,
|
| 333 |
+
1024,
|
| 334 |
+
),
|
| 335 |
+
type='RandomResize'),
|
| 336 |
+
dict(cat_max_ratio=0.75, crop_size=(
|
| 337 |
+
512,
|
| 338 |
+
512,
|
| 339 |
+
), type='RandomCrop'),
|
| 340 |
+
dict(prob=0.5, type='RandomFlip'),
|
| 341 |
+
dict(type='PhotoMetricDistortion'),
|
| 342 |
+
dict(type='PackSegInputs'),
|
| 343 |
+
]
|
| 344 |
+
tta_model = dict(type='SegTTAModel')
|
| 345 |
+
tta_pipeline = [
|
| 346 |
+
dict(file_client_args=dict(backend='disk'), type='LoadImageFromFile'),
|
| 347 |
+
dict(
|
| 348 |
+
transforms=[
|
| 349 |
+
[
|
| 350 |
+
dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
|
| 351 |
+
dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
|
| 352 |
+
dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
|
| 353 |
+
dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
|
| 354 |
+
dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
|
| 355 |
+
dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
|
| 356 |
+
],
|
| 357 |
+
[
|
| 358 |
+
dict(direction='horizontal', prob=0.0, type='RandomFlip'),
|
| 359 |
+
dict(direction='horizontal', prob=1.0, type='RandomFlip'),
|
| 360 |
+
],
|
| 361 |
+
[
|
| 362 |
+
dict(type='LoadAnnotations'),
|
| 363 |
+
],
|
| 364 |
+
[
|
| 365 |
+
dict(type='PackSegInputs'),
|
| 366 |
+
],
|
| 367 |
+
],
|
| 368 |
+
type='TestTimeAug'),
|
| 369 |
+
]
|
| 370 |
+
val_cfg = dict(type='ValLoop')
|
| 371 |
+
val_dataloader = dict(
|
| 372 |
+
batch_size=1,
|
| 373 |
+
dataset=dict(
|
| 374 |
+
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
|
| 375 |
+
data_root='CVRPDataset/',
|
| 376 |
+
pipeline=[
|
| 377 |
+
dict(type='LoadImageFromFile'),
|
| 378 |
+
dict(keep_ratio=True, scale=(
|
| 379 |
+
2048,
|
| 380 |
+
1024,
|
| 381 |
+
), type='Resize'),
|
| 382 |
+
dict(type='LoadAnnotations'),
|
| 383 |
+
dict(type='PackSegInputs'),
|
| 384 |
+
],
|
| 385 |
+
type='CVRPDataset'),
|
| 386 |
+
num_workers=4,
|
| 387 |
+
persistent_workers=True,
|
| 388 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
| 389 |
+
val_evaluator = dict(
|
| 390 |
+
iou_metrics=[
|
| 391 |
+
'mIoU',
|
| 392 |
+
'mDice',
|
| 393 |
+
'mFscore',
|
| 394 |
+
], type='IoUMetric')
|
| 395 |
+
vis_backends = [
|
| 396 |
+
dict(type='LocalVisBackend'),
|
| 397 |
+
]
|
| 398 |
+
visualizer = dict(
|
| 399 |
+
name='visualizer',
|
| 400 |
+
type='SegLocalVisualizer',
|
| 401 |
+
vis_backends=[
|
| 402 |
+
dict(type='LocalVisBackend'),
|
| 403 |
+
])
|
| 404 |
+
work_dir = './work_dirs/CVRP_knet'
|
CVRP_configs/CVRP_mask2former.py
ADDED
|
@@ -0,0 +1,572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
auto_scale_lr = dict(base_batch_size=16, enable=False)
|
| 2 |
+
backbone_embed_multi = dict(decay_mult=0.0, lr_mult=0.1)
|
| 3 |
+
backbone_norm_multi = dict(decay_mult=0.0, lr_mult=0.1)
|
| 4 |
+
crop_size = (
|
| 5 |
+
512,
|
| 6 |
+
512,
|
| 7 |
+
)
|
| 8 |
+
custom_keys = dict({
|
| 9 |
+
'absolute_pos_embed':
|
| 10 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 11 |
+
'backbone':
|
| 12 |
+
dict(decay_mult=1.0, lr_mult=0.1),
|
| 13 |
+
'backbone.norm':
|
| 14 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 15 |
+
'backbone.patch_embed.norm':
|
| 16 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 17 |
+
'backbone.stages.0.blocks.0.norm':
|
| 18 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 19 |
+
'backbone.stages.0.blocks.1.norm':
|
| 20 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 21 |
+
'backbone.stages.0.downsample.norm':
|
| 22 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 23 |
+
'backbone.stages.1.blocks.0.norm':
|
| 24 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 25 |
+
'backbone.stages.1.blocks.1.norm':
|
| 26 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 27 |
+
'backbone.stages.1.downsample.norm':
|
| 28 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 29 |
+
'backbone.stages.2.blocks.0.norm':
|
| 30 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 31 |
+
'backbone.stages.2.blocks.1.norm':
|
| 32 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 33 |
+
'backbone.stages.2.blocks.10.norm':
|
| 34 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 35 |
+
'backbone.stages.2.blocks.11.norm':
|
| 36 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 37 |
+
'backbone.stages.2.blocks.12.norm':
|
| 38 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 39 |
+
'backbone.stages.2.blocks.13.norm':
|
| 40 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 41 |
+
'backbone.stages.2.blocks.14.norm':
|
| 42 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 43 |
+
'backbone.stages.2.blocks.15.norm':
|
| 44 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 45 |
+
'backbone.stages.2.blocks.16.norm':
|
| 46 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 47 |
+
'backbone.stages.2.blocks.17.norm':
|
| 48 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 49 |
+
'backbone.stages.2.blocks.2.norm':
|
| 50 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 51 |
+
'backbone.stages.2.blocks.3.norm':
|
| 52 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 53 |
+
'backbone.stages.2.blocks.4.norm':
|
| 54 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 55 |
+
'backbone.stages.2.blocks.5.norm':
|
| 56 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 57 |
+
'backbone.stages.2.blocks.6.norm':
|
| 58 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 59 |
+
'backbone.stages.2.blocks.7.norm':
|
| 60 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 61 |
+
'backbone.stages.2.blocks.8.norm':
|
| 62 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 63 |
+
'backbone.stages.2.blocks.9.norm':
|
| 64 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 65 |
+
'backbone.stages.2.downsample.norm':
|
| 66 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 67 |
+
'backbone.stages.3.blocks.0.norm':
|
| 68 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 69 |
+
'backbone.stages.3.blocks.1.norm':
|
| 70 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 71 |
+
'level_embed':
|
| 72 |
+
dict(decay_mult=0.0, lr_mult=1.0),
|
| 73 |
+
'query_embed':
|
| 74 |
+
dict(decay_mult=0.0, lr_mult=1.0),
|
| 75 |
+
'query_feat':
|
| 76 |
+
dict(decay_mult=0.0, lr_mult=1.0),
|
| 77 |
+
'relative_position_bias_table':
|
| 78 |
+
dict(decay_mult=0.0, lr_mult=0.1)
|
| 79 |
+
})
|
| 80 |
+
data_preprocessor = dict(
|
| 81 |
+
bgr_to_rgb=True,
|
| 82 |
+
mean=[
|
| 83 |
+
123.675,
|
| 84 |
+
116.28,
|
| 85 |
+
103.53,
|
| 86 |
+
],
|
| 87 |
+
pad_val=0,
|
| 88 |
+
seg_pad_val=255,
|
| 89 |
+
size=(
|
| 90 |
+
640,
|
| 91 |
+
640,
|
| 92 |
+
),
|
| 93 |
+
std=[
|
| 94 |
+
58.395,
|
| 95 |
+
57.12,
|
| 96 |
+
57.375,
|
| 97 |
+
],
|
| 98 |
+
type='SegDataPreProcessor')
|
| 99 |
+
data_root = 'CVRPDataset/'
|
| 100 |
+
dataset_type = 'CVRPDataset'
|
| 101 |
+
default_hooks = dict(
|
| 102 |
+
checkpoint=dict(
|
| 103 |
+
by_epoch=False,
|
| 104 |
+
interval=2500,
|
| 105 |
+
max_keep_ckpts=1,
|
| 106 |
+
save_best='mIoU',
|
| 107 |
+
type='CheckpointHook'),
|
| 108 |
+
logger=dict(interval=100, log_metric_by_epoch=False, type='LoggerHook'),
|
| 109 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 110 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 111 |
+
timer=dict(type='IterTimerHook'),
|
| 112 |
+
visualization=dict(type='SegVisualizationHook'))
|
| 113 |
+
default_scope = 'mmseg'
|
| 114 |
+
depths = [
|
| 115 |
+
2,
|
| 116 |
+
2,
|
| 117 |
+
18,
|
| 118 |
+
2,
|
| 119 |
+
]
|
| 120 |
+
embed_multi = dict(decay_mult=0.0, lr_mult=1.0)
|
| 121 |
+
env_cfg = dict(
|
| 122 |
+
cudnn_benchmark=True,
|
| 123 |
+
dist_cfg=dict(backend='nccl'),
|
| 124 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 125 |
+
img_ratios = [
|
| 126 |
+
0.5,
|
| 127 |
+
0.75,
|
| 128 |
+
1.0,
|
| 129 |
+
1.25,
|
| 130 |
+
1.5,
|
| 131 |
+
1.75,
|
| 132 |
+
]
|
| 133 |
+
load_from = None
|
| 134 |
+
log_level = 'INFO'
|
| 135 |
+
log_processor = dict(by_epoch=False)
|
| 136 |
+
model = dict(
|
| 137 |
+
backbone=dict(
|
| 138 |
+
attn_drop_rate=0.0,
|
| 139 |
+
depths=[
|
| 140 |
+
2,
|
| 141 |
+
2,
|
| 142 |
+
18,
|
| 143 |
+
2,
|
| 144 |
+
],
|
| 145 |
+
drop_path_rate=0.3,
|
| 146 |
+
drop_rate=0.0,
|
| 147 |
+
embed_dims=192,
|
| 148 |
+
frozen_stages=-1,
|
| 149 |
+
init_cfg=dict(
|
| 150 |
+
checkpoint=
|
| 151 |
+
'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_large_patch4_window12_384_22k_20220412-6580f57d.pth',
|
| 152 |
+
type='Pretrained'),
|
| 153 |
+
mlp_ratio=4,
|
| 154 |
+
num_heads=[
|
| 155 |
+
6,
|
| 156 |
+
12,
|
| 157 |
+
24,
|
| 158 |
+
48,
|
| 159 |
+
],
|
| 160 |
+
out_indices=(
|
| 161 |
+
0,
|
| 162 |
+
1,
|
| 163 |
+
2,
|
| 164 |
+
3,
|
| 165 |
+
),
|
| 166 |
+
patch_norm=True,
|
| 167 |
+
pretrain_img_size=384,
|
| 168 |
+
qk_scale=None,
|
| 169 |
+
qkv_bias=True,
|
| 170 |
+
type='SwinTransformer',
|
| 171 |
+
window_size=12,
|
| 172 |
+
with_cp=False),
|
| 173 |
+
data_preprocessor=dict(
|
| 174 |
+
bgr_to_rgb=True,
|
| 175 |
+
mean=[
|
| 176 |
+
123.675,
|
| 177 |
+
116.28,
|
| 178 |
+
103.53,
|
| 179 |
+
],
|
| 180 |
+
pad_val=0,
|
| 181 |
+
seg_pad_val=255,
|
| 182 |
+
size=(
|
| 183 |
+
512,
|
| 184 |
+
512,
|
| 185 |
+
),
|
| 186 |
+
std=[
|
| 187 |
+
58.395,
|
| 188 |
+
57.12,
|
| 189 |
+
57.375,
|
| 190 |
+
],
|
| 191 |
+
type='SegDataPreProcessor'),
|
| 192 |
+
decode_head=dict(
|
| 193 |
+
align_corners=False,
|
| 194 |
+
enforce_decoder_input_project=False,
|
| 195 |
+
feat_channels=256,
|
| 196 |
+
in_channels=[
|
| 197 |
+
192,
|
| 198 |
+
384,
|
| 199 |
+
768,
|
| 200 |
+
1536,
|
| 201 |
+
],
|
| 202 |
+
loss_cls=dict(
|
| 203 |
+
class_weight=[
|
| 204 |
+
1.0,
|
| 205 |
+
1.0,
|
| 206 |
+
0.1,
|
| 207 |
+
],
|
| 208 |
+
loss_weight=2.0,
|
| 209 |
+
reduction='mean',
|
| 210 |
+
type='mmdet.CrossEntropyLoss',
|
| 211 |
+
use_sigmoid=False),
|
| 212 |
+
loss_dice=dict(
|
| 213 |
+
activate=True,
|
| 214 |
+
eps=1.0,
|
| 215 |
+
loss_weight=5.0,
|
| 216 |
+
naive_dice=True,
|
| 217 |
+
reduction='mean',
|
| 218 |
+
type='mmdet.DiceLoss',
|
| 219 |
+
use_sigmoid=True),
|
| 220 |
+
loss_mask=dict(
|
| 221 |
+
loss_weight=5.0,
|
| 222 |
+
reduction='mean',
|
| 223 |
+
type='mmdet.CrossEntropyLoss',
|
| 224 |
+
use_sigmoid=True),
|
| 225 |
+
num_classes=2,
|
| 226 |
+
num_queries=100,
|
| 227 |
+
num_transformer_feat_level=3,
|
| 228 |
+
out_channels=256,
|
| 229 |
+
pixel_decoder=dict(
|
| 230 |
+
act_cfg=dict(type='ReLU'),
|
| 231 |
+
encoder=dict(
|
| 232 |
+
init_cfg=None,
|
| 233 |
+
layer_cfg=dict(
|
| 234 |
+
ffn_cfg=dict(
|
| 235 |
+
act_cfg=dict(inplace=True, type='ReLU'),
|
| 236 |
+
embed_dims=256,
|
| 237 |
+
feedforward_channels=1024,
|
| 238 |
+
ffn_drop=0.0,
|
| 239 |
+
num_fcs=2),
|
| 240 |
+
self_attn_cfg=dict(
|
| 241 |
+
batch_first=True,
|
| 242 |
+
dropout=0.0,
|
| 243 |
+
embed_dims=256,
|
| 244 |
+
im2col_step=64,
|
| 245 |
+
init_cfg=None,
|
| 246 |
+
norm_cfg=None,
|
| 247 |
+
num_heads=8,
|
| 248 |
+
num_levels=3,
|
| 249 |
+
num_points=4)),
|
| 250 |
+
num_layers=6),
|
| 251 |
+
init_cfg=None,
|
| 252 |
+
norm_cfg=dict(num_groups=32, type='GN'),
|
| 253 |
+
num_outs=3,
|
| 254 |
+
positional_encoding=dict(normalize=True, num_feats=128),
|
| 255 |
+
type='mmdet.MSDeformAttnPixelDecoder'),
|
| 256 |
+
positional_encoding=dict(normalize=True, num_feats=128),
|
| 257 |
+
strides=[
|
| 258 |
+
4,
|
| 259 |
+
8,
|
| 260 |
+
16,
|
| 261 |
+
32,
|
| 262 |
+
],
|
| 263 |
+
train_cfg=dict(
|
| 264 |
+
assigner=dict(
|
| 265 |
+
match_costs=[
|
| 266 |
+
dict(type='mmdet.ClassificationCost', weight=2.0),
|
| 267 |
+
dict(
|
| 268 |
+
type='mmdet.CrossEntropyLossCost',
|
| 269 |
+
use_sigmoid=True,
|
| 270 |
+
weight=5.0),
|
| 271 |
+
dict(
|
| 272 |
+
eps=1.0,
|
| 273 |
+
pred_act=True,
|
| 274 |
+
type='mmdet.DiceCost',
|
| 275 |
+
weight=5.0),
|
| 276 |
+
],
|
| 277 |
+
type='mmdet.HungarianAssigner'),
|
| 278 |
+
importance_sample_ratio=0.75,
|
| 279 |
+
num_points=12544,
|
| 280 |
+
oversample_ratio=3.0,
|
| 281 |
+
sampler=dict(type='mmdet.MaskPseudoSampler')),
|
| 282 |
+
transformer_decoder=dict(
|
| 283 |
+
init_cfg=None,
|
| 284 |
+
layer_cfg=dict(
|
| 285 |
+
cross_attn_cfg=dict(
|
| 286 |
+
attn_drop=0.0,
|
| 287 |
+
batch_first=True,
|
| 288 |
+
dropout_layer=None,
|
| 289 |
+
embed_dims=256,
|
| 290 |
+
num_heads=8,
|
| 291 |
+
proj_drop=0.0),
|
| 292 |
+
ffn_cfg=dict(
|
| 293 |
+
act_cfg=dict(inplace=True, type='ReLU'),
|
| 294 |
+
add_identity=True,
|
| 295 |
+
dropout_layer=None,
|
| 296 |
+
embed_dims=256,
|
| 297 |
+
feedforward_channels=2048,
|
| 298 |
+
ffn_drop=0.0,
|
| 299 |
+
num_fcs=2),
|
| 300 |
+
self_attn_cfg=dict(
|
| 301 |
+
attn_drop=0.0,
|
| 302 |
+
batch_first=True,
|
| 303 |
+
dropout_layer=None,
|
| 304 |
+
embed_dims=256,
|
| 305 |
+
num_heads=8,
|
| 306 |
+
proj_drop=0.0)),
|
| 307 |
+
num_layers=9,
|
| 308 |
+
return_intermediate=True),
|
| 309 |
+
type='Mask2FormerHead'),
|
| 310 |
+
test_cfg=dict(mode='whole'),
|
| 311 |
+
train_cfg=dict(),
|
| 312 |
+
type='EncoderDecoder')
|
| 313 |
+
norm_cfg = dict(requires_grad=True, type='BN')
|
| 314 |
+
num_classes = 150
|
| 315 |
+
optim_wrapper = dict(
|
| 316 |
+
clip_grad=dict(max_norm=0.01, norm_type=2),
|
| 317 |
+
optimizer=dict(
|
| 318 |
+
betas=(
|
| 319 |
+
0.9,
|
| 320 |
+
0.999,
|
| 321 |
+
),
|
| 322 |
+
eps=1e-08,
|
| 323 |
+
lr=0.0001,
|
| 324 |
+
type='AdamW',
|
| 325 |
+
weight_decay=0.05),
|
| 326 |
+
paramwise_cfg=dict(
|
| 327 |
+
custom_keys=dict({
|
| 328 |
+
'absolute_pos_embed':
|
| 329 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 330 |
+
'backbone':
|
| 331 |
+
dict(decay_mult=1.0, lr_mult=0.1),
|
| 332 |
+
'backbone.norm':
|
| 333 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 334 |
+
'backbone.patch_embed.norm':
|
| 335 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 336 |
+
'backbone.stages.0.blocks.0.norm':
|
| 337 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 338 |
+
'backbone.stages.0.blocks.1.norm':
|
| 339 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 340 |
+
'backbone.stages.0.downsample.norm':
|
| 341 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 342 |
+
'backbone.stages.1.blocks.0.norm':
|
| 343 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 344 |
+
'backbone.stages.1.blocks.1.norm':
|
| 345 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 346 |
+
'backbone.stages.1.downsample.norm':
|
| 347 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 348 |
+
'backbone.stages.2.blocks.0.norm':
|
| 349 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 350 |
+
'backbone.stages.2.blocks.1.norm':
|
| 351 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 352 |
+
'backbone.stages.2.blocks.10.norm':
|
| 353 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 354 |
+
'backbone.stages.2.blocks.11.norm':
|
| 355 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 356 |
+
'backbone.stages.2.blocks.12.norm':
|
| 357 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 358 |
+
'backbone.stages.2.blocks.13.norm':
|
| 359 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 360 |
+
'backbone.stages.2.blocks.14.norm':
|
| 361 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 362 |
+
'backbone.stages.2.blocks.15.norm':
|
| 363 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 364 |
+
'backbone.stages.2.blocks.16.norm':
|
| 365 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 366 |
+
'backbone.stages.2.blocks.17.norm':
|
| 367 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 368 |
+
'backbone.stages.2.blocks.2.norm':
|
| 369 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 370 |
+
'backbone.stages.2.blocks.3.norm':
|
| 371 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 372 |
+
'backbone.stages.2.blocks.4.norm':
|
| 373 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 374 |
+
'backbone.stages.2.blocks.5.norm':
|
| 375 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 376 |
+
'backbone.stages.2.blocks.6.norm':
|
| 377 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 378 |
+
'backbone.stages.2.blocks.7.norm':
|
| 379 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 380 |
+
'backbone.stages.2.blocks.8.norm':
|
| 381 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 382 |
+
'backbone.stages.2.blocks.9.norm':
|
| 383 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 384 |
+
'backbone.stages.2.downsample.norm':
|
| 385 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 386 |
+
'backbone.stages.3.blocks.0.norm':
|
| 387 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 388 |
+
'backbone.stages.3.blocks.1.norm':
|
| 389 |
+
dict(decay_mult=0.0, lr_mult=0.1),
|
| 390 |
+
'level_embed':
|
| 391 |
+
dict(decay_mult=0.0, lr_mult=1.0),
|
| 392 |
+
'query_embed':
|
| 393 |
+
dict(decay_mult=0.0, lr_mult=1.0),
|
| 394 |
+
'query_feat':
|
| 395 |
+
dict(decay_mult=0.0, lr_mult=1.0),
|
| 396 |
+
'relative_position_bias_table':
|
| 397 |
+
dict(decay_mult=0.0, lr_mult=0.1)
|
| 398 |
+
}),
|
| 399 |
+
norm_decay_mult=0.0),
|
| 400 |
+
type='OptimWrapper')
|
| 401 |
+
optimizer = dict(
|
| 402 |
+
betas=(
|
| 403 |
+
0.9,
|
| 404 |
+
0.999,
|
| 405 |
+
),
|
| 406 |
+
eps=1e-08,
|
| 407 |
+
lr=0.0001,
|
| 408 |
+
type='AdamW',
|
| 409 |
+
weight_decay=0.05)
|
| 410 |
+
param_scheduler = [
|
| 411 |
+
dict(
|
| 412 |
+
begin=0,
|
| 413 |
+
by_epoch=False,
|
| 414 |
+
end=160000,
|
| 415 |
+
eta_min=0,
|
| 416 |
+
power=0.9,
|
| 417 |
+
type='PolyLR'),
|
| 418 |
+
]
|
| 419 |
+
pretrained = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_large_patch4_window12_384_22k_20220412-6580f57d.pth'
|
| 420 |
+
randomness = dict(seed=0)
|
| 421 |
+
resume = False
|
| 422 |
+
test_cfg = dict(type='TestLoop')
|
| 423 |
+
test_dataloader = dict(
|
| 424 |
+
batch_size=1,
|
| 425 |
+
dataset=dict(
|
| 426 |
+
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
|
| 427 |
+
data_root='CVRPDataset/',
|
| 428 |
+
pipeline=[
|
| 429 |
+
dict(type='LoadImageFromFile'),
|
| 430 |
+
dict(keep_ratio=True, scale=(
|
| 431 |
+
2048,
|
| 432 |
+
1024,
|
| 433 |
+
), type='Resize'),
|
| 434 |
+
dict(type='LoadAnnotations'),
|
| 435 |
+
dict(type='PackSegInputs'),
|
| 436 |
+
],
|
| 437 |
+
type='CVRPDataset'),
|
| 438 |
+
num_workers=4,
|
| 439 |
+
persistent_workers=True,
|
| 440 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
| 441 |
+
test_evaluator = dict(
|
| 442 |
+
iou_metrics=[
|
| 443 |
+
'mIoU',
|
| 444 |
+
'mDice',
|
| 445 |
+
'mFscore',
|
| 446 |
+
], type='IoUMetric')
|
| 447 |
+
test_pipeline = [
|
| 448 |
+
dict(type='LoadImageFromFile'),
|
| 449 |
+
dict(keep_ratio=True, scale=(
|
| 450 |
+
2048,
|
| 451 |
+
1024,
|
| 452 |
+
), type='Resize'),
|
| 453 |
+
dict(type='LoadAnnotations'),
|
| 454 |
+
dict(type='PackSegInputs'),
|
| 455 |
+
]
|
| 456 |
+
train_cfg = dict(max_iters=20000, type='IterBasedTrainLoop', val_interval=500)
|
| 457 |
+
train_dataloader = dict(
|
| 458 |
+
batch_size=2,
|
| 459 |
+
dataset=dict(
|
| 460 |
+
data_prefix=dict(
|
| 461 |
+
img_path='img_dir/train', seg_map_path='ann_dir/train'),
|
| 462 |
+
data_root='CVRPDataset/',
|
| 463 |
+
pipeline=[
|
| 464 |
+
dict(type='LoadImageFromFile'),
|
| 465 |
+
dict(type='LoadAnnotations'),
|
| 466 |
+
dict(
|
| 467 |
+
keep_ratio=True,
|
| 468 |
+
ratio_range=(
|
| 469 |
+
0.5,
|
| 470 |
+
2.0,
|
| 471 |
+
),
|
| 472 |
+
scale=(
|
| 473 |
+
2048,
|
| 474 |
+
1024,
|
| 475 |
+
),
|
| 476 |
+
type='RandomResize'),
|
| 477 |
+
dict(
|
| 478 |
+
cat_max_ratio=0.75, crop_size=(
|
| 479 |
+
512,
|
| 480 |
+
512,
|
| 481 |
+
), type='RandomCrop'),
|
| 482 |
+
dict(prob=0.5, type='RandomFlip'),
|
| 483 |
+
dict(type='PhotoMetricDistortion'),
|
| 484 |
+
dict(type='PackSegInputs'),
|
| 485 |
+
],
|
| 486 |
+
type='CVRPDataset'),
|
| 487 |
+
num_workers=2,
|
| 488 |
+
persistent_workers=True,
|
| 489 |
+
sampler=dict(shuffle=True, type='InfiniteSampler'))
|
| 490 |
+
train_pipeline = [
|
| 491 |
+
dict(type='LoadImageFromFile'),
|
| 492 |
+
dict(type='LoadAnnotations'),
|
| 493 |
+
dict(
|
| 494 |
+
keep_ratio=True,
|
| 495 |
+
ratio_range=(
|
| 496 |
+
0.5,
|
| 497 |
+
2.0,
|
| 498 |
+
),
|
| 499 |
+
scale=(
|
| 500 |
+
2048,
|
| 501 |
+
1024,
|
| 502 |
+
),
|
| 503 |
+
type='RandomResize'),
|
| 504 |
+
dict(cat_max_ratio=0.75, crop_size=(
|
| 505 |
+
512,
|
| 506 |
+
512,
|
| 507 |
+
), type='RandomCrop'),
|
| 508 |
+
dict(prob=0.5, type='RandomFlip'),
|
| 509 |
+
dict(type='PhotoMetricDistortion'),
|
| 510 |
+
dict(type='PackSegInputs'),
|
| 511 |
+
]
|
| 512 |
+
tta_model = dict(type='SegTTAModel')
|
| 513 |
+
tta_pipeline = [
|
| 514 |
+
dict(file_client_args=dict(backend='disk'), type='LoadImageFromFile'),
|
| 515 |
+
dict(
|
| 516 |
+
transforms=[
|
| 517 |
+
[
|
| 518 |
+
dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
|
| 519 |
+
dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
|
| 520 |
+
dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
|
| 521 |
+
dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
|
| 522 |
+
dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
|
| 523 |
+
dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
|
| 524 |
+
],
|
| 525 |
+
[
|
| 526 |
+
dict(direction='horizontal', prob=0.0, type='RandomFlip'),
|
| 527 |
+
dict(direction='horizontal', prob=1.0, type='RandomFlip'),
|
| 528 |
+
],
|
| 529 |
+
[
|
| 530 |
+
dict(type='LoadAnnotations'),
|
| 531 |
+
],
|
| 532 |
+
[
|
| 533 |
+
dict(type='PackSegInputs'),
|
| 534 |
+
],
|
| 535 |
+
],
|
| 536 |
+
type='TestTimeAug'),
|
| 537 |
+
]
|
| 538 |
+
val_cfg = dict(type='ValLoop')
|
| 539 |
+
val_dataloader = dict(
|
| 540 |
+
batch_size=1,
|
| 541 |
+
dataset=dict(
|
| 542 |
+
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
|
| 543 |
+
data_root='CVRPDataset/',
|
| 544 |
+
pipeline=[
|
| 545 |
+
dict(type='LoadImageFromFile'),
|
| 546 |
+
dict(keep_ratio=True, scale=(
|
| 547 |
+
2048,
|
| 548 |
+
1024,
|
| 549 |
+
), type='Resize'),
|
| 550 |
+
dict(type='LoadAnnotations'),
|
| 551 |
+
dict(type='PackSegInputs'),
|
| 552 |
+
],
|
| 553 |
+
type='CVRPDataset'),
|
| 554 |
+
num_workers=4,
|
| 555 |
+
persistent_workers=True,
|
| 556 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
| 557 |
+
val_evaluator = dict(
|
| 558 |
+
iou_metrics=[
|
| 559 |
+
'mIoU',
|
| 560 |
+
'mDice',
|
| 561 |
+
'mFscore',
|
| 562 |
+
], type='IoUMetric')
|
| 563 |
+
vis_backends = [
|
| 564 |
+
dict(type='LocalVisBackend'),
|
| 565 |
+
]
|
| 566 |
+
visualizer = dict(
|
| 567 |
+
name='visualizer',
|
| 568 |
+
type='SegLocalVisualizer',
|
| 569 |
+
vis_backends=[
|
| 570 |
+
dict(type='LocalVisBackend'),
|
| 571 |
+
])
|
| 572 |
+
work_dir = './work_dirs/CVRP_mask2former'
|
CVRP_configs/CVRP_segformer.py
ADDED
|
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b5_20220624-658746d9.pth'
|
| 2 |
+
crop_size = (
|
| 3 |
+
512,
|
| 4 |
+
512,
|
| 5 |
+
)
|
| 6 |
+
data_preprocessor = dict(
|
| 7 |
+
bgr_to_rgb=True,
|
| 8 |
+
mean=[
|
| 9 |
+
123.675,
|
| 10 |
+
116.28,
|
| 11 |
+
103.53,
|
| 12 |
+
],
|
| 13 |
+
pad_val=0,
|
| 14 |
+
seg_pad_val=255,
|
| 15 |
+
size=(
|
| 16 |
+
512,
|
| 17 |
+
512,
|
| 18 |
+
),
|
| 19 |
+
std=[
|
| 20 |
+
58.395,
|
| 21 |
+
57.12,
|
| 22 |
+
57.375,
|
| 23 |
+
],
|
| 24 |
+
type='SegDataPreProcessor')
|
| 25 |
+
data_root = 'CVRPDataset/'
|
| 26 |
+
dataset_type = 'CVRPDataset'
|
| 27 |
+
default_hooks = dict(
|
| 28 |
+
checkpoint=dict(
|
| 29 |
+
by_epoch=False,
|
| 30 |
+
interval=2500,
|
| 31 |
+
max_keep_ckpts=1,
|
| 32 |
+
save_best='mIoU',
|
| 33 |
+
type='CheckpointHook'),
|
| 34 |
+
logger=dict(interval=100, log_metric_by_epoch=False, type='LoggerHook'),
|
| 35 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 36 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 37 |
+
timer=dict(type='IterTimerHook'),
|
| 38 |
+
visualization=dict(type='SegVisualizationHook'))
|
| 39 |
+
default_scope = 'mmseg'
|
| 40 |
+
env_cfg = dict(
|
| 41 |
+
cudnn_benchmark=True,
|
| 42 |
+
dist_cfg=dict(backend='nccl'),
|
| 43 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 44 |
+
img_ratios = [
|
| 45 |
+
0.5,
|
| 46 |
+
0.75,
|
| 47 |
+
1.0,
|
| 48 |
+
1.25,
|
| 49 |
+
1.5,
|
| 50 |
+
1.75,
|
| 51 |
+
]
|
| 52 |
+
load_from = None
|
| 53 |
+
log_level = 'INFO'
|
| 54 |
+
log_processor = dict(by_epoch=False)
|
| 55 |
+
model = dict(
|
| 56 |
+
backbone=dict(
|
| 57 |
+
attn_drop_rate=0.0,
|
| 58 |
+
drop_path_rate=0.1,
|
| 59 |
+
drop_rate=0.0,
|
| 60 |
+
embed_dims=64,
|
| 61 |
+
in_channels=3,
|
| 62 |
+
init_cfg=dict(
|
| 63 |
+
checkpoint=
|
| 64 |
+
'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b5_20220624-658746d9.pth',
|
| 65 |
+
type='Pretrained'),
|
| 66 |
+
mlp_ratio=4,
|
| 67 |
+
num_heads=[
|
| 68 |
+
1,
|
| 69 |
+
2,
|
| 70 |
+
5,
|
| 71 |
+
8,
|
| 72 |
+
],
|
| 73 |
+
num_layers=[
|
| 74 |
+
3,
|
| 75 |
+
6,
|
| 76 |
+
40,
|
| 77 |
+
3,
|
| 78 |
+
],
|
| 79 |
+
num_stages=4,
|
| 80 |
+
out_indices=(
|
| 81 |
+
0,
|
| 82 |
+
1,
|
| 83 |
+
2,
|
| 84 |
+
3,
|
| 85 |
+
),
|
| 86 |
+
patch_sizes=[
|
| 87 |
+
7,
|
| 88 |
+
3,
|
| 89 |
+
3,
|
| 90 |
+
3,
|
| 91 |
+
],
|
| 92 |
+
qkv_bias=True,
|
| 93 |
+
sr_ratios=[
|
| 94 |
+
8,
|
| 95 |
+
4,
|
| 96 |
+
2,
|
| 97 |
+
1,
|
| 98 |
+
],
|
| 99 |
+
type='MixVisionTransformer'),
|
| 100 |
+
data_preprocessor=dict(
|
| 101 |
+
bgr_to_rgb=True,
|
| 102 |
+
mean=[
|
| 103 |
+
123.675,
|
| 104 |
+
116.28,
|
| 105 |
+
103.53,
|
| 106 |
+
],
|
| 107 |
+
pad_val=0,
|
| 108 |
+
seg_pad_val=255,
|
| 109 |
+
size=(
|
| 110 |
+
512,
|
| 111 |
+
512,
|
| 112 |
+
),
|
| 113 |
+
std=[
|
| 114 |
+
58.395,
|
| 115 |
+
57.12,
|
| 116 |
+
57.375,
|
| 117 |
+
],
|
| 118 |
+
type='SegDataPreProcessor'),
|
| 119 |
+
decode_head=dict(
|
| 120 |
+
align_corners=False,
|
| 121 |
+
channels=256,
|
| 122 |
+
dropout_ratio=0.1,
|
| 123 |
+
in_channels=[
|
| 124 |
+
64,
|
| 125 |
+
128,
|
| 126 |
+
320,
|
| 127 |
+
512,
|
| 128 |
+
],
|
| 129 |
+
in_index=[
|
| 130 |
+
0,
|
| 131 |
+
1,
|
| 132 |
+
2,
|
| 133 |
+
3,
|
| 134 |
+
],
|
| 135 |
+
loss_decode=dict(
|
| 136 |
+
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
|
| 137 |
+
norm_cfg=dict(requires_grad=True, type='BN'),
|
| 138 |
+
num_classes=2,
|
| 139 |
+
type='SegformerHead'),
|
| 140 |
+
pretrained=None,
|
| 141 |
+
test_cfg=dict(mode='whole'),
|
| 142 |
+
train_cfg=dict(),
|
| 143 |
+
type='EncoderDecoder')
|
| 144 |
+
norm_cfg = dict(requires_grad=True, type='BN')
|
| 145 |
+
optim_wrapper = dict(
|
| 146 |
+
optimizer=dict(
|
| 147 |
+
betas=(
|
| 148 |
+
0.9,
|
| 149 |
+
0.999,
|
| 150 |
+
), lr=6e-05, type='AdamW', weight_decay=0.01),
|
| 151 |
+
paramwise_cfg=dict(
|
| 152 |
+
custom_keys=dict(
|
| 153 |
+
head=dict(lr_mult=10.0),
|
| 154 |
+
norm=dict(decay_mult=0.0),
|
| 155 |
+
pos_block=dict(decay_mult=0.0))),
|
| 156 |
+
type='OptimWrapper')
|
| 157 |
+
optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005)
|
| 158 |
+
param_scheduler = [
|
| 159 |
+
dict(
|
| 160 |
+
begin=0, by_epoch=False, end=1500, start_factor=1e-06,
|
| 161 |
+
type='LinearLR'),
|
| 162 |
+
dict(
|
| 163 |
+
begin=1500,
|
| 164 |
+
by_epoch=False,
|
| 165 |
+
end=160000,
|
| 166 |
+
eta_min=0.0,
|
| 167 |
+
power=1.0,
|
| 168 |
+
type='PolyLR'),
|
| 169 |
+
]
|
| 170 |
+
randomness = dict(seed=0)
|
| 171 |
+
resume = False
|
| 172 |
+
test_cfg = dict(type='TestLoop')
|
| 173 |
+
test_dataloader = dict(
|
| 174 |
+
batch_size=1,
|
| 175 |
+
dataset=dict(
|
| 176 |
+
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
|
| 177 |
+
data_root='CVRPDataset/',
|
| 178 |
+
pipeline=[
|
| 179 |
+
dict(type='LoadImageFromFile'),
|
| 180 |
+
dict(keep_ratio=True, scale=(
|
| 181 |
+
2048,
|
| 182 |
+
1024,
|
| 183 |
+
), type='Resize'),
|
| 184 |
+
dict(type='LoadAnnotations'),
|
| 185 |
+
dict(type='PackSegInputs'),
|
| 186 |
+
],
|
| 187 |
+
type='CVRPDataset'),
|
| 188 |
+
num_workers=4,
|
| 189 |
+
persistent_workers=True,
|
| 190 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
| 191 |
+
test_evaluator = dict(
|
| 192 |
+
iou_metrics=[
|
| 193 |
+
'mIoU',
|
| 194 |
+
'mDice',
|
| 195 |
+
'mFscore',
|
| 196 |
+
], type='IoUMetric')
|
| 197 |
+
test_pipeline = [
|
| 198 |
+
dict(type='LoadImageFromFile'),
|
| 199 |
+
dict(keep_ratio=True, scale=(
|
| 200 |
+
2048,
|
| 201 |
+
1024,
|
| 202 |
+
), type='Resize'),
|
| 203 |
+
dict(type='LoadAnnotations'),
|
| 204 |
+
dict(type='PackSegInputs'),
|
| 205 |
+
]
|
| 206 |
+
train_cfg = dict(max_iters=20000, type='IterBasedTrainLoop', val_interval=500)
|
| 207 |
+
train_dataloader = dict(
|
| 208 |
+
batch_size=2,
|
| 209 |
+
dataset=dict(
|
| 210 |
+
data_prefix=dict(
|
| 211 |
+
img_path='img_dir/train', seg_map_path='ann_dir/train'),
|
| 212 |
+
data_root='CVRPDataset/',
|
| 213 |
+
pipeline=[
|
| 214 |
+
dict(type='LoadImageFromFile'),
|
| 215 |
+
dict(type='LoadAnnotations'),
|
| 216 |
+
dict(
|
| 217 |
+
keep_ratio=True,
|
| 218 |
+
ratio_range=(
|
| 219 |
+
0.5,
|
| 220 |
+
2.0,
|
| 221 |
+
),
|
| 222 |
+
scale=(
|
| 223 |
+
2048,
|
| 224 |
+
1024,
|
| 225 |
+
),
|
| 226 |
+
type='RandomResize'),
|
| 227 |
+
dict(
|
| 228 |
+
cat_max_ratio=0.75, crop_size=(
|
| 229 |
+
512,
|
| 230 |
+
512,
|
| 231 |
+
), type='RandomCrop'),
|
| 232 |
+
dict(prob=0.5, type='RandomFlip'),
|
| 233 |
+
dict(type='PhotoMetricDistortion'),
|
| 234 |
+
dict(type='PackSegInputs'),
|
| 235 |
+
],
|
| 236 |
+
type='CVRPDataset'),
|
| 237 |
+
num_workers=2,
|
| 238 |
+
persistent_workers=True,
|
| 239 |
+
sampler=dict(shuffle=True, type='InfiniteSampler'))
|
| 240 |
+
train_pipeline = [
|
| 241 |
+
dict(type='LoadImageFromFile'),
|
| 242 |
+
dict(type='LoadAnnotations'),
|
| 243 |
+
dict(
|
| 244 |
+
keep_ratio=True,
|
| 245 |
+
ratio_range=(
|
| 246 |
+
0.5,
|
| 247 |
+
2.0,
|
| 248 |
+
),
|
| 249 |
+
scale=(
|
| 250 |
+
2048,
|
| 251 |
+
1024,
|
| 252 |
+
),
|
| 253 |
+
type='RandomResize'),
|
| 254 |
+
dict(cat_max_ratio=0.75, crop_size=(
|
| 255 |
+
512,
|
| 256 |
+
512,
|
| 257 |
+
), type='RandomCrop'),
|
| 258 |
+
dict(prob=0.5, type='RandomFlip'),
|
| 259 |
+
dict(type='PhotoMetricDistortion'),
|
| 260 |
+
dict(type='PackSegInputs'),
|
| 261 |
+
]
|
| 262 |
+
tta_model = dict(type='SegTTAModel')
|
| 263 |
+
tta_pipeline = [
|
| 264 |
+
dict(file_client_args=dict(backend='disk'), type='LoadImageFromFile'),
|
| 265 |
+
dict(
|
| 266 |
+
transforms=[
|
| 267 |
+
[
|
| 268 |
+
dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
|
| 269 |
+
dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
|
| 270 |
+
dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
|
| 271 |
+
dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
|
| 272 |
+
dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
|
| 273 |
+
dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
|
| 274 |
+
],
|
| 275 |
+
[
|
| 276 |
+
dict(direction='horizontal', prob=0.0, type='RandomFlip'),
|
| 277 |
+
dict(direction='horizontal', prob=1.0, type='RandomFlip'),
|
| 278 |
+
],
|
| 279 |
+
[
|
| 280 |
+
dict(type='LoadAnnotations'),
|
| 281 |
+
],
|
| 282 |
+
[
|
| 283 |
+
dict(type='PackSegInputs'),
|
| 284 |
+
],
|
| 285 |
+
],
|
| 286 |
+
type='TestTimeAug'),
|
| 287 |
+
]
|
| 288 |
+
val_cfg = dict(type='ValLoop')
|
| 289 |
+
val_dataloader = dict(
|
| 290 |
+
batch_size=1,
|
| 291 |
+
dataset=dict(
|
| 292 |
+
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
|
| 293 |
+
data_root='CVRPDataset/',
|
| 294 |
+
pipeline=[
|
| 295 |
+
dict(type='LoadImageFromFile'),
|
| 296 |
+
dict(keep_ratio=True, scale=(
|
| 297 |
+
2048,
|
| 298 |
+
1024,
|
| 299 |
+
), type='Resize'),
|
| 300 |
+
dict(type='LoadAnnotations'),
|
| 301 |
+
dict(type='PackSegInputs'),
|
| 302 |
+
],
|
| 303 |
+
type='CVRPDataset'),
|
| 304 |
+
num_workers=4,
|
| 305 |
+
persistent_workers=True,
|
| 306 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
| 307 |
+
val_evaluator = dict(
|
| 308 |
+
iou_metrics=[
|
| 309 |
+
'mIoU',
|
| 310 |
+
'mDice',
|
| 311 |
+
'mFscore',
|
| 312 |
+
], type='IoUMetric')
|
| 313 |
+
vis_backends = [
|
| 314 |
+
dict(type='LocalVisBackend'),
|
| 315 |
+
]
|
| 316 |
+
visualizer = dict(
|
| 317 |
+
name='visualizer',
|
| 318 |
+
type='SegLocalVisualizer',
|
| 319 |
+
vis_backends=[
|
| 320 |
+
dict(type='LocalVisBackend'),
|
| 321 |
+
])
|
| 322 |
+
work_dir = './work_dirs/CVRP_segformer'
|